
IAES International Journal of Artificial Intelligence (IJ-AI)

Vol. 14, No. 1, February 2025, pp. 337~349

ISSN: 2252-8938, DOI: 10.11591/ijai.v14.i1.pp337-349  337

Journal homepage: http://ijai.iaescore.com

SQL-CB-GuArd: a deep learning mechanism for structured

query language injection attack detection

AsifIqbal Sirmulla, Prabhakar Manickam
School of Computer Science and Engineering, Reva University, Bangalore, India

Article Info ABSTRACT

Article history:

Received Mar 4, 2024

Revised Jul 3, 2024

Accepted Jul 26, 2024

 Structured query language (SQL) injection attacks, which take advantage of

input field vulnerabilities to introduce malicious code into database queries,

are a serious danger to database-driven programs and systems. Intruders can

now alter, recover, or remove sensitive data because of illegal access. Strong

artificial intelligence (AI) based security solutions are required to reduce

SQL injection threats, as these assaults' significance highlights. This study's

main goal is to create automated AI-based techniques that can identify

structured query language injection attack (SQLIA) in real time eliminating

the need for human intervention. Although machine learning (ML) and deep

learning-based techniques have received a lot of interest in this field, ML-

based techniques have problems with accuracy and false negatives. Deep

learning (DL) is therefore commonly used in these text data processing and

natural language processing (NLP) applications. We have introduced a

hybrid DL approach for SQLIA detection in this paper. The pre-processing

step performs decoding, generalization, and tokenization to improve the

learning performance. The proposed approach uses combination of

convolutional neural network (CNN), bidirectional long short-term memory

(Bi-LSTM), gated recurrent unit (GRU) with attention mechanism. The

combination helps to improve the pattern learning capacity. The proposed

approach is validated on publically available data and experimental analysis

reported that the proposed SQL-CB-GuArd achieves better accuracy of

SQLIA detection.

Keywords:

Attention mechanism

Bidirectional long short-term

memory

Convolutional neural network

Deep learning

Gated recurrent unit

Natural language processing

Structured query language

injection attack

This is an open access article under the CC BY-SA license.

Corresponding Author:

AsifIqbal Sirmulla

School of Computer Science and Engineering, REVA University

Bangalore, India

Email: aisirmulla@gmail.com

1. INTRODUCTION

In today's world, information technology has become essential in various aspects of our lives,

including communication, transportation, and banking. While these advancements bring many benefits, they

also open doors for malicious actions in cyberspace [1]. Similarly, the modern web-based technologies and

cloud based systems got very popular due to their diverse range of applications [2], [3]. Therefore, these

systems are easily accessible for every individual. However, these systems raise serious concerns over

security of the systems. Several studies have reported the increase in cyberattacks. For example, in 2020,

there were about 4,000 cyberattacks recorded daily worldwide. Cybersecurity ventures estimated that by

2021, cybercrime would cost the world economy $6 trillion annually, compared to $3 trillion in 2015 [4].

Ransomware attacks have seen a significant increase, with a 150% rise in 2020 compared to 2019 [5].

Similarly, phishing attacks remain a major threat, with over 240,000 unique phishing websites detected each

month in 2020 [6]. The anti-phishing working group reported a 22% increase in phishing attacks in the first

https://creativecommons.org/licenses/by-sa/4.0/

  ISSN: 2252-8938

Int J Artif Intell, Vol. 14, No. 1, February 2025: 337-349

338

half of 2021 compared to the same period in 2020. These attacks often lead to data breaches, which have

become a significant concern. In 2020, over 37 billion records were exposed in breaches, marking a 141%

increase from 2019 [7], [8]. Based on IBM's cost of a data breach report [9], the average time to detect and

remediate a data breach is 280 days. Hence, it's crucial to protect cyber infrastructures from harmful threats.

Similarly, the IT infrastructure also has noticed a tremendous growth and its dependency on the

technology has increased drastically. Therefore, all most all applications which are used in daily life are

utilizing web-based system to operate them efficiently. As discussed before these web-based applications are

easily accessible to individuals therefore it brings various security challenges because of illegal access [10].

When users use web apps or portals, user-generated data gets stored within these platforms or their respective

backend databases. These databases are overseen by database management systems (DBMS), which execute

request queries scripted in the form of structured query language (SQL). Both the frontend app and backend

db are susceptible to various forms of assaults due to their internet accessibility. Amongst the various

vulnerabilities outlined by OWASP, structured query language injection attack (SQLIA) rank among the top

10 [11]. Recent trends indicate a staggering increase in attack rates, exceeding 300% over the past decade,

with attackers employing sophisticated tactics like obscured or cipher codes to bypass security systems [12].

SQLIA occurs when an SQL query is injected or inserted via a client-side data input field into the online app

or portal [13]. The injected query can be malicious, potentially resulting in database modification, identity

spoofing, sensitive information leakage, and repudiation issues if successfully executed [14]. Therefore,

several methods have been introduced to address the SQLIA issue such as input validation, parameterized

queries, web application firewalls (WAF), input filtering and sanitization, database activity monitoring

(DAM), error handling and logging, and black box and white box testing [15]. Table 1 shows a comparative

analysis where the advantages and drawbacks of these models are briefly described.

Table 1. Traditional methods of attack detection
Method Description Drawback

Input
validation

Putting in place stringent input validation procedures to guarantee
that data submitted by users satisfies expectations regarding

format, length, and data type.

Fails in complex applications with
numerous input fields.

Parameterized

queries

Using prepared statements or parameterized searches when

interacting with databases. By separating SQL code from user

input, these techniques stop injected SQL instructions from being

executed.

It requires significant changes in existing

codebase and implementation can be error

prone

WAF It keeps an eye on and filters HTTP traffic going between the

internet and an online portal. Based on specified rulesets, WAFs

are able to identify and prevent SQL injection activities.

It may lead to generate the false positive

and false negative leading to block the

legitimate traffic or allowing the
malicious traffic

Input filtering

and sanitization

It removes or neutralize potentially harmful characters or

commands from user input before processing it.

Sometimes it fails to catch all variations

of input malicious traffic
DAM It offers tools for real-time DAM and analysis. It can detect

anomalous SQL queries or behaviors indicative of a potential

SQLIA.

It leads to produce high volume of alerts

Error handling

and logging

It implements error handling within the application to capture and

log any SQL-related errors. Analyzing error logs can help identify
potential SQL injection attempts.

Large log volumes becomes time-

consuming

Presently, machine learning (ML) based systems have gathered huge attention in various

applications such as image processing, video processing biomedical domain, textual data analysis and natural

language processing (NLP) tasks. ML based methods have been considered as promising method to detect

the SQL attacks and other intrusion successfully. Nofal and Amer [16] presented a combined approach where

neural network and fuzzy logic methods were used for SQLIA detection. Sheykhkanloo [17] presented in

neural network based model which uses uniform resource locator (URL) generator, URL classifier, and NN

model. Similarly, support vector machine (SVM), decision tree (DT), and k-nearest neighbors (KNN)

classifiers are also employed for SQLIA detection. However, the reliability and generalization of these

methods remains a challenging task. Therefore, deep learning (DL) based methods have been adopted to

improve the performance. the literature review presents the brief discussion about these methods.

In this work, we present a hybrid DL based solution for SQLIA detection. The proposed work uses

combination of data pre-processing, vectorization, and implementation of DL model. The data pre-processing

stage implements decoding, generalization, and tokenization. In next stage vectorization is performed.

Finally, the DL model is implement which uses convolutional neural network (CNN), bidirectional long

short-term memory (Bi-LSTM), and gated recurrent unit (GRU) with attention mechanism.

Int J Artif Intell ISSN: 2252-8938 

 SQL-CB-GuArd: a deep learning mechanism for Structured query language … (AsifIqbal Sirmulla)

339

Rest of the article is arranged in following section. Section 2 presents brief literature review about

standard methods. Section 3 showcases the proposed model. Section 4 presents the outcome of proposed

model along with the comparative analysis with existing methods. Finally section 5 presents the concluding

remarks about the work.

2. LITERATURE SURVEY

This section provides a quick overview of the literature on current techniques for detecting SQLIA

through the use of DL and ML techniques. Vartouni et al. [18] focused on enhancing WAF using deep ML

algorithms, specifically focusing on anomaly detection. Initially, attributes are constructed from HTTP data

using two models: n-gram and one-hot. Subsequently, employing auto-encoder long short-term memory

networks (AE-LSTM) as an unsupervised DL technique, informative features are extracted and reduced.

Finally, an ensemble isolation forest is utilized to train the classifier exclusively on normal data.

Thalji et al. [19] presented DL based model by using recurrent neural network (RNN) based pattern learning

approach. Moreover, it implements autoencoder based system along with RNN. The encoder module

considers the input data and compresses the data to lower dimension. This encoded data then fed into the

decoder module which reconstructs the data. Finally, long short-term memory networks (LSTM) and dense

layer based RNN model is employed for classification.

Gandhi et al. [20] reported that traditional prevention methods, such as rule-based matching, have

limitations in detecting a wide range of SQLIA. One major challenge is the constant evolution of malicious

SQL queries by hackers. To address this, leveraging ML algorithms for predicting SQLIA proves promising.

This paper proposes a hybrid CNN-Bi-LSTM method for identification of SQLIA. the complete architecture

utilizes several layers such as embedding layer, convolution layer, and max pooling with Bi-LSTM. Finally,

dense and output layers are used to obtain the final outcome. Sun et al. [21] reported accuracy and false

negative issues of existing methods. Recent ML research on SQLIA identification has focused mainly on

extracting the features. However, the efficacy of identification relies heavily on the accurateness of features

extracted, which may not adequately address more complex SQLIA. To tackle these challenges, a novel

approach to SQLIA detection, combining an enhanced TextCNN and LSTM is presented in this work. In

order to acquire local features, this technique first vectorizes samples inside the corpus and then uses an

enhanced TextCNN. The sequence information present in the samples is then captured using a Bi-LSTM

network. Understanding that LSTM is less successful with longer sequences, it employs an attention

mechanism to shorten the gap between any two words in the sequence to one. The feature selection procedure

also incorporates pre-trained word vector features acquired using bidirectional encoder representations from

transformers (BERT) for transfer learning. A mixed ML model based on LSTM and SVM was reported by

Fang et al. [22]. Initially the likelihood ratio is used, and then SQL tokenization. This produces a word vector

model in SQL. This model is given into the LSTM model as a train set, and it classifies the patterns as

authentic and injected queries. Kherbache et al. [23] talked about how feature selection, which involves

choosing the most critical qualities to increase efficiency and reduce false positives, is seen to be a crucial

step in anomaly-based intrusion detection. Authors offered a mixed agglomerative hierarchical clustering

approach with SVM classification based on this idea. Based on their commonalities, features are categorized

and feature selection is carried out according to variance. A CNN-based model for online security was

provided by Jemal et al. [24], who also examined the significance of the hyper-parameters included in CNN

models.

3. PROPOSED MODEL

This section presents the proposed DL based model for SQLIA detection. As discussed before, the

traditional methods have several disadvantages which are further addressed by DL based methods. However,

the ever evolving process of attackers affect the SQLIA detection performance. In order to overcome the

issues of existing models, we introduced a new hybrid DL model which utilizes four different concepts to

improve the performance. The overview of these concepts is given as follows:

− CNN: it is a class of DL mechanism commonly employed for image and non-image (including textual)

data. The CNN based method utilizes learnable filters (also called kernels or convolutional kernels) to

convolve over the input data, fetching local patterns and features.

− LSTM: It is a kind of RNN architecture intended to recognize long-term relationships in sequential data

and solve the vanishing gradient issue. LSTM networks are appropriate for jobs where comprehending

context over long distances is critical because they are able to selectively store or discard info over

lengthy durations. They are now a common option for many sequence modeling tasks, particularly those

involving time-series data or jobs involving NLP, such text creation, sentiment analysis, and machine

translation.

  ISSN: 2252-8938

Int J Artif Intell, Vol. 14, No. 1, February 2025: 337-349

340

− GRU: Akin to the LSTM, the GRU is another kind of RNN design that is intended to handle the

vanishing gradient issue and identify long-term relationships in sequential data. GRUs are more effective

in training and deploying than LSTMs since they have fewer parameters and need less computing power.

− Attention mechanism: When making predictions, neural networks, especially sequence-to-sequence

models, employ this technique to concentrate on pertinent portions of the input data. It enables the model

to focus on specific segments of the input sequence, giving each segment varying degrees of significance

according to how relevant it is to the present forecast.

The proposed architecture is designed based on the combination of these architectures. Figure 1

depicts the complete proposed architecture for SQLIA detection. It includes four different phases where first

phase includes data pre-processing which includes decoding, generalization, and tokenization, next phase

performs vectorization, phase III uses this vectorised data through the proposed classifier model and finally,

the classification outcomes are analayzed.

Figure 1. Proposed SQL-CB-GuArd (SQL-CNN Bi-LSTM Gated Recurrent Attention Mechanism)

3.1. Data pre-processing

This step performs several tasks as the data pre-processing phase such as data decoding,

generalization, and tokenization. Data decoding includes generalization and tokenization tasks. In next phase,

vectorization converts the dataset into numerical vectors.

3.1.1. Decoding

The first stage of this work performs data pre-processing where data decoding, generalization and

tokenization tasks are performed. The data decoding refers to the process of converting encoded or sanitized

input data back to its original form before further analysis or processing. The decoding process involves

reversing the encoding or sanitization applied to the input data, so that the original input can be analysed for

signs of SQLIA. For example, if user input has been URL-encoded or hyper text markup language (HTML)-

encoded to prevent SQL injection, the defence mechanism would need to decode the input data to recover the

original user input before passing it to the SQL injection detection model. Similarly, if special characters

have been escaped or replaced with safe alternatives, you would need to reverse this process to obtain the

original input data. Table 2 shows the example of URL encoded and HTML encoded inputs by user and their

corresponding decoded output. This step converts the complex hyperlinks in simplified forms.

Table 2. Example of decoding URL encoding and HTML decoding
 Input Decoded Operations

URL encoding “Hello%20World%21” Hello World! %20 replaced with space character

HTML decoding "<script>alert('XSS
Attack!')</script>"

<script>alert('XSS
Attack!')</script>

the HTML entities < and > are
replaced with < and >, respectively,

Int J Artif Intell ISSN: 2252-8938 

 SQL-CB-GuArd: a deep learning mechanism for Structured query language … (AsifIqbal Sirmulla)

341

3.1.2. Generalization

In this stage, the data generalization operation is performed where the main aim is to minimize the

redundant and irrelevant distribution. This generalization process includes several steps such as:

− Handling the URL: generally, the input data consist of several URLs which are replaced with a

placeholder string such as “https://website”. This step ensures the mitigating the impact of specific URLs,

especially if the URLs are not relevant to the task at hand or if they contain sensitive information.

− Replacing numbers: Numbers in the data are replaced with a placeholder value, such as '0'. This step is

often done to generalize numerical data and focus on the structural aspects of the data rather than the

specific numeric values. It can help reduce the dimensionality of the data and mitigate the influence of

numeric outliers.

− Removing extra unique qualities: Certain unique qualities in the data, such as control characters or blank

characters, are removed. Control characters, such as newline characters or tab characters, can introduce

noise or artifacts in the data that may interfere with analysis or modeling. Removing these characters

helps in standardizing the data and making it more responsive to processing. For example, the SQL

injection query is "SELECT * FROM users WHERE username = 'admin' --' AND password = 'password'"

and after removing unique qualities it becomes "SELECT * FROM users WHERE username = 'admin'

AND password = 'password'".

3.1.3. Tokenization

Tokenization plays important role in this domain of SQLIA detection. This process breaks down the

SQL queries or input into various smaller and meaningful units which are called as tokens. Each token

represents the word, symbol or other elements in the query. Moreover, it helps to extract the significant

features for analysis. The tokenization performs several steps such as splitting queries into token, removing

comments, extracting features from tokens such as token frequencies, n-grams (sequences of tokens),

syntactic patterns, or semantic information derived from the tokens, and building the vocabulary. However,

this work uses different scripting languages therefore the feature extraction is performed based on input data.

Thus, the proposed tokenization approach performs several steps to accomplish the tokenization process such

as identifying starting and ending labels, identification of windows events and function names, assigning

unique tokens, analysing the vocabulary list and predefined delimiter replacement. Table 3 shows the

complete overview of tokenization process.

− Identification of starting and ending labels: this process involves identifyting the starting and ending

labels of various elements in web content such as identifying the HTML tags, event handles, JavaScript

function etc. For example, in HTML, tags are enclosed within angle brackets (< >), and JavaScript

functions are defined using the function keyword followed by a pair of parentheses and curly braces ({ }).

− Identification of window event and function names: in this phase, the proposed tokenization process

involves identifying the certain features related to the windows events and function names which are

commonly used in XSS attacks. These event handlers are 𝑜𝑛𝑐𝑙𝑖𝑐𝑘, 𝑜𝑛𝑚𝑜𝑢𝑠𝑒𝑜𝑣𝑒𝑟, and 𝑜𝑛𝑙𝑜𝑎𝑑.

Similarly, the function names are “eval”, “alert”, “prompt”.

− Unique token assignment: once the starting and ending labels, as well as Windows event and function

names, are identified, unique tokens are assigned to each of these features. These tokens serve as

representations of the features and are used to create a vocabulary list.

− Checking tokens in vocabulary list: in this step the tokens obtained from the input data is checked against

the vocabulary list which consist of predefined tokens to represent the identified attributes. If the obtained

token matches with any of the predefined attribute, then it is retained otherwise it is replaced with the

predefined delimiter or placeholder token.

3.2. Vectorization

This is the next step after pre-processing which is used to represent the SQL queries or input data as

numerical vectors. This representation is helpful for ML and DL methods to perform classification tasks.

Several methods have been introduced to perform the vectorization such as bag of word, term frequency-

inverse document frequency (TF-IDF), and word embeddings etc. In this work, we employed word2vec

model for word embedding. After completing the pre-processing tasks, this word embedding model is

applied. According to this, initially vocabulary is created which is constructed by selecting the most common

words from tokenized data. This vocabulary consists of unique words present in the corpus and serves as the

basis for generating word embeddings. Typically, words are represented by numerical indices in the

vocabulary.

After vocabulary, the 𝑤𝑜𝑟𝑑2𝑣𝑒𝑐 model need to be trained. Word2Vec utilizes a neural network

architecture, specifically either the “continuous bag of words (CBOW)” model or the “skip-gram model”, to

learn distributed representations of words based on their contexts. This stage involves training the neural

  ISSN: 2252-8938

Int J Artif Intell, Vol. 14, No. 1, February 2025: 337-349

342

network to estimate a word's probability provided its surrounding words (for CBOW), or given a target word,

its adjacent words (for skip-gram). This training process involves adjusting the neural network's parameters

(word vectors) to minimize prediction errors.

Let 𝑊 represent the Word2Vec model, which consists of a neural network with parameters 𝜃. The

training process aims to minimize a loss function ℒ by adjusting the parameters 𝜃. Mathematically, this can

be represented as (1):

𝑚𝑖𝑛𝜃 .
1

𝑁
∑ ℒ𝑁

𝑖=1 (𝑊(𝑇𝑖), 𝑡𝑖𝑐) (1)

Where 𝑊(𝑇𝑖) is the output of the Word2Vec model for the input token sequence 𝑇𝑖 , and 𝑡𝑖𝑐 is the context

token for the central word in the sequence.

Following training, every word in the vocabulary has an embedding, or dense vector representation,

in a continuous vector space. This is known as the Word2Vec model. Similar words are represented by

adjacent vectors in the vector space as a result of these embeddings, which reflect the semantic links between

words. The vector embeddings generated by Word2Vec are mapped with the vocabulary created earlier. Each

word in the vocabulary is associated with its corresponding vector representation in the continuous vector

space. For example, let us consider that we have a SQL query given as:

 “SELECT * FROM users WHERE username='admin'

This query is processed through the Word2Vec model to produce embeddings for each word in the query.

The outcome of this Word2Vec model is presented as:

Word2Vec(‘SELECT’)=[0.1, 0.2, 0.3],

Word2Vec(‘*’)=[0.2, 0.3, 0.4]

Word2Vec(‘FROM’)=[P0.3, 0.4, 0.5]

Word2Vec(‘users’)=[0.4, 0.5, 0.6]

Word2Vec(‘WHERE’)=(‘0.5, 0.6, 0.7’)

Word2Vec(‘username’)=(‘0.6, 0.7, 0.8’)

Word2Vec(‘=’)=(‘0.7, 0.8, 0.9’)

Word2Vec(‘admin’)=(‘0.8, 0.9, 1.0’)

Further, in order to obtained the final vector representation of given SQL query, we perform

averaging on the Word2Vec embeddings with the help of tokens, which is expressed as:

SQL_Query_Vector = (Word2Vec('SELECT') + Word2Vec ('*') + Word2Vec('FROM') + Word2Vec('users')

+ Word2Vec('WHERE') + Word2Vec('username') + Word2Vec ('=') + Word2Vec('admin'))/8

=([0.1, 0.2, 0.3]+[0.2, 0.3, 0.4]+[0.3, 0.4, 0.5]+[0.4, 0.5, 0.6]+[0.5, 0.6, 0.7]+[0.6, 0.7, 0.8]+[0.7, 0.8, 0.9]+

[0.8, 0.9, 1.0])/8

=[0.475, 0.575, 0.675] is the final SQL_Query_Vector. This vector captures the semantic meaning

of the query in a continuous vector space, which can be used as input to proposed hybrid DL model. The

proposed architecture is discussed in next section.

Table 3. Tokenization process
Tokenization Input (potentially with SQLIA) Tokenized Output Description

Starting and

end label

identification

<input type="text" name="username"

value="' OR 1=1; --">

['<', 'input', 'type', '=', '"text"',

'name', '=', '"username"', 'value',

'=', "' OR 1=1; --'", '>']

<input> is identified as a starting

label, and its corresponding ending

label > is also recognized.
window

event and

function
names

identification

<script>

var username = 'admin';

var password = 'password';
function authenticate() {

var query = "SELECT * FROM users

WHERE username='" + username + "'
AND password='" + password + "';";

executeQuery(query);

}
</script>

['<', 'script', '>', 'var', 'username',

'=', "'admin'", ';', 'var', 'password',

'=', "'password'", ';', 'function',
'authenticate', '(', ')', '{', 'var',

'query', '=', '"SELECT * FROM

users WHERE username=\'" +
username + "\' AND password=\'"

+ password + "\';"', ';',

'executeQuery', '(', 'query', ')', ';',
'}', '<', '/script', '>']

the JavaScript function

executeQuery and the SQL query

string within the authenticate
function are identified as features

of interest. The SQL query string

concatenates user inputs username
and password, making it

vulnerable to SQL injection.

Unique

token
assignment

<input type="text" name="search"

value="); DROP TABLE users; --">

['<', 'input', 'type', '=', '"text"',

'name', '=', '"search"', 'value', '=',
"); DROP TABLE users; --", '>']

he SQL injection payload); DROP

TABLE users; -- is treated as user
input and tokenized accordingly.

Int J Artif Intell ISSN: 2252-8938 

 SQL-CB-GuArd: a deep learning mechanism for Structured query language … (AsifIqbal Sirmulla)

343

3.3. Proposed SQL-CB-GuArd (SQL-CNN Bi-LSTM gated recurrent attention mechanism) for

SQLIA detection

This section describes the proposed DL based solution for SQLIA detection. The proposed

architecture is developed by using the combination of CNN, Bi-LSTM and GRU models to obtain the final

classification model. The complete detail of this model is described as follows.

3.3.1. Convolutional neural network

The CNN model plays important role in extracting the features from the input data. For obtaining

the features from the input data, it uses several kernels to conduct convolution operations. To increase the

network's flexibility, the kernel is made up of bias term and trainable weight coefficients. This is the

fundamental layer of the network and the output of this layer is processed further where ReLU activation

function is performed which is expressed as (2):

𝑓(𝑥) = max(0, 𝑥) (2)

The ReLU activation helps to mitigate the vanishing gradient and improves the training process. In

next step, max pooling operation is performed. The pooling operation downsamples the duplicate data and

focuses on identifying the invariance in the network. here, two pooling operations are performed such as max

pooling and average pooling. The max pool helps to select the maximum value and average pool helps to

select the average value as output. The pooling operations helps to reduce the spatial dimension of feature

maps resulting in the increase of network efficiency. Finally, the fully connected layer is employed to

establish the relation between input and output. The outcome of CNN model can be expressed as (3):

𝑦𝑖 = 𝐶𝑁𝑁(𝑥𝑖) (3)

According to the SQLIA model, we consider that the input sequence is denoted by 𝑋 with

dimension (𝑇, 𝐷) where 𝑇 is the sequence length and 𝐷 is the embedding dimension. Let 𝑍𝑐 represents the

output feature map with the dimension (𝑇′, 𝐹) after applying the CNN and max pooling where 𝑇′ is the

sequence length obtained by applying pooling and 𝐹 represents the number of filter. Thus, the convolution

operation can be represented as (4):

𝑍(𝑐) = 𝑅𝑒𝐿𝑈(𝐶𝑜𝑛𝑣(𝑋)) (4)

3.3.2. Bidirectional long short-term memory

The outcome of CNN model is fed into the Bi-LSTM model. This model is based on the working of

RNN model. However, the traditional RNN models suffer from the issue of vanishing gradient problem. The

basic LSTM model consist of three components called as input, forge and output gates as depicted in Figure 2.

The main aim of LSTM model is to regulate the states of these gates to improve the learning performance. The

forget gate 𝑓𝑡 is used to ensure whether to keep the information of previous state (𝑐𝑡 − 1) or not. The input

gate (𝑖𝑡). Similarly, the input gate (𝑖𝑡) determines the extent to which information from the input text (𝑥𝑡) and

the previous hidden state (ℎ𝑡 − 1) should influence the updating of the cell state. Its output can be either 0 or 1.

The value of ct represents the newly generated cell state resulting from computational operations involving

𝑐𝑡 − 1, 𝑓𝑡, and 𝑖𝑡. Meanwhile, the output gate (𝑜𝑡) regulates the transmission of information from the current

cell state to the hidden state, with its value also being either 0 or 1. These operations can be expressed as (5):

𝑓𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑊𝑓𝑥𝑥𝑡 + 𝑊𝑓ℎℎ𝑡−1 + 𝑏𝑓)

𝑖𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑖𝑥𝑥𝑡 + 𝑊𝑖ℎℎ𝑡−1 + 𝑏𝑖)

𝑐𝑡 = 𝑐𝑡−1⨀𝑓𝑡 + 𝑖𝑡 tanh(𝑊𝑐𝑥𝑥𝑡 + 𝑊𝑐ℎℎ𝑡−1 + 𝑏𝑐)

𝑜𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑜𝑥𝑥𝑡 + 𝑊𝑜ℎℎ𝑡−1 + 𝑏0)

ℎ𝑡 = 𝑜𝑡⨀tanh(𝑐𝑡) (5)

Where 𝑥𝑡 ∈ 𝑅𝑛 represents the input vector, 𝑊 ∈ 𝑅𝑣∗𝑛 , 𝑏 ∈ 𝑅𝑣 and 𝑛, 𝑣 represents the input vector dimension

and number of words in the vocabulary.

In the LSTM network, information propagates solely in a forward direction, implying that the state

at time 𝑡 is influenced only by information preceding 𝑡. However, to fully capture the semantic context of an

input review, subsequent information is equally significant as previous ones. Thus, for a more comprehensive

representation of contextual information, the Bi-LSTM model is utilized. The Bi-LSTM model consists of

two LSTM networks and has the capability to process input reviews in both forward and backward

directions. Therefore, we adopt the Bi-LSTM model in this work. The Figure 3 depicts the Bi-LSTM layer.

  ISSN: 2252-8938

Int J Artif Intell, Vol. 14, No. 1, February 2025: 337-349

344

Figure 2. LSTM model

Figure 3. Bi-LSTM architecture

The forward and backward LSTM processes are expressed as (6):

ℎ⃗ 𝑡 = 𝐿𝑆𝑇𝑀(𝑥𝑡 , ℎ⃗ 𝑡−1)

ℎ⃖⃗𝑡 = 𝐿𝑆𝑇𝑀(𝑥𝑡 , ℎ⃖⃗𝑡+1) (6)

Finally, the output of Bi-LSTM is summarized by concatenating the forward and backward states as (7):

ℎ𝑡 = [ℎ⃗ 𝑡 , ℎ⃖⃗𝑡] (7)

According to the proposed model, the 𝐻(𝑙) represents the output hidden states obtained from Bi-LSTM

model. The dimension of 𝐻(𝑙) are given as (𝑇′, 2𝐻) where 𝐻 represents the number of hidden units. The

Bi-LSTM operation can be expressed as (8):

𝐻(𝑙) = 𝐵𝑖𝐿𝑆𝑇𝑀(𝑋) (8)

3.3.3. Gated recurrent unit and attention model

Along with CNN and Bi-LSTM, we incorporate the GRU model which plays important role in

sequence modelling tasks. In a typical GRU cell, there are two gates: the reset gate (r) and the update gate

(z). Similar to an LSTM cell, the computation of the hidden state output at time t involves the hidden state at

time t-1 and the input time series value at time t can be expressed as (9):

ℎ𝑡 = 𝑓(ℎ𝑡−1, 𝑥𝑡) (9)

According to the proposed model, the output of GRU can be expressed as (10):

Int J Artif Intell ISSN: 2252-8938 

 SQL-CB-GuArd: a deep learning mechanism for Structured query language … (AsifIqbal Sirmulla)

345

𝐻𝑔 = 𝐺𝑅𝑈(𝐻(𝑙)) (10)

In order to improve the overall performance of SQLIA, we also incorporate the attention mechanism

where 𝛼 represents the attention weights which are computed with the help of hidden states 𝐻(𝑔). The

attention weights can be computed as (11):

𝛼 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝐿𝑖𝑛𝑒𝑎𝑟(𝐻(𝑔))) (11)

With the help of hidden states, the context vector can be obtained by estimating the weighted sum of these

states, which can be expressed as (12):

𝐶 = ∑ 𝛼𝑡 . 𝐻𝑡
(𝑔)𝑇′

𝑡=1 (12)

The overall architecture of proposed model is represented in Figure 4 which shows the layer, its parameters

and connection to another layer.

Figure 4. overall architecture of proposed model

  ISSN: 2252-8938

Int J Artif Intell, Vol. 14, No. 1, February 2025: 337-349

346

4. RESULTS AND DISCUSSION

This section presents the results of the suggested technique and makes a comparison between the

acquired performance and several current SQLIA detection schemes. The first subsection presents the

overview of dataset used including performance measurement parameters. Next subsection describes the

obtained performance, and finally a comparative analysis is presented.

4.1. Dataset details and performance measurement parameters

The performance of proposed model is validated on publically available datasets which are obtained

from GitHub and Kaggle websites. Table 4 presents the dataset details. In this table, five different CSV

dataset files are used which are named as dataset 1, dataset 2, dataset 3, dataset 4, and dataset 5 which are

finally combined together to generate the final dataset.

Table 4. Dataset details
Dataset SQLi Query Legitimate Query

Dataset 1 158 994

Dataset 2 1594 994

Dataset 3 5433 994
Dataset 4 22559 19009

Dataset 5 29379 20002

Similarly, we utilized a publicly available SQL query dataset [21] for our research experiments. The

dataset comprises three files: ‘‘sqli.csv,’’ ‘‘sqliv2.csv,’’ and ‘‘SQLiV3.csv,’’ which we combined. For initial

preprocessing, we encoded the target labels ‘Attack’ (1) and ‘Benign’ (0). A PC equipped with an Intel i7

10th GEN CPU (2.20 GHz), 136 GB of RAM, and an 8 GB NVIDIA graphics card was used for all testing.

Tensorflow 1.4.1 is used as a backend calculation, Python 3.7.13, the sklearn 1.0.2 package for ML methods,

and Keras 2.8.0 to construct neural networks. The simulation settings utilized in this investigation are

displayed in Table 5.

Table 5. Simulation parameters
Parameter Name Considered value

Hidden Units for LSTM [16, 32, 64]

Filters for CNN [16, 32, 64]

Memory Units for LSTM 32
Embedding Dimension 32

Hidden Units for FCN 250

Training batch 50
Optimizer Adam

Loss Function Binary Cross Entropy

Cross Validation 10-Fold

According to this experiment, we have considered 32 memory units for LSTM model and the filter

size for CNN is also considered as 32. However, these parameters were tested for a range of [16, 2, 64]. This

model uses a Fully connected layer and ReLU activation function is also applied for output layer. The

performance of this approach is measured with the help of confusion matrix which uses “Normal” and

“Attack” classes to identify the true positive, false positive, true negative and false negative. Table 6 shows

the obtained confusion matrix.

‒ True positive (TP): When a classifier properly predicts the positive class from the provided test set, it is

said to be true positive.

‒ True negative (TN): it demonstrates that, given the test data, the classifier model accurately forecasts the

negative class. The accuracy of the classifier is indicated by the true positive and true negative numbers.

These categories need to correspond with the true positive and true negative values, though.

‒ False positive (FP): indicates that the positive class was predicted by the classifier model in error.

‒ False negative (FN): indicates erroneously predicting the negative class by the classifier.

With the help of this confusion matrix, we measure the performance in terms of average accuracy, precision,

recall, and F-Score. These parameters can be expressed as [25]:

𝐴𝑐𝑐 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (13)

Int J Artif Intell ISSN: 2252-8938 

 SQL-CB-GuArd: a deep learning mechanism for Structured query language … (AsifIqbal Sirmulla)

347

Recall =
TP

TP+TN
 (14)

P =
TP

TP+FP
 (15)

F =
2∗P∗Sensitivity

P+Sensitivity
 (16)

Table 6. Confusion matrix

Actual class
Predicted class

Normal Attack

Normal True positive False negative

Attack False positive True negative

4.2. Comparative analysis

With the help of aforementioned parameters, we measure the performance of proposed model and

compare the obtained outcome with existing methods. Sun et al. [21] presented deep feature extraction model

and implemented several classifiers. Table 7 shows the obtained performance. In order to achieve this

performance, we have considered the combined dataset as discussed before where the final dataset is grouped

into two classes as “attack” and “benign” query.

Table 7. Comparative analysis for ML and DL (class wise analysis)
Classifier Class Precision Recall F1-score Accuracy

KNN Attack 0.98 0.95 0.97 0.96
Benign 0.95 0.98 0.90

Average 0.97 0.97 0.98

RF Attack 0.98 0.99 0.99 0.98
Benign 0.99 0.98 0.98

Average 0.99 0.99 0.99

LSTM Attack 0.88 0.87 0.87 0.87
Benign 0.87 0.88 0.87

Average 0.87 0.87 0.87

Proposed
SQL-CB-GuArd

Attack 0.99 0.99 0.99 0.99
Benign 0.99 0.99 0.99

Average 0.99 0.99 0.99

According to this experiment, the existing methods i.e. KNN, RF, and LSTM methods have used

deep feature extraction model whereas proposed model uses combination of pre-processing along with GRU

and attention mechanism to enhance the pattern learning process. Therefore, the average accuracy has been

reported as 0.96, 0.98, 0.87, and 0.99 by using KNN, RF, LSTM, proposed SQL-CB-GuArd, respectively.

Similarly, Fang et al. [22] presented Bi-LSTM based DL approach for SQLIA detection. Table 8 shows the

comparative analysis as discussed in [22]. The complete dataset is divided into 70% training and remaining

30% is used for testing purpose.

Table 8. Comparative analysis for ML and DL (overall performance analysis)
Algorithm Accuracy (%) Precision (%) Recall (%) F1-Score (%)

Random forest 97.88 97.90 97.88 97.89
SVM 88.22 88.76 88.22 88.36

Logistic regression 71.02 73.49 71.02 70.57

MLP 90.99 91.49 90.99 91.15
Bi-LSTM 99.26 99.26 99.25 99.24

Proposed SQL-CB-GuArd 99.80 99.55 99.60 99.25

Further, we compared the performance with the traditional DL and supervised ML models to

measure the performance of proposed approach. Table 9 shows the obtained performance in terms of

accuracy, precision, recall, and F1-score. The experimental analysis shows that the traditional LSTM model

reported the less accuracy as 62.32% whereas proposed SQL-CB-GuArd has reported highest classification

accuracy as 99.20%.

  ISSN: 2252-8938

Int J Artif Intell, Vol. 14, No. 1, February 2025: 337-349

348

Table 9. Comparative analysis for DL methods
Method Accuracy (%) Precision (%) Recall (%) F1-score (%)

Autoencoder [14] 94.00 95.00 90.00 92.00
LSTM [10] 62.32 66.23 65.16 64.23

KNN [10] 82.69 71.51 88.56 79.13

DT [10] 92.33 89.58 89.74 89.66
SQLNN [10] 96.16 97.28 92.23 94.68

Proposed SQL-CB-GuArd 99.20 99.35 99.40 99.10

5. CONCLUSION

This articles discussed the threats to web based systems where SQLIA are considered as one of the

most crucial threat to these systems. Therefore, maintaining security in these applications remains a

challenging task. Several methods have been introduced to deal with this issue where ML based automated

methods have gained attention from research community. However, ML based methods face several

challenges which need to be addressed. Therefore, researchers have adopted DL based methods. In this work,

we adopt the DL method to improve the SQLIA detection performance. The proposed model performs data

pre-processing, vectorization and hybrid DL model to obtain the improved performance. The pre-processing

phase includes data decoding, generalization and tokenization. Further, vectorization model is implemented

to obtain the final feature vector. Finally, CNN, Bi-LSTM, and GRU models are employed. Further, attention

mechanism is also incorporated to improve the feature learning performance.

REFERENCES
[1] A. A. R. Farea et al., “Injections attacks efficient and secure techniques based on bidirectional long short time memory model,”

Computers, Materials and Continua, vol. 76, no. 3, pp. 3605–3662, 2023, doi: 10.32604/cmc.2023.040121.
[2] A. Kumar, S. Dutta, and P. Pranav, “Analysis of SQL injection attacks in the cloud and in WEB applications,” Security and

Privacy, vol. 7, no. 3, 2024, doi: 10.1002/spy2.370.

[3] M. Qasaimeh, R. A. Hammour, M. B. Yassein, R. S. Al-Qassas, J. A. L. Torralbo, and D. Lizcano, “Advanced security testing
using a cyber-attack forecasting model: A case study of financial institutions,” Journal of Software: Evolution and Process, vol.

34, no. 11, 2022, doi: 10.1002/smr.2489.

[4] S. Morgan, “2019 official annual cybercrime report,” Cybersecurity Ventures, Herjavec Group, 2019.

[5] L. Brew, L. Drazovich, and S. Wetzel, “The impact of COVID-19 on the security and resilience of the maritime transportation

system,” Proceedings of the 2021 IEEE International Conference on Cyber Security and Resilience, CSR 2021, pp. 510–517,

2021, doi: 10.1109/CSR51186.2021.9527935.
[6] H. Tupsamudre, S. Jain, and S. Lodha, “PhishMatch: a layered approach for effective detection of phishing URLs,” arXiv-

Computer Science, pp. 1-30, 2021.

[7] A. Arshad, A. U. Rehman, S. Javaid, T. M. Ali, J. A. Sheikh, and M. Azeem, “A systematic literature review on phishing and
anti-phishing techniques,” Pakistan Journal of Engineering and Technology, PakJET, vol. 4, no. 1, pp. 163-168, 2021.

[8] S. Heister and K. Yuthas, “How blockchain and AI enable personal data privacy and support cybersecurity,” in Blockchain

Potential in AI, 2022. doi: 10.5772/intechopen.96999.
[9] A. Dixit, J. Quaglietta, K. Nathan, L. Dias, and D. Nguyen, “Cybersecurity: guiding principles and risk management advice for

healthcare boards, senior leaders and risk managers,” Healthcare quarterly, vol. 25, no. 4, pp. 35–40, 2023, doi:

10.12927/hcq.2023.27019.
[10] N. Khan, J. Abdullah, and A. S. Khan, “Defending malicious script attacks using machine learning classifiers,” Wireless

Communications and Mobile Computing, vol. 2017, 2017, doi: 10.1155/2017/5360472.

[11] OWASP, “OWASP top ten: Top 10 web application security risks,” OWASP, 2021. Accessed: Feb. 26, 2024. [Online]. Available:
https://owasp.org/www-project-top-ten/

[12] F. K. Alarfaj and N. A. Khan, “Enhancing the performance of SQL injection attack detection through probabilistic neural

networks,” Applied Sciences, vol. 13, no. 7, 2023, doi: 10.3390/app13074365.

[13] N. Khan, J. Abdullah, and A. S. Khan, “Towards vulnerability prevention model for web browser using interceptor approach,”

2015 9th International Conference on IT in Asia: Transforming Big Data into Knowledge, CITA 2015, 2015, doi:

10.1109/CITA.2015.7349842.
[14] V. Jain, M. S. Gaur, V. Laxmi, and M. Mosbah, “Detection of SQLite database vulnerabilities in android apps,” Information

Systems Security (ICISS 2016), Springer, Cham, pp. 521–531, 2016, doi: 10.1007/978-3-319-49806-5_31.

[15] M. McPhee, Mastering kali Linux for web penetration testing. Birmingham, United Kingdom: Packt Publishing Ltd, Jun. 2017.
[16] D. E. Nofal and A. A. Amer, “SQL injection attacks detection and prevention based on neuro—fuzzy technique,” Studies in Big

Data, vol. 77, pp. 93–112, 2021, doi: 10.1007/978-3-030-59338-4_6.

[17] N. M. Sheykhkanloo, “A learning-based neural network model for the detection and classification of SQL injection attacks,” Deep
Learning and Neural Networks, pp. 450–475, 2019, doi: 10.4018/978-1-7998-0414-7.ch026.

[18] A. M. Vartouni, S. Mehralian, M. Teshnehlab, and S. S. Kashi, “Auto-encoder LSTM methods for anomaly-based web

application firewall,” International Journal of Information and Communication Technology, vol. 11, no. 3, pp. 49–56, 2019.
[19] N. Thalji, A. Raza, M. S. Islam, N. A. Samee, and M. M. Jamjoom, “AE-Net: novel autoencoder-based deep features for SQL

injection attack detection,” IEEE Access, vol. 11, pp. 135507–135516, 2023, doi: 10.1109/ACCESS.2023.3337645.

[20] N. Gandhi, J. Patel, R. Sisodiya, N. Doshi, and S. Mishra, “A CNN-BiLSTM based approach for detection of SQL injection
attacks,” Proceedings of 2nd IEEE International Conference on Computational Intelligence and Knowledge Economy, ICCIKE

2021, pp. 378–383, 2021, doi: 10.1109/ICCIKE51210.2021.9410675.

[21] H. Sun, Y. Du, and Q. Li, “Deep learning-based detection technology for SQL injection research and implementation,” Applied
Sciences, vol. 13, no. 16, 2023, doi: 10.3390/app13169466.

Int J Artif Intell ISSN: 2252-8938 

 SQL-CB-GuArd: a deep learning mechanism for Structured query language … (AsifIqbal Sirmulla)

349

[22] Y. Fang, J. Peng, L. Liu, and C. Huang, “WOVSQLI: Detection of SQL injection behaviors using word vector and LSTM,” ACM
International Conference Proceeding Series, pp. 170–174, 2018, doi: 10.1145/3199478.3199503.

[23] M. Kherbache, K. Amroun, and D. Espes, “A new wrapper feature selection model for anomaly-based intrusion detection

systems,” International Journal of Security and Networks, vol. 17, no. 2, pp. 107–123, 2022, doi: 10.1504/IJSN.2022.123298.
[24] I. Jemal, M. A. Haddar, O. Cheikhrouhou, and A. Mahfoudhi, “Performance evaluation of convolutional neural network for web

security,” Computer Communications, vol. 175, pp. 58–67, 2021, doi: 10.1016/j.comcom.2021.04.029.

[25] F. Dass, M. Dass, C. Feresa, and M. Foozy, “A comparative study of SQL injection detection using machine learning approach,”
Applied Information Technology And Computer Science, vol. 3, no. 2, pp. 19–031, 2022, doi: 10.30880/aitcs.2022.03.02.002.

BIOGRAPHIES OF AUTHORS

AsifIqbal Sirmulla holds Masters Degree in Computer Science from Reva

University, India in 2020. He also recieved his Bachelors from VTU, India in 2013. He is

currently Research Scholar at Reva University, Bangalore. His research includes machine

learning, data mining, and natural language processing. He has published 5 papers in

international journals and conferences. He can be contacted at email: aisirmulla@gmail.com.

Dr. Prabhakar Manickam is presently working as Professor in School of

Computer Science & Engineering, REVA University – Bangalore with an aim of designing a

project for farmers in India to cultivate appropriate crop in appropriate time for better yield.

He has published about 15 patents and has obtained 5 patent grants in various fields including

internet of things, image processing, education, and security in WSNs. He was awarded

`Excellence in Research’, by Novel Research Academy, Puducherry, India. He has delivered

many guest lectures on Internet of Things in `Border Security Force Signal Training School

(BSF-STS) for Officers’ - Bangalore. He can be contacted at email: prabhakar.m@reva.edu.in.

https://orcid.org/0009-0009-6696-2062
https://www.scopus.com/authid/detail.uri?authorId=58700083700
https://orcid.org/0000-0002-9117-1483

