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 Automating robotic deburring in the automotive sector demands extreme 
precision in contour detection, particularly for complex components like 

wheel rims. This article presents the application of the U-Net architecture, a 

deep learning technique, for the precise segmentation of the outer contour of 

wheel rims. By integrating U-Net's capabilities with OpenCV, we have 
developed a robust system for wheel rim contour detection. This system is 

particularly well-suited for robotic deburring environments. Through 

training on a diverse dataset, the model demonstrates exceptional ability to 

identify wheel rim contours under various lighting and background 
conditions, ensuring sharp and accurate segmentation, crucial for automotive 

manufacturing processes. Our experiments indicate that our method 

surpasses conventional techniques in terms of precision and efficiency, 

representing a significant contribution to the incorporation of deep learning 
in industrial automation. Specifically, our method reduces segmentation 

errors and improves the efficiency of the deburring process, which is 

essential for maintaining quality and productivity in modern production 

lines. 
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1. INTRODUCTION 

The emergence of deep learning, combined with advances in robotics and automation, has 

revolutionized image processing, particularly in the automotive industry where precision is essential. Robotic 

deburring of wheel rims, a process that demands extreme accuracy, greatly benefits from these innovations. 

For instance, fast-U-Net has demonstrated its efficiency in orchard navigation [1], highlighting the progress 

made through deep learning. Our study follows this trend by aiming for optimal detection of wheel rim 

contours to enhance deburring. 

Precise segmentation is crucial in various fields such as pathological imaging and industrial 

inspection. The work on Lite-UNet illustrates the importance of contour accuracy under complex lighting and 

background conditions [2], [3]. Other studies have also highlighted the importance of these conditions  

[4], [5], emphasizing the challenges to overcome for reliable segmentation. We build on this research to 

accurately define the external contours of wheel rims. 

Speed and precision are essential qualities in robotic systems, as noted by various studies [6], [7]. 

We seek to maximize these qualities in our approach. Studies on the evaluation of microfractures and 

manufacturing defects guide us in developing solutions that meet the strict requirements of the automotive 

industry [8], [9], providing a solid foundation for our research. 

https://creativecommons.org/licenses/by-sa/4.0/
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Convolutional neural networks (CNNs) are widely used for image segmentation, as demonstrated by 

several works [10]. Research on plant disease recognition and tomato crop segmentation shows the 

effectiveness of CNNs [11], [12]. These diverse applications inform our use of CNNs for wheel rim contour 

detection, bringing proven techniques to a new application domain. 

Managing trade-offs in robotic deburring systems and the impact of automation on machining forces 

offer valuable insights [13], [14]. Studies on deburring optimization reinforce our approach to integrating 

machining processes into our system [15], [16]. This research highlights the technical challenges and 

potential solutions, providing a framework for our experiments. 

Advances in contour detection and classification, necessary for vehicle re-identification, are 

explored by various studies [17]. Work with U-Net++ and U-Net brings significant progress in complex 

segmentation, the foundation of our research [18], [19]. These studies demonstrate the enhanced capabilities 

of these deep learning architectures in complex scenarios, justifying our technological choice. 

The integration of deep learning in robotics and image super-resolution frames our approach  

[20]–[22]. We refine this approach with edge detection techniques and precise sub-pixel edge localization 

[23], [24], ensuring increased accuracy in segmentation. This precision is crucial to meet the quality and 

efficiency requirements of the automotive industry. 

Finally, research on industrial process automation and innovations in disease recognition and defect 

detection inform our method of automatic wheel rim contour detection [25]–[29]. We also rely on burr 

formation models and surface roughness predictions [30]–[32]. This knowledge enriches our understanding  

of industrial challenges and allows us to propose innovative solutions. 

This article demonstrates how deep learning can be applied to address specific challenges in the 

automotive industry and be integrated into production systems to improve quality and efficiency. Through a 

series of experiments and validations, we establish new standards for contour detection in robotic deburring, 

paving the way for more advanced and precise industrial applications. These advancements not only enhance 

the accuracy of current systems but also offer scalable solutions for future automation in manufacturing. 
 
 

2. MATERIALS 

2.1.  Software environment 

The development and training of our U-Net segmentation model were conducted on Google Colab, 

which provides access to high-performance graphics processing units (GPUs). This platform was chosen for 

its ability to significantly accelerate training times and offer a flexible environment for development. The 

model was implemented using TensorFlow and Keras, leading libraries for constructing and optimizing deep 

neural networks. For the extraction and visualization of wheel rim contours, we used OpenCV version 4.8.1, 

chosen for its powerful image processing capabilities. Development was carried out in PyCharm  

version 2020.1.1, providing a robust integrated development environment. Execution was performed on a 

computer equipped with an Intel Core i7-6820HQ CPU at 2.70 GHz, 16 GB of RAM, and an NVIDIA 

Quadro M1000M graphics card, ensuring smooth handling of intensive computational operations. 
 

2.2.  Training configuration 

For the optimization of our modified U-Net model, we opted for training over 50 epochs. This 

choice was guided by the observation that beyond this threshold, the validation error began to increase, 

indicating the onset of potential overfitting. To stabilize training and prevent overfitting, we monitored loss 

curves to dynamically adjust hyperparameters. Starting with a learning rate of 0.001, we integrated a 

decaying learning rate scheduler to gradually fine-tune the weight updates of the network, thereby 

maximizing learning efficiency over the epochs. The batch size was set to 16, a balance that allows optimal 

utilization of computational resources while maintaining training stability and accuracy. This configuration 

helped reduce training times while improving model convergence. 

To enhance model generalization, extensive data augmentation techniques were employed, 

including rotation, zoom, horizontal flipping, and lighting adjustments. These methods aimed to increase the 

diversity of the training set, exposing the model to a broader range of variations in wheel rim images. The 

inclusion of lighting adjustments was particularly crucial, as it enabled the model to maintain robust 

performance under various lighting conditions, thereby improving its ability to accurately identify wheel rim 

contours in diverse real-world lighting environments. 
 
 

3. DATA COLLECTION AND DATASET PREPARATION 

3.1.  Data collection 

Data collection is a critical step in the machine learning process. For this study, we acquired a 

comprehensive dataset of 220 wheel rim images from the public source Kaggle. The dataset was further 
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analyzed to ensure a balanced distribution of different rim shapes, enhancing the robustness of the model's 

training process. The images, as shown in Figure 1, were selected to reflect a variety of rim shapes, with 11 

unique shapes and 20 representations for each shape, totaling a diverse sample for model training. 

 

 

 
 

Figure 1. Example of the database 

 

 

3.2.  Data annotation 

Image annotation was carried out using the (visual geometry group (VGG) image annotator (VIA)), 

a web-based tool designed for precise manual image annotation. Each image was annotated to delineate the 

external contour of the rims, resulting in the creation of 11 JavaScript object notation (JSON) files 

corresponding to the distinct rim shapes. Precise annotations are essential for training the model to recognize 

rim contours with high accuracy. 

 

3.3.  Data processing 

The JSON files generated during annotation were used to create binary masks using a custom 

Python script. These masks serve to isolate the rims from the background, allowing the creation of image 

pairs: an original image and its corresponding mask. This process facilitates semantic segmentation and 

contour detection by the U-Net model, thereby improving detection accuracy. 

 

3.4.  Dataset preparation 

To ensure a methodical distribution of data, the images were divided into three distinct sets: 70% for 

training, 20% for validation, and 10% for testing. This strategic division is crucial to maintain the integrity of 

the model evaluation, thereby ensuring that the model can effectively generalize on previously unseen data. 

Additionally, care was taken to randomize the distribution to avoid any potential bias in the training process. 

 

3.5.  Data augmentation 

Data augmentation was implemented to improve the model's ability to generalize from a limited 

number of samples. Augmentation techniques include horizontal flipping, random adjustments of brightness, 

and contrast. These methods were systematically applied to produce image variants that simulate the natural 

variations encountered in a real production environment. 

 

3.6.  Data storage and organization 

A structured directory was created to store the images and masks, with separate subfolders for each 

dataset (training, validation, and test). This organization allows for efficient access and retrieval during the 

model training phase, as shown in Figure 2. Additionally, this structure ensures that no overlap occurs 

between the datasets, maintaining the integrity of the training, validation, and testing processes. 

 

 

 
 

Figure 2. Example of an original image and associated binary mask 
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3.7.  Summary of data preparation 

The Table 1 details the various steps of data preparation, from the initial collection of images to 

their distribution into distinct sets for training, validation, and testing. This step-by-step breakdown ensures 

transparency in the data preparation process. It also highlights the careful consideration given to the 

organization and structure of the dataset to optimize model performance. 

 

 

Table 1. Data preparation 
Process Description Number of images 

Preparation Collected and resized images 220 

Annotation Used tools to annotate wheel rim contours 220 

Augmentation Applied augmentations such as horizontal flips, brightness, 

and contrast adjustments 

880 (4 variants per image) 

Distribution (%) Split into training, validation, and test sets Train: 70, Val: 20, Test: 10 

 

 

The data preparation played a crucial role in the model's performance. Each image was meticulously 

annotated to precisely delineate the contours of the rims. Data augmentation techniques were applied to 

enrich the diversity of the data, which is essential for the model's robustness. The balanced distribution 

between the training, validation, and test sets ensures that the model is well-generalized and performs 

effectively on unseen data. 

 

 

4. OPTIMIZED WHEEL RIM CONTOUR DETECTION ALGORITHM BASED ON U-NET 

The U-Net model structure is designed for precise semantic segmentation. The first convolutional 

layer, forming the initial block, applies filters to detect low-level features. With 3×3 kernel sizes and "same" 

padding, it preserves the spatial dimensions while extracting features. Batch normalization stabilizes learning 

by normalizing the activations of each layer, and the rectified linear unit (ReLU) activation function is used 

to introduce non-linearity, which enhances the model's ability to learn complex patterns. 

Following this are the encoder blocks, where each block first applies a convolution to extract more 

complex features, followed by a max pooling operation to reduce dimensionality. This reduction is crucial for 

capturing contextual information at larger scales. The encoder also progressively decreases the spatial 

resolution while increasing the depth of the feature maps, allowing the model to learn abstract and high-level 

representations. 

In the decoder blocks, transposed convolutions are used to increase dimensionality, and 

concatenation with features from the encoder blocks helps recover spatial information that was lost. This step 

is essential for reconstructing the image with the fine details necessary for precise segmentation. The 

decoder, thus, plays a critical role in achieving accurate contour detection, especially in complex scenarios 

like wheel rim segmentation. 

The hyperparameters were finely tuned to balance rapid learning and avoid overfitting. We 

monitored the training process with callbacks such as early stopping and learning rate reduction to ensure the 

model's generalization on unseen data. This approach helped prevent the model from over-specializing on the 

training data, maintaining its robustness. 

Finally, illustrations and mathematical formulas are used to detail each step of the U-Net 

architecture, providing a deep understanding of its structure and functionality. These visual aids are crucial in 

explaining the inner workings of the model and its application to the precise detection of wheel rim contours. 

Furthermore, the diagrams help highlight the specific improvements made to the traditional U-Net model, 

ensuring clarity in the presentation of our optimization process. 

 

4.1.  Model structure 

The U-Net model is structured into two main parts: the encoder for capturing features and the 

decoder for reconstructing the segmented image. The key operations of the model are mathematically defined 

as follows. Each part plays a crucial role in ensuring accurate segmentation by leveraging convolutional and 

deconvolutional layers to process the input data and reconstruct the output image. 

 

4.1.1. Convolution 

Here, 𝑊 and 𝑏 represent the weights and biases of the convolutional layer, respectively, 𝑥 is the 

input, and ∗ represents the convolution operation. Batch normalization (BN) stabilizes the learning process 

by normalizing the activations, and the ReLU activation function is used to introduce the necessary  
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non-linearity into the model. This combination of operations ensures that the model can efficiently learn 

complex patterns while maintaining stability during training. 

 

𝑦 = 𝑅𝑒𝐿𝑈(𝐵𝑁(𝑊 ∗ 𝑥 + 𝑏)) (1) 

 

4.1.2. Dimensionality reduction 

MaxPooling layers reduce the dimensionality of the features, allowing for information compression 

and reducing memory and computational power requirements. This operation is crucial in helping the model 

focus on the most important features while discarding irrelevant details. By reducing spatial dimensions, 

MaxPooling also speeds up the learning process, making the model more efficient. 

 

𝑦 = 𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝑥) (2) 

 

4.1.3. Increasing spatial resolution 

Transposed convolutions are used in the decoder to increase the spatial resolution of the features, 

preparing them for concatenation with the encoder features. This operation helps to restore the finer details 

lost during the downsampling process in the encoder. By gradually recovering the spatial dimensions, the 

model can accurately reconstruct the segmented image, ensuring precise contour detection. 

 

𝑦 = 𝐶𝑜𝑛𝑣𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒(𝑥) (3) 

 

4.1.4. Feature fusion 

This concatenation operation merges the features extracted by the encoder 𝑥𝑒𝑛𝑐 with those 

upsampled by the decoder 𝑥𝑢𝑝. This allows for the recovery of spatial information lost during the pooling 

step. By combining both high-level and low-level features, the model achieves more accurate segmentation, 

especially in complex scenarios. 

 

𝑥𝑐𝑜𝑛𝑐𝑎𝑡 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝑥𝑢𝑝, 𝑥𝑒𝑛𝑐) (4) 

 

4.1.5. Model output 

Finally, a convolutional layer is applied to 𝑥𝑐𝑜𝑛𝑐𝑎𝑡 to obtain the final segmentation mask. In this 

binary segmentation task, the activation function used at this stage is the sigmoid, which models the 

probability that a pixel belongs to the class of interest (e.g. the wheel rim). The sigmoid function 𝜎 is chosen 

for this final layer because it constrains the output to be between 0 and 1, which can be interpreted as the 

probability of belonging to the target class. 

 

𝑥𝑓𝑖𝑛𝑎𝑙 = 𝜎(𝑊 ∗ 𝑥𝑐𝑜𝑛𝑐𝑎𝑡 + 𝑏) (5) 

 

𝜎(𝑧) =
1

1+ⅇ−𝑧 (6) 

 

4.2.  Training strategy 

The training of the U-Net model was meticulously planned to achieve high-precision segmentation 

of wheel rim contours. We employed a series of techniques to optimize the training process and minimize  

the risk of overfitting. These techniques included early stopping, learning rate scheduling, and data 

augmentation, ensuring the model remained robust while generalizing well to new data. 

Optimizer: the Adam optimizer was selected for its recognized efficiency, starting with an initial 

learning rate of 0.01. This rate is high enough to ensure rapid convergence while allowing precise 

adjustments during the later phases of training. Additionally, the adaptive nature of Adam helps balance  

the learning speed for each parameter, improving the overall stability of the training process. 

Loss function: binary cross-entropy loss is appropriate for our binary segmentation task, where the 

model predicts whether a pixel belongs to the wheel rim contour or not. The loss function is mathematically 

defined as follows: 

 

𝐿𝑜𝑠𝑠 =
−1

𝑁
∑ [𝑦𝑖𝑙𝑜𝑔(𝑝𝑖) + (1 − 𝑦𝑖)𝑙𝑜𝑔(1 − 𝑝𝑖)]𝑁

𝑖=1  (7) 

 

Where N represents the total number of examples in the batch, 𝑦𝑖  is the true label, and 𝑝𝑖 is the predicted 

probability by the model. This loss function penalizes incorrect predictions, ensuring the model learns to 

differentiate between rim contours and the background effectively. 
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Safeguard mechanisms: to prevent overfitting, we integrated early stopping, halting training if the 

validation performance does not improve over a certain number of consecutive epochs. Additionally, the best 

model is automatically saved during training, and a learning rate reduction is implemented if no improvement 

in validation performance is observed over a predefined interval. This approach is illustrated by Figure 3, 

which shows an example of an image before and after segmentation. 

 

 

 
 

Figure 3. Example of an image before and after segmentation 

 

 

4.3.  U-Net architecture configuration 

The configuration of the U-Net architecture, illustrated in Figure 4, details a systematic strategy  

for semantic segmentation, aiming to capture both the local and global contexts of the image. This structure 

ensures that fine details are preserved while maintaining a broader understanding of the scene. The balance 

between downsampling and upsampling in the model allows for accurate and efficient segmentation  

of complex shapes, such as wheel rim contours. 

Each convolutional layer, followed by a ReLU activation function, preserves essential non-linear 

features, while max pooling layers reduce dimensionality, thereby increasing feature abstraction.  

The symmetrical architecture of U-Net, with its contraction and expansion paths, is crucial for precise 

localization in the segmented image, allowing detailed recovery of the wheel rim contours. This structure is 

particularly effective for images where the distinction between the object and the background is subtle, which 

is often the case in industrial applications like robotic deburring. The hyperparameters used are summarized 

in the Table 2. 

These parameters were crucial for the model’s performance. A controlled number of epochs 

prevented overfitting, while an optimized batch size balanced computational efficiency and model 

convergence. The initial learning rate was carefully set at 0.001 to ensure a rapid and stable gradient descent, 

with dynamic adjustment down to 0.000001 during training to fine-tune the weight updates as the validation 

error evolved. The image resolution was sufficient to capture the necessary details without imposing an 

excessive computational or memory load. 

In addition to these essential hyperparameters, a series of callbacks was meticulously configured to 

enhance the robustness of training and refine model performance. These callbacks included saving the best 

model, adaptive learning rate adjustment based on the validation set error evolution, and early stopping to 

prevent overfitting. Table 3 illustrates the details and rationale behind the selection of these specific 

parameters, which played a crucial role in achieving an efficient and accurate model. 

To ensure optimal convergence and prevent overfitting, callbacks were carefully selected during the 

model training. The ModelCheckpoint callback was configured with save_best_only=True to retain only the 

model state displaying the best performance on the validation dataset. This choice is driven by the desire to 

maximize storage efficiency and reduce computational complexity, avoiding the saving of suboptimal models 

at each epoch. 

Learning rate reduction is managed by ReduceLROnPlateau, with a factor of 0.1, allowing for 

exponential decay, which is known to progressively refine the network weights once the improvement in 

validation error becomes less noticeable. The patience of 4 epochs strikes a balance between responsiveness 

to performance plateaus and preventing overreaction to normal variations during training. This mechanism 

ensures that the model does not stagnate at suboptimal performance levels. 
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Figure 4. Configuration of the U-Net architecture for the segmentation of wheel rim contours 

 

 

Table 2. Model U-Net hyperparameter configuration 
Hyperparameter Values 

Epochs 50 

Batch size 16 

Learning rate 0.001 

Image size 256×256 

 

 

Table 3. Configuration of callbacks for the U-Net model training 
Callback Parametre Value Description 

ModelCheckpoint Verbose 1 Enables detailed messages during training 

 Save-best-only True Saves only the model with the best performance on the validation set 

ReduceLROnplateau Factor 0.1 Reduction factor for the learning rate 

 Ptience 4 Number of epochs without improvement before reducing the learning rate 

Early Stopping Ptience 15 Number of epochs without improvement before stopping 

 Restore_best_weights False Requires restoring the best weights after stopping 

 

 

Early stopping is implemented via EarlyStopping, with a patience of 15 epochs to give the model 

ample opportunity to overcome any temporary validation error plateau. The decision not to restore the best 

weights after stopping, restore_best_weights=False, is based on experimental results indicating that 

continuing training can sometimes lead to improved generalization by avoiding premature focus on a specific 

local minimum in the loss function space. This approach encourages a more thorough exploration of the loss 

function space. 

The selected callback parameters reflect an optimization approach based on rigorous 

experimentation and adjustment. These decisions align with proven recommendations from deep learning 

literature. The relevance of these choices was confirmed by robustness tests, which demonstrated the model's 

ability to maintain high performance while generalizing well to unseen data. This experimental rigor ensures 

that the U-Net model training is both efficient and that the results are reliable. 

 

 

5. RESULTS 

5.1.  Analysis of learning curves 

The loss curve illustrates an initial rapid descent, followed by a promising stabilization. 

Mathematically, this can be interpreted as an effective minimization of the loss function 𝐿, which, in the case 

of binary cross-entropy, where 𝑦 represents the true labels, 𝑦̂ the model predictions, and 𝑁 the total number 

of pixels in the batch of images. This stabilization indicates that the model is learning effectively without 

overfitting, balancing accuracy and generalization, as formulated: 

 

𝐿(𝑦, 𝑦̂) = −
1

𝑁
∑ [𝑦𝑖 log(𝑦̂𝑖) + (1 − 𝑦𝑖) log (1 − 𝑦̂𝑖]𝑁

𝑖=𝑁  (8) 
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The learning curves for loss and accuracy provide significant insights into the behavior of the U-Net 

model during the initial and advanced phases of training. In the loss curve, a rapid drop in training loss is 

observed within the first few epochs, indicating that the model starts learning and adapting to the 

segmentation task from the early stages of training. However, the validation loss curve shows notable 

volatility during these initial stages, with a temporary increase followed by a decrease. This phenomenon can 

be explained by the model's adjustment process when encountering complex patterns in the validation data 

that it had not yet seen in the training data. 

Figure 5 shows the loss curve of the U-Net model over 50 epochs, illustrating the rapid decrease in 

loss during training and the subsequent stabilization during validation. This trend highlights the effectiveness 

of the model in minimizing the error on the training set while gradually improving its performance on the 

validation set. The eventual stabilization of the validation loss curve indicates that the model is not 

overfitting and has reached a balance between learning and generalization. 

 

 

 
 

Figure 5. Loss curve of the U-Net model over 50 epochs 

 

 

The accuracy curve, reaching a plateau at approximately 99%, demonstrates the model's excellence 

in pixel classification, suggesting a low occurrence of false positives and negatives. Figure 6 presents the 

accuracy curve of the U-Net model over 50 epochs, showing the continuous improvement of accuracy during 

training and validation. This steady increase in accuracy indicates the model's ability to consistently learn and 

adapt to the segmentation task, ultimately achieving high performance. 

 

 

 
 

Figure 6. Accuracy curve of the U-Net model over 50 epochs 

 

 

The early epochs of the learning curves show notable volatility in the loss, which is often observed 

as the model begins to learn and adjust to the complexity of the data. This initial instability reflects the 

process of adjusting the network weights from an initially untrained state to a configuration that minimizes 

the loss. While the training loss drops rapidly, the validation loss experiences some spikes, likely due to the 

optimization process where the model navigates through local minima before reaching a more stable 

convergence. After this initial phase, the validation loss curve stabilizes and closely follows the training loss 

curve, indicating that the model has become robust and less sensitive to the specifics of the training data, a 

sign of good generalization. 
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5.2.  Prediction performance 

The temporal efficiency of the model during the prediction phase is crucial for real-time 

applications. The average processing time 𝑇 and the number of frames per second (FPS) are key performance 

indicators. These metrics are calculated as in (9) and (10): 

 

𝑇 =
1

𝑀
∑ 𝑡𝑖

𝑀
𝑖=1  (9) 

 

𝐹𝑃𝑆 =
1

𝑇
  (10) 

 

Where 𝑡𝑖 represents the time taken to predict the i-th image and M is the total number of images tested. These 

formulas allow us to evaluate the model's ability to function efficiently in an industrial setting where 

processing speed is as important as segmentation accuracy. The Table 4 presents the average prediction times 

and real-time performance of the model, indicating high efficiency for industrial applications. 

 

 

Table 4. Prediction time and real-time performance 
Metric Value 

Mean prediction time 0.097 seconds 

Frames per second 10.24 

 

 

5.3.  Performance metrics 

To comprehensively evaluate the performance of our U-Net model in segmenting wheel rim 

contours, we employed several standard metrics: accuracy (ACC), F1 score, Jaccard index (IoU), recall (R), 

and precision (P). The TP, TN, FP, and FN represent true positives, true negatives, false positives, and false 

negatives, respectively. The high values obtained for these metrics confirm the precision of the U-Net model 

in segmenting wheel rim contours, highlighting its applicability in contexts where precision is paramount. 

Table 5 presents the model's performance on the test set, showing excellent values across various key 

metrics. These metrics are defined as follows: 

 

𝐴𝑐𝑐 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
 (11) 

 

𝐹1 = 2 ×
𝑃×𝑅

𝑅+𝑅
 (12) 

 

𝐼𝑜𝑈 =
𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁
 (13) 

 

𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (14) 

 

𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (15) 

 

 

Table 5. Model performance 
Metric Test (%) 

Accuracy 99.45 

F1 Score 0.99 

Jaccard index (IoU) 0.98 

Recall 0.99 

Precision 0.99 

 

 

The high values of accuracy, F1 score, IoU, recall, and precision reflect the excellent performance 

of the model on the test data. These results suggest that the model can segment wheel rims with high 

precision, minimizing pixel classification errors. The strong performance on the test set indicates effective 

generalization, which is crucial for the practical application of the model in real-world scenarios where 

segmentation accuracy is paramount. 

Figure 7 illustrates the mean squared error (MSE) calculated for each image in our test set.  

The MSE measures the average squared difference between the pixels of the wheel rim contours detected by 

our U-Net model and the reference values. The results show low error for the majority of images, with a few 
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peaks that may indicate cases where the model encountered difficulties, possibly due to complex variations in 

texture or contrast in those specific images. 

 

 

 
 

Figure 7. Variation of MSE per image 

 

 

These higher error points provide valuable insights for future improvements of the model, 

highlighting situations that require more sophisticated processing or additional training. By analyzing these 

cases, we can identify specific conditions, such as unusual textures or lighting variations, that challenge the 

model's current capabilities. This understanding will guide future refinements in data augmentation and 

model architecture to further improve segmentation accuracy. 

 

5.4.  Practical application with OpenCV and contour analysis 

The second phase of the evaluation involves deploying the model in a practical context for 

extracting wheel rim contours. Processing images via OpenCV, using edge detection and dilation functions, 

allowed for effective contour extraction. The visual results, illustrated by the provided images, show 

precisely delineated wheel rim contours, demonstrating the accuracy of the U-Net model coupled with 

OpenCV contour analysis. 

Figure 8 shows the results of wheel rim segmentation and contour detection by U-Net and OpenCV. 

This figure illustrates how the external contours of the rims were accurately detected after applying image 

processing and computer vision methods. The red circle represents the planned path for the deburring robot, 

indicating the areas the robot will follow to perform the deburring process with precision. 

To ensure optimal wheel rim contour detection, our process relies on a systematic sequence of 

image processing and computer vision algorithms, detailed in Table 6. The pre-trained U-Net model serves as 

the foundation of our prediction system, enabling precise initial segmentation. The images are first converted 

to grayscale, followed by thresholding at 0.5, a value chosen to balance sensitivity and specificity in contour 

distinction. This preparatory step is crucial for enhancing the contrast necessary for effective contour 

extraction. The Canny algorithm is then applied to detect fine edges, complemented by a dilation operation to 

reinforce the continuity of the detected contours. OpenCV's find Contours function is used to accurately 

capture the external contours of the rims, which are subsequently highlighted with distinct markings on the 

output images. 

This process is visually illustrated by marked points on the detected contours, facilitating the 

verification of segmentation accuracy. The overlay and marking provide a clear representation of the results, 

highlighting the synergy between our deep learning model and advanced image processing techniques for 

reliable application in an industrial setting. This visualization not only aids in accuracy validation but also 

helps identify areas for potential model refinement. 
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Table 6. Contour detection with OpenCV 
Parameter Description Value / method used 

Prediction model Trained U-Net model Used for initial segmentation 

Image processing Conversion and thresholding Conversion to grayscale and thresholding at 0.5 

Contour detector Canny and dilation Use of the Canny algorithm followed by dilation 

Contour extraction «findContours» function Detects the outer contours of the rims 

Visualization Overlay and marking Points marked on the detected contours 

 

 

 
 

Figure 8. Results of the segmentation and detection of wheel rim contours by U-Net and OpenCV 

 

 

5.5.  Error analysis 

Despite the high performance of our model, some errors persist, primarily due to complex variations 

in texture or contrast in certain images. The higher error points identified in Figure 7 provide valuable 

insights for future improvements. Here, we present some examples of segmentation errors in Figure 9, 

explaining potential causes and areas for improvement. 

The rims in the database are not newly molded but already mounted on cars, with internal elements 

such as brake plates and discs. These internal elements add additional variations in texture and contrast, 

complicating the segmentation task for the model. Ideally, rims after molding should not contain any internal 

elements and should be empty. 

 

 

 
 

Figure 9. Examples of segmentation errors by the U-Net model 

 

 

These images show the areas where the model encountered difficulties, illustrating false positives 

and false negatives in the detection of rim contours. These errors can be attributed to several factors, 

including complex variations in rim texture, the presence of internal elements such as brake plates and discs, 

as well as low or high contrasts in certain parts of the image. To improve the model's accuracy, approaches 

such as data augmentation with images featuring these specific variations could be explored. Despite several 

trials and adjustments of the hyperparameters, some limitations persist, highlighting the need for a more 

representative database. A database including images of industrial rims with varied lighting conditions and 

without internal elements could help reduce these errors and enhance the model's robustness. 

 

5.6.  Preliminary discussion on practical Impact4 

The obtained results show that our U-Net model is capable of segmenting wheel rim contours with 

high precision. This accuracy is crucial for industrial applications, particularly in improving robotic 
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deburring processes, where clear and precise contours are necessary to guide deburring tools. Moreover, the 

application of this model can reduce production costs and increase the quality of finished products by 

minimizing human errors and automating a complex and repetitive process. 

 

 

6. CONCLUSION 

This study demonstrates the strong potential of U-Net architecture for the precise detection of wheel 

rim contours, a critical aspect in automating the robotic deburring process within the automotive industry.  

By achieving remarkable accuracy in image segmentation, with metrics such as 99.45% accuracy and  

F1 score of 0.99, the robustness and reliability of the model have been firmly established. The integration of 

OpenCV further enhances real-time image processing, achieving 10.24 FPS, making it highly applicable in 

industrial environments where speed and precision are essential. The implications of this research are 

significant for industrial automation, particularly in improving production efficiency and reducing human 

errors. However, to address the remaining challenges, particularly in diverse lighting conditions and rim 

variations, further work on dataset expansion and the application of transfer learning techniques will be 

necessary. Additionally, the exploration of internal rim contours could offer new avenues for more advanced 

applications in the future. Overall, this work contributes to the growing role of deep learning in industrial 

settings, showcasing its capacity to optimize processes, reduce costs, and improve product quality. The 

advancements achieved here signal a promising future for the continued integration of AI and deep learning 

in manufacturing, driving innovation and efficiency across the industry. As industries continue to adopt these 

technologies, further enhancements in model robustness and real-time processing will likely open up even 

more applications. 
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