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 The increasing demand for standardized food quality assurance, particularly 

in regions like Morocco, emphasizes the need for accurate classification of 

poultry meat. This study evaluates and compares ten convolutional neural 

network (CNN) architectures—VGG19, VGG16, ResNet50, GoogleNet, 

MobileNetV1, MobileNetV2, DenseNet, NasNet, EfficientNet, and 

AlexNet—for classifying commonly consumed poultry meat types in 

Moroccan markets, including chicken, turkey, fayoumi, and farmer’s 

chicken. A labeled image dataset was used to train and test each model, with 

performance assessed using metrics such as accuracy, precision, recall, 

training time, and computational complexity. Additionally, the study 

investigates how dataset size influences model performance, addressing 

challenges like limited data availability and scalability. The results highlight 

DenseNet as the top-performing architecture, achieving 98% classification 

accuracy while also demonstrating superior computational efficiency. These 

findings are valuable for improving food quality control, offering data-

driven support for stakeholders in poultry production, distribution, and 

regulatory bodies. By identifying optimal deep learning models for poultry 

meat classification, the study contributes to enhancing food authentication 

and safety in Morocco and similar regions. It also encourages the integration 

of AI-driven systems in food inspection processes, providing scalable, 

accurate, and efficient solutions for ensuring standardized quality in the 

poultry supply chain. 
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1. INTRODUCTION 

Poultry meat constitutes a cornerstone of global food security, providing a rich source of protein and 

essential nutrients. In Morocco, poultry production is particularly vital, contributing significantly to both 

national dietary needs and the agricultural economy. As consumer demand for high-quality poultry products 

intensifies, accurate and efficient classification of poultry meat becomes paramount for maintaining 

consumer trust, ensuring food safety, and supporting fair market practices. This necessitates the adoption of 

advanced technologies capable of automating and standardizing the classification process. Convolutional 

neural networks (CNNs), a highly effective category of deep learning models specialized in image 

processing, have proven to be a compelling approach to addressing this challenge. Their ability to discern 
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intricate patterns and features from image data with minimal pre-processing makes them ideally suited for 

complex classification tasks in the food industry. The application of CNNs in food classification has gained 

considerable traction in recent years, with successful implementations in areas such as fruit and vegetable 

sorting, meat quality assessment, and species identification. Several studies have explored the potential of 

CNNs for poultry meat classification specifically. For example, our previous work [1] demonstrated the 

effectiveness of the MobileNetV2 pre-trained model for this task. Other research in [2] has employed CNNs 

to classify chicken breasts based on visual characteristics like color, texture, and fat distribution, while 

further studies in [3] have investigated their use in authenticating poultry meat products to detect adulteration 

and ensure product integrity. Despite these advancements, a comprehensive comparative analysis of various 

CNN architectures tailored to the specific context of Moroccan poultry meat classification remains lacking. 

Such an analysis is crucial for understanding the strengths and limitations of different models and for 

developing robust classification systems that accommodate regional variations in poultry breeds, processing 

methods, and consumer preferences. 

This study addresses this gap in our research team [4]–[7] by presenting a comparative analysis of 

ten distinct CNN architectures for poultry meat classification in Morocco. Utilizing a diverse dataset of 

poultry meat images representative of the Moroccan market, we evaluate the performance of these 

architectures in accurately distinguishing between different poultry types and cuts. Through rigorous testing 

and comparison of key performance metrics, we aim to identify the optimal CNN architectures for 

maximizing classification accuracy and efficiency in the Moroccan poultry industry. The findings of this 

research aid in the progression of advanced tools for quality control, traceability, and consumer protection 

within the Moroccan poultry sector, with broader implications for food security and economic development. 

 

 

2. RELATED WORK 

In the realm of food classification, particularly concerning the categorization of poultry meat, a 

wealth of prior investigations has laid the groundwork for the comparative analysis expounded within this 

study. Over time, researchers have delved into an array of methodological approaches, spanning from 

conventional machine learning techniques to the more intricate realms of deep learning methodologies. For 

instance, numerous studies have delved into the efficacy of support vector machines (SVMs), random forests, 

and k-nearest neighbors (k-NN) algorithms in discerning and classifying poultry meat based on a diverse 

array of visual attributes and features [8], [9]. Moreover, the advent and subsequent maturation of deep 

learning methodologies, notably CNNs, have sparked considerable interest within the research community. 

CNN architectures such as VGG, ResNet, and Inception have emerged as stalwarts in the classification of 

various food items, including poultry meat, showcasing remarkable performance and accuracy in discerning 

intricate patterns and features within visual data [10], [11]. It is within this context that our study endeavors 

to contribute significantly. By systematically comparing ten widely employed CNN architectures on a 

standardized and rigorously curated poultry meat dataset, our analysis aims to shed light on their respective 

strengths, weaknesses, and applicability in real-world scenarios. Through this endeavor, we aim not only to 

advance the understanding of poultry meat classification but also to provide practitioners and researchers 

alike with valuable insights into the optimal selection and deployment of CNN models for similar tasks. 

 

 

3. MATERIALS AND METHODS 

This method focuses on classifying four specific poultry categories-chicken, turkey, Fayoumi, and 

chicken farmer-using various pre-trained CNN architectures. In this study, we exploit the capabilities of ten 

diverse CNN architectures, including VGG19, VGG16, ResNet50, GoogleNet, MobileNetV1, MobileNetV2, 

DenseNet, NasNet, EfficientNet, and AlexNet. Unlike conventional methods that often require training large 

models from scratch on extensive datasets, by utilizing pre-trained feature maps, we circumvent the need to 

start training from the ground up, thereby saving computational resources and time. Through this approach, 

the resulting models demonstrate a remarkable ability to visually differentiate between chicken, turkey, 

Fayoumi, and chicken farmers with a high level of accuracy across the various CNN architectures tested. 

 

 

4. IMAGES ACQUISITION 

This study on poultry meat classification concentrated on chicken, turkey, and chicken farmers, 

acknowledging that Moroccans are among the highest consumers of meat globally, averaging 30 kilograms 

consumed per person each year. In Morocco, as in many other countries, meat holds significant social value 

and is considered a highly esteemed component of the diet [12]. Poultry constitutes the majority of meat 

consumption in Morocco, because of its lower price [13]. To enhance accuracy, we included Fayoumi as well, 
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resulting in a dataset covering four poultry types. The dataset was compiled by purchasing various cuts of 

turkey, chicken, Fayoumi, and chicken farmer from a market in Meknes, Morocco. We used a 16-megapixel 

digital camera phone (Huawei Y9 Prime) along with a photography LED box, as shown in Figure 1, to 

capture high-quality images. Additionally, we employed a program for image cropping to augment the 

dataset. Images were taken of different parts of the bird, including the thigh, drumstick, wing, breast, and 

neck. This approach allowed us to capture detailed attributes and textures crucial for classification. The 

images were captured over a period of 20 days, ensuring diversity in the dataset. The original image 

dimensions were 4608×3456 pixels, which were resized to 408×306 pixels to ensure compatibility with the 

model and accommodate storage limitations on Google Drive. We focused on preserving color and texture 

details, crucial for accurate classification [14], [15], and zoomed in on features and attributes of the images. 

Sample images from our dataset are depicted in Figure 2. 

 

 

 
 

Figure 1. Photography LED box 

 

 

 
 

Figure 2. Dataset samples [1] 

 

 

5. DATASET AUGMENTATION 

The training dataset constitutes a pivotal component, comprising a total of 746 images that have 

been categorized into four distinct classes. Recognizing the significance of data augmentation in enhancing 

model generalization and performance, we took measures to enrich the dataset further. Leveraging a coding 
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program developed, we implemented augmentation techniques to diversify the dataset. Through this 

augmentation process, each original image was transformed into eight variations, including rotations and 

horizontal mirroring. This augmentation strategy significantly bolstered the dataset, expanding it to a total of 

7614 images, as visually depicted in Figure 3. This augmentation not only amplifies the dataset's volume but 

also enriches its diversity, empowering our models with a more comprehensive understanding of the 

variability within the dataset, thereby enhancing their robustness and classification accuracy. 

 

 

 
 

Figure 3. Example of an image augmentation 

 

 

6. THE MODELS 

The study utilized a diverse array of pre-trained CNN models to preprocess and classify the poultry 

meat dataset. in Figure 4, an overview of CNN architecture is specified. These models encompassed a wide 

range of architectures and characteristics, including VGG19, VGG16, ResNet50, GoogleNet, MobileNetV1, 

MobileNetV2, DenseNet, NasNet, EfficientNet, and AlexNet. Each of these models has been pretrained on 

large-scale image datasets like ImageNet, enabling them to learn rich representations of visual features, 

which can be effectively transferred to our poultry meat classification task. 

VGG19, VGG16, and ResNet50 are renowned for their deep architectures and superior performance 

in image classification tasks [16]–[18]. NasNet, on the other hand, is designed to be compact, making it 

suitable for deployment on resource-constrained devices without compromising accuracy. NasNet 

architectures often achieve state-of-the-art performance but require significant computational resources for 

their design [19]. MobileNetV2 and MobileNetV1 are optimized for mobile and embedded applications, 
offering lightweight architectures while maintaining competitive accuracy [20]–[22]. DenseNet stands out for 

its densely connected layers, promoting feature reuse and facilitating efficient training [23]. 

EfficientNet is part of a family of models that scale up in complexity and accuracy by balancing 

network depth, width, and resolution [24]. AlexNet, one of the pioneering CNN architectures, introduced key 

concepts such as convolutional layers and rectified linear units (ReLU), paving the way for modern deep 

learning research [25]. GoogleNet, with its inception modules and global average pooling, emphasizes both 

depth and computational efficiency [26]. 

By leveraging pre-trained models, we capitalized on the wealth of knowledge these models have 

accumulated during their training on diverse image datasets. This approach significantly reduced the 

computational overhead and time required for training, allowing us to focus on fine-tuning the models for 

poultry meat classification. Moreover, by evaluating the performance of these diverse models across various 

metrics such as accuracy, precision, recall, and F1-score, we gained valuable insights into their effectiveness 

and suitability for poultry meat classification tasks. 

Through this comprehensive analysis, we aimed to identify the most effective CNN architecture 

for poultry meat classification, considering factors such as accuracy, efficiency, and scalability. By 

 



Int J Artif Intell  ISSN: 2252-8938  

 

Comparative analysis of convolutional neural network architectures for poultry … (Salma Sekhra) 

3719 

evaluating the ten prominent architectures-VGG19, VGG16, ResNet50, GoogleNet, MobileNetV1, 

MobileNetV2, DenseNet, NasNet, EfficientNet, and AlexNet-we sought to determine which model 

performs best in distinguishing between chicken, turkey, fayoumi, and chicken farmer meat. Our findings 

reveal that certain architectures, such as DenseNet and VGG16, demonstrated superior accuracy and 

computational efficiency, making them well-suited for real-world applications in poultry meat 

classification. These results contribute to the advancement of research in leveraging deep learning 

techniques for food quality assessment and authentication, with potential applications in industries 

involved in poultry meat production and distribution. 

 

 

 
 

Figure 4. High level design of convolution architecture 

 

 

7. RESULTS AND DISCUSSION 

In this section, we present and discuss the results of our comparative analysis of ten CNN models 

for poultry meat classification. The models evaluated include VGG19, VGG16, ResNet50, GoogleNet, 

MobileNetV1, MobileNetV2, DenseNet, NasNet, EfficientNet, and AlexNet. We analysed their performance 

based on accuracy and loss metrics to determine their suitability for classifying poultry meat. 

 

7.1.  Performance comparison 

The results in Table 1 present a nuanced balance between computational efficiency and 

classification accuracy across the evaluated CNN models. DenseNet emerges as a frontrunner, showcasing an 

outstanding accuracy of 98% with an exceptionally low loss of 0.03. This remarkable performance can be 

attributed to DenseNet's dense connectivity pattern, which promotes feature reuse and gradient flow, as 

highlighted by [27]. This finding underscores the importance of intricate network architectures in achieving 

high accuracy in image classification tasks. 

Traditional architectures such as VGG19, VGG16, and ResNet50 exhibit competitive performance, 

with accuracies of 95%, 97% and 91%. These models, renowned for their deep architectures and residual 

connections, excel in capturing intricate features within poultry meat images [28]. However, their deeper 

structures may entail higher computational overheads during both training and inference phases, necessitating 

careful consideration in resource-constrained environments. 

 

 

Table 1. The accuracy and loss values of ten models 
Model Accuracy (%) Loss 

VGG19 95 0.14 

VGG16 97 0.11 

ResNet50 91 0.12 

MobileNetV2 94 0.20 

MobileNetV1 95 0.21 
DenseNet 98 0.03 

EfficientNet 95 0.21 

AlexNet 77 0.30 

NasNet 95 0.16 

GoogleNet 95 0.11 

 

 

Conversely, lightweight architectures like NasNet, GoogleNet, and MobileNetV1 demonstrate 

commendable computational efficiency. They achieve an accuracy of 95%. These models, characterized by 

their compact architectures and parameter-efficient designs, offer promising solutions for deployment in 
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resource-constrained environments [29], [30]. Models with shallower architectures, such as AlexNet and 

MobileNetV2, struggle to achieve comparable accuracies, with AlexNet achieving 77% accuracy and 

MobileNetV2 achieving 94%. These models, with their simpler architectures, may encounter difficulties in 

capturing intricate features present in poultry meat images, leading to reduced performance compared to their 

counterparts [31]. Our comparative analysis sheds light on the strengths and limitations of various CNN 

models for poultry meat classification. By understanding these nuances, practitioners can make informed 

decisions when selecting models for real-world applications in the poultry industry, ultimately contributing to 

more efficient and accurate classification systems. 

 

7.2.  Training curves 

These curves, as shown in Figure 5, provide insights into the training and validation progress of 

each model, illustrating how accuracy improves as shown in Figures 5(a) and 5(b) and loss decreases as 

shown in Figures 5(c) and 5(d) over successive epochs of training. For instance, deeper architectures like 

DenseNet, VGG16, ResNet50, and EfficientNet exhibit smoother convergence curves, indicating stable 

learning dynamics and effective feature extraction, while shallower models like AlexNet show more 

fluctuations, reflecting challenges in capturing complex patterns. Such visualizations offer a deeper 

understanding of the learning dynamics and convergence behavior of the CNN models, complementing the 

quantitative evaluation of their performance metrics. By analysing these curves, we can identify models that 

not only achieve high accuracy but also demonstrate consistent and reliable training behavior, which is 

crucial for real-world deployment in poultry meat classification tasks. 

 

 

  
(a) 

 

(b) 

 

  
(c) (d) 

 

Figure 5. Insights into the training and validation progress of each model: (a) training accuracy 

curves for each model, (b) validation accuracy curves for each model, (c) training loss curves for each model, 

and (d) validation loss curves for each model 
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8. FUTURE DIRECTIONS 

Looking ahead, future research in poultry meat classification could explore expanding the scope to 

include minced meat analysis. Incorporating minced meat classification poses unique challenges, such as 

distinguishing between meat particles and grease content. Future research could utilize advanced image 

processing and machine learning techniques to achieve precise classification of minced poultry meat, while 

also estimating the proportion of meat and fat in the samples. This extension would not only enhance the 

applicability of CNNs in poultry meat analysis but also provide valuable insights for the food processing 

industry, particularly in quality control and product formulation. 

 

 

9. CONCLUSION 

The study provides valuable insights into the application of CNNs for poultry meat classification, 

demonstrating the feasibility of automating this task through a comparative analysis of ten CNN 

architectures evaluated on a standardized dataset. We show that while deeper architectures like DenseNet 

and VGG16 offer higher accuracy and robustness, lightweight models such as MobileNetV2 provide a 

more computationally efficient solution, making them suitable for resource-constrained environments. 

Moreover, data augmentation techniques are essential for improving the generalization ability of CNN 

models, thereby enhancing their effectiveness in real-world applications. The results of this study support 

the advancement of intelligent food processing systems that can accurately classify poultry meat, 

contributing to improved food safety and quality assurance within the industry. Moving forward,  

further research is warranted to explore advanced techniques such as transfer learning, domain adaptation, 

and ensemble methods to enhance the performance and scalability of CNN models for food  

classification tasks. 
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