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 This work addresses the challenges in modern communication networks, 

emphasizing the need for improved efficiency, higher data transfer rates, and 

reduced delays. In 5G networks, advanced resource optimization, network 

selection, and relaying techniques are crucial for expanding multi-cellular 

coverage and enhancing network performance. However, implementing 

these techniques in mobile environments with high interference levels 

increases computational demands for radio resource management (RRM). 

Machine learning (ML) and deep learning (DL) are proposed as solutions to 

enhance consumer applications, reduce communication overhead, and 

improve RRM. Current ML/DL methods, however, struggle with identifying 

key features for network selection and balancing system throughput with 

spectral efficiency. This paper introduces the spectral efficient network and 

resource selection (SENRS) model for 5G multiple input multiple output-

orthogonal frequency division multiplexing (MIMO-OFDM) networks. 

Tested using the Stanford University Interim (SUI) channel fading model in 

a highway scenario, the SENRS model demonstrates superior performance 

compared to existing network and resource selection systems. 
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1. INTRODUCTION 

The emergence of 5G technology has assisted individuals in a new era of connectivity, promising 

unprecedented data speeds, lower latency, and enhanced reliability [1]. However, a significant challenge 

arises in the current resource management optimization methods, which predominantly assume static user 

behavior [2], [3]. In reality, users in 5G networks are highly mobile, especially in scenarios involving  

fast-fading channels such as those encountered by users traveling in vehicles or trains. These dynamic 

environments exhibit high signal fluctuation, frequent changes in network conditions, and dynamic channel 

variations, posing substantial challenges to resource management [4]. In response to this challenge, the focus 

shifts towards multiple input multiple output (MIMO)-orthogonal frequency division multiplexing (OFDM) 

technology [5], which proves to be instrumental in provisioning multi-service to mobile users. Unlike 

conventional OFDM [6], MIMO-OFDM enables multiple data streams to be transmitted simultaneously, 

significantly enhancing spectral efficiency and system performance [7]. The emphasis on MIMO-OFDM lies 

in its ability to mitigate the adverse effects of fast-fading scenarios, providing a more stable and reliable 

communication channel for mobile users. In 5G, MIMO-OFDM plays a pivotal role in improving the overall 

efficiency of the network, especially when users are moving [8], [9]. Further, the traditional resource 
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management methods in wireless communication systems are predominantly designed with the assumption of 

static users, where the location and conditions of users remain relatively constant over time [10]. In such 

scenarios, resource-allocation strategy can be pre-determined or adjusted periodically, relying on the stability 

of the communication environment [11]. However, the advent of 5G technology brings with it a paradigm 

shift, introducing a multitude of use cases with diverse requirements, including high-mobility scenarios [12]. 

When users are mobile, as in the case of vehicular or train-based communications, traditional resource 

management methods face significant challenges. One key limitation is the dynamic variation of channel 

conditions [13]. In a fast-fading channel, where users are moving at high speeds, the signal strength 

experiences rapid fluctuations due to factors such as distance changes, obstacles, and interference from other 

wireless sources [14]. To address this, the work introduces an effective network-selection and resource-

allocation design that adapts to the dynamic nature of mobile users. 

Moreover, the current machine learning (ML) methods have gained prominence in the domain of 

wireless communication for tasks such as network-selection and resource-allocation due to their ability to 

adapt and learn patterns from data [15], [16]. However, one persistent challenge faced by these methods, 

particularly in the context of network-selection, is the issue of class imbalance because of load balancing 

[17]. Class imbalance occurs when the distribution of instances across different classes is not uniform. 

During the process of network-selection, some networks may have significantly more instances (users or 

scenarios) than others. This imbalance can lead ML models to be biased towards the majority class, resulting 

in suboptimal performance for minority classes [18]. In the case of network-selection, this imbalance could 

manifest as a bias towards popular or more frequently used networks, neglecting the optimal utilization of 

other available networks. Further, when working with heterogeneous networks, where multiple networks 

with diverse characteristics coexist, the imbalance in the number of samples from different classes hinders 

the learning process. Hence, the proposed work aims to develop a novel ML that not only enhances the 

current methods for network-selection and resource-allocation but also effectively handles class-imbalance 

issues, ensuring a more robust and accurate decision-making process. Furthermore, in the current 5G, the 

physical layer deals with the transmission and reception of signals [19], while the medium access control 

(MAC) layer governs access to the shared communication medium [20]. In 5G, where diverse services with 

varying requirements coexist, an effective cross-layer optimization strategy becomes imperative [21], [22]. 

Hence, this work proposes a spectral efficient network and resource selection (SENRS) approach, ML model, 

to address the drawbacks and challenges posed by the dynamic nature of 5G networks. As 5G networks 

become increasingly integral to our daily lives, it is crucial to evaluate and optimize their performance for 

superior spectral efficiency and channel resilience in real-world deployments. This necessitates a 

comprehensive understanding of the waveforms and signals employed in 5G systems. In the pursuit of 

maximizing the potential of 5G networks, currently researchers and engineers have delved into the 

complexities of waveforms and signals, aiming to design and simulate end-to-end 5G networks [23], [24]. 

This involves considering various factors and various system parameters to create a holistic representation of 

the network. The evaluation of performance metrics like throughput, latency, and reliability becomes 

paramount in assessing the effectiveness of these simulated 5G networks. Hence, the contribution of this 

work is as follows: i) introduction of MIMO-OFDM channel for multi-service provisioning considering  

user mobility; ii) implementation of an effective network-selection and resource-allocation design;  

iii) development of a novel ML algorithm addressing class-imbalance issues in network-selection; and  

iv) enhanced system throughput, and spectral efficiency i.e., (minimal latency and improved reliability). 

The manuscript is organized as follows. In section 2, the literature survey is discussed. In section 3, 

the SENRS approach is presented which discusses the system and network model, network-selection 

optimization, and resource-selection optimization. In section 4, the results are discussed for the SENRS 

approach comparing it with existing work for throughput, spectrum access failure, and spectrum access 

success performance. In section 5, the conclusion along with the future work is discussed. 

 

 

2. LITERATURE SURVEY 

This section studies various current network and resource selection methodologies designed for 

heterogenous 5G networks using MIMO-OFDM. Liu et al. [14] looked at how well the sparse code multiple 

access (SCMA)-OFDM networks handled bit-error rates (BER) across multi-path Rayleigh faded-channels 

including Gaussian-channels when carrier-frequency-offset (CFO) was present. They also demonstrated how 

SCMA-OFDM networks suffer greatly from BER loss whenever the standardized CFO was more than 0.02. 

Bartsiokas et al. [15] examined the issue of placing and selecting relay-nodes (RNs) while taking subcarrier 

allotment and power-consumption restrictions into account. They investigated and integrated different deep 

learning (DL)-based techniques with overall energy and spectrum-efficiency were increased by up to 30%. 

When the reinforcement-learning (RL) approach was used to choose RN selection, it enhanced energy 

efficiency by 80% and spectrum-efficiency by 75% in comparison with an approach that relied solely on  
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DL-enabled placement. Ahmed et al. [16] introduced a novel integrating technique that skillfully combined 

the car to car network-hierarchical deep neural network (CtCNET-HDRNN) framework with 5G's 

millimeter-wave (mmWave) and Monte-Carlo for dedicated-short-range-communications (DSRC) networks 

to ensure communication efficiency. In comparison to non-diversity decision-making situations, they found 

that using multiple antennas over 5, 30, 45, 50, and 60 kHz significantly improved data rates, especially 

during lane shifts at velocities reaching as high as 188 km/h. 

Dangi et al. [24] presented an innovative technique to guarantee quality of service (QoS) across a 

multi-service environment while focusing on battery efficiency improvements. They suggested a method that 

utilized double-deep reinforcement learning (D-DRL) for achieving the best network-selection strategy. The 

findings gathered within this study indicated that the suggested technique showed significant improvement in 

utility-reward compared to DRL, random and greedy techniques. Xie et al. [25] introduced a network selection 

method that utilized dueling-double deep q-network (D-DQN) with DRL. Finding the system choosing 

advantages for various services created by users involved using the analytical hierarchy method to determine 

the weighting connection among network characteristics and user-services. According to the experiment’s 

findings, the method effectively minimized switching of the network, optimized network resource utilization, 

and ensured users gain from network-selection. Lee and Kim [26] addressed the issue of allocating resources 

for different types of movement in the context of road side unit (RSU)-deployed vehicle to everything (V2X) 

networks. They introduced a distributed multi-agent reinforcement learning (MARL) centered resource-

allocation method using restricted resource sharing under both overload and underload scenarios. Srivastava et 

al. [27], presented a method that combined transfer and detection of sidelink control information (SCI), where 

sidelink-transmit user-experiences (SLTxUEs) send and get SCI within an extra combined strategy opposing 

to the main one. This assisted in minimizing overlooked node disturbance and decreasing the number of 

subjected with enhanced the mean packet reception rate (PRR) by 27% compared to the cutting-edge under the 

most demanding traffic conditions. Moroever, the method allowed for enhanced utilization of resources and 

boosted efficiency, resulting in a minimum of 95% mean PRR across every circumstance.  

Iqbal et al. [28] introduced a radio resource management (RRM) Q-learning method, which was 

assessed for distributed and collaborative approaches, utilizing collaborative and distributed learning. Results of 

simulations using the ultra-dense heterogeneous networks (UDHN) within a metropolitan structure indicated 

that collaborative learning with an impressive rise of 37.9 and 48.57% was noted in the sum-cell user-capacity 

and small-cell user-capacity of the Q-learning small user-cells, respectively when utilizing collaborative 

learning instead of distributed learning. González et al. [29] presented a resource-allocation strategy for NR 

VV2X Mode 2 and their effectiveness was assessed in numerous situations. According to the study, larger 

numerologies outperformed lesser subcarrier distances. Despite the standard specifying an arbitrary approach 

for V2X resource decision-making, it was noted that the different sensing processes result in increased PRR 

levels. Bruun et al. [30] presented two collaborative resource utilization strategies: group scheduling and 

device-sequential scheduling, along with an administrative communication architecture. It was noted that a lack 

of reception of these regulatory signals resulted in uncooperative behavior and a noticeable decrease in 

performance. It was demonstrated that while communication, possesses a notable effect on resource distribution 

efficiency, the suggested group and sequential scheduling of resource allocation methods enhanced reliability 

significantly when compared with SL mode-2. In conclusion, various methods of network and resource 

selection in 5G networks have been studied; MIMO and OFDM networks have been studied considering user 

mobility. The current method is predominantly aimed at dealing in providing better spectral efficiency; 

however, extreme user mobility and usage of dynamic spectrum allocation results in high interference; as a 

result, failed to bring a tradeoff between maximizing spectral efficiency and throughput maximization. The  

ML-based network section exhibits poor results as it fails to identify features contributing to frequent handoffs. 

In addressing the research problem, in the next section proposed methodology of SENRS is presented. 
 

 

3. PROPOSED METHODOLOGY 

This section introduces a SENRS design under a 5G MIMO-OFDM network [15], [16]. First, the 

system and network model are presented, second, the network resource selection using a novel multi-split  

K-fold cross-validation extreme gradient boosting (XGB) model. Finally, the resource selection maximizes 

system throughput with enhanced back-off time optimization to mitigate interference to achieve enhanced 

spectral efficiency. 
 

3.1.  System network model 

Consider a dense 5G network designed using a MIMO-OFDM network where two MIMO-OFDM 

5G networks overlap each other with radius 𝑠. Let the mobile-terminal be deployed arbitrarily across the 

MIMO-OFDM network following a poisson distribution (PD) [31] considering a uniform mobility pattern. In 
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the 5G network, any MIMO-OFDM network-connected mobile-terminal will notify the corresponding base 

stations (BSs) for observed downlink radio-frequencies (RFs) for adjusting the measurement-gap. The 

anticipated size of the mobile-terminal can be effectively managed within a given area. The anticipated size 

is determined through the intensity variable 𝜑 and the processing variable 𝜇. The 𝜇 for each mobile-terminal 

𝑂 in MIMO-OFDM network 𝑋 is discussed in this work. To collect the data from the mobile-terminals 𝑂, the 

(1) is utilized to represent the PD having a mean of 𝜑𝑋. In (1) 𝑠 represents MIMO-OFDM network area 

radius. The location of 𝑗𝑡ℎ mobile-terminal is attained using the continual constant distribution 𝕊2 by utilizing 

the polar-coordinates (𝑠𝑗 , 𝜃𝑗), where 𝑗 = 1,2,3, … , 𝑂 and 0 ≤ 𝜃𝑗 ≤ 2𝜋, and 0 ≤ 𝑠𝑗 ≤ 𝑠. 
 

𝜑𝑋 = 𝜑𝜋𝑠2) (1) 
 

3.2.  Network-selection optimization 

To initialize the radio resource control (RRC) X2, the mobile-terminal monitors the MIMO-OFDM 

network’s reference-signal received-power (RSRP), which is lower in comparison with the handover quality 

specification, according to the MIMO-OFDM standard presented in [16], [31]. Hence, due to this reason, the 

RRC measurement gap has to be reconfigured for the MIMO-OFDM network. In addition to this, mobile 

terminals record a higher RSRP in comparison to the handover quality specifier, which triggers the 

initialization of RRC X1. When the MIMO-OFDM power exceeds the predetermined quality specifier 

threshold, the mobile-terminal triggers the RRC Y2 initialization, chooses an available slot in the MIMO-

OFDM distribution channel for communication, and completes the handoff efficiently. The network-selection 

process using the conventional model is presented in Figure 1. Figure 1 illustrates that the handoff request 

occurs in phase X, whereas the handover operation takes place in phase Y, after which the MIMO-OFDM 

network decides to permit the handoff. However, the conventional model induces higher signaling overhead. 

Hence, this work presents a novel ML-based handover operation approach. This work adopts a similar ML-

based method introduced in [31] to reduce signaling overhead. However, the ML-based network selection 

prediction method failed to provide accurate results when data is imbalanced; further, failed to identify which 

characteristic plays a major role in attaining higher network-selection accuracy. The ML-based network 

selection algorithm is given in Figure 2.  
 

 

 

 

 

Figure 1. Conventional network-selection in MIMO-

OFDM network 

 

Figure 2. ML-based network-selection for reducing 

signaling-overhead in MIMO-OFDM network 
 
 

Deciding whether to allow a mobile-terminal measurements-gap approach or utilize ML for handover 

efficient performance is determined using Figure 2. The receiver-operating-characteristic (ROC) curve is 

utilized to predict the success or failure of handoff which involves computing it with the multi-split k-fold  

cross-validation xgboost (MSKF-XGB) classification model. By utilizing the past data on the likelihood of 

successful handovers for each mobile-terminal, the MSKF-XGB model is presented in this work for decision-

making during handovers using collected data 𝑈. The objective-function of XGB [32] is defined using (2). 
 

ℒ (𝑡) = ∑ 𝑙𝑛
𝑖=1 (𝑦𝑖 , 𝑦𝑖̂

(𝑢−1)
+ 𝑓𝑡(𝑥𝑖)) + 𝛺(𝑓𝑡) (2) 

 

In (2), 𝑙 defines the loss-function which denotes the error between the anticipated and collected data. 

Moreover, 𝑙 is the representation of the 𝑡𝑡ℎ tree of a basic decision-tree (DT). 𝑢 is used as the iterative index 

during the optimization process. The regularization-function presented in (2) can be described using the (3) [32]: 
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𝛺(𝑓𝑡) = 𝛾𝑈 +
1

2
𝜆||𝑤||

2
 (3) 

 

In (3), 𝑈 denotes the different leaves within the DT. 𝛾 and 𝜆 defines the penalty-factor which 

consists of the score of vectors for different leaves. Further, the XGBoost method is laid out in detail in the 

work of Chen and Guestrin [32]. In (3), it is essential to establish or assign specific values to 𝑈, 𝛾 and 𝑤 to 

improve the method of optimization before beginning the training phase [33]. The incorporation of 

regularization-function helps to minimize computational difficulties and prevent overfitting issues. The n×0 

matrix for characteristic-set that have to be trained as describe in (4). 
 

𝑌 = [𝑌𝑗]
𝑗=1

𝑜
 (4) 

 

Where 𝑜 represents the overall characteristic-sets taken into account for training and 𝑌𝑗 represents the  

multi-dimensional characteristic vector acquired during a given time instance. In this work, 1 indicates that 

the handover has been executed, and 0 indicates that it has not, by utilization of supervised labeled-vector 𝑦. 

In MIMO-OFDM, the RSRP is among one of the five characteristics that are taken into account throughout 

this study. The other three characteristics are mobile-terminal distance from the BS, mobile-terminal 

coordinates, and reference symbol measurement updates according to X1 and X2, respectively. The final 

three characteristic attributes are gathered from mobile-terminals whereas the initial two characteristics are 

acquired through RRC messages employing recorded arriving time variance or global positioning system 

(GPS). Here, enhancing the hyper-parameters involves using MSKF to enhance the accuracy of the network 

selection operation. By randomly splitting the dataset into equal-sized subsets, the characteristic-subset for 

training the MSKF-XGB model is constructed through a typical KF-CV. Next, the rest of the K-1 samples 

are utilized to build the network-selection operation. After careful consideration, the model which minimizes 

the anticipated error is chosen based on the grid 𝑙. The conventional equation for CV is denoted using the 

following equation. Using the conventional CV presented in (5), the MSKF-CV is optimized as (6). 
 

𝐶𝑉(𝜎) =
1

𝑀
∑ ∑ 𝑃 (𝑏𝑗 , 𝑔̂𝜎

−𝑘(𝑗)
(𝑦𝑗 , 𝜎))𝑗∈𝐺−𝑘

𝐾
𝑘=1  (5) 

 

𝐶𝑉(𝜎) =
1

𝑆𝑀
∑ ∑ ∑ 𝑃 (𝑏𝑗 , 𝑔̂𝜎

−𝑘(𝑗)
(𝑦𝑗 , 𝜎))𝑗∈𝐺−𝑘

𝐾
𝑘=1

𝑆
𝑠=1  (6) 

 

Initially, a primary characteristic is selected coming from subsets of characteristics, which is then 

utilized to develop a network selection prediction model with better performance. In (5) and (6), for the 

selection of better 𝜎̂ for optimizing the network-selection prediction design, in (7) is utilized. 
 

𝜎̂ = arg min
𝜎∈{𝜎1,…,𝜎𝑙}

𝐶𝑉𝑠(𝜎) (7) 

 

Where, 𝑀 denotes the size of the dataset considered for training, 𝑃(∙) represents loss-function, 𝑔̂𝜎
−𝑘(𝑗)

(∙) 

indicates the approach employed for coefficient calculation. In this way the best networks are selected wind 

minimize interference effect a novel resource slection optimization is presented in next section.  
 

3.3.  Resource selection optimization 

The study tries to maximize the throughput of the network by resource optimization process within 

the MIMO-OFDM network. Consider a mobile-terminal 𝑥 which achieves the given throughput 𝑆𝑥 and its 

respective resource-allocation 𝑒𝑥𝑦. In a scenario where the resource 𝑦 is given to mobile-terminal 𝑦, in this 

scenario 𝑒𝑥𝑦 = 1, else 𝑒𝑥𝑦 = 0. Hence, from this scenario, the overall throughput-gain issue is represented 

using (8). In (8), 𝑅 represents overall mobile-terminals present in the MIMO-OFDM network. Additionally, 

in this work, a limit has been set for fixed resource allocation (FRA) which is represented using (9). 
 

𝑚𝑎𝑥
𝐸

∑ 𝑆𝑥
𝑅
𝑥 . (8) 

 

∑ 𝑒𝑥𝑦 = 1𝑅
𝑥  ∀𝑦 (9) 

 

Using the (8) and (9), the overall throughput that can be achieved by a given mobile-terminal 𝑥 for 

FRA is evaluated using the following considerations. Consider a resource-set 𝑉𝑥 which has been exclusively 

given to a mobile-terminal 𝑥. Let 𝑙𝑥𝑦  define the probability of resource 𝑦 which can be accessed only by the 

given mobile-terminal 𝑥. In this study, 𝑙𝑥𝑦  is considered independent. Hence, from this throughput 𝑆𝑥 is 

evaluated using (10). 



Int J Artif Intell  ISSN: 2252-8938  

 

 Spectral efficient network and resource selection model in 5G networks (Padmageetha B. G.) 

1169 

𝑆𝑥 = 1 − ∏ 𝑙𝑥𝑦
′ = 1 − ∏ (𝑙𝑥𝑦

′ )
𝑒𝑥𝑦𝑇

𝑦=1𝑦∈𝑉𝑥
 (10) 

 

In (10), 𝑙𝑥𝑦
′ = 1 − 𝑙𝑥𝑦  denotes the probability that the resource 𝑦 cannot be accessed by mobile-

terminal 𝑥 and 1 − ∏ 𝑙𝑥𝑦
′

𝑦∈𝑉𝑥
 denotes the probability that at least one resource can be accessed by mobile-

terminal 𝑥. This work proposes an efficient approach and low-complexity approach for FRA and dynamic 

resource allocation (DRA) aware MIMO-OFDM network using throughput gain considering optimal 

resources are allocated as defined in (11). 
 

𝛿𝑆𝑥 = 𝑆𝑥
𝑧 − 𝑆𝑥

𝑞
= [1 − (1 − 𝑙𝑥𝑦𝑥

′ ) ∏ (1 − 𝑙𝑥𝑦)𝑦∈𝑉𝑥
] − [1 − ∏ (1 − 𝑙𝑥𝑦)𝑦∈𝑉𝑥

] = 𝑙𝑥𝑦𝑥
′ ∏ (1 − 𝑙𝑥𝑦)𝑦∈𝑉𝑥

 (11) 
 

It is evident from (11) that 𝛿𝑆𝑥 decreases with each iteration of allocation. This happens because 𝑉𝑥 

keeps on increasing, causing ∏ (1 − 𝑙𝑥𝑦)𝑦∈𝑉𝑥
 to approach to zero. In (11) is modiefied considering MAC 

overhead 𝒟 < 1 is given (12). 
 

𝛿𝑆𝑥
𝕍,𝑏(𝑦) = (1 −

1

𝕍
) (1 − 𝒟)𝑙𝑥𝑦(∏ 𝑙𝑥̅𝑜𝑜∈𝑉𝑥

) ∗ (1 − ∏ 𝑙𝑥̅𝑜𝑜∈𝑉∗
𝐶 ) ∑ [𝑙𝑥̅𝑛𝑦(∏ 𝑙𝑥𝑚𝑦

𝕍
𝑚=1,𝑚≠𝑛 )]𝕍

𝑛=1  (12) 

 

In (12) allows one to simulate the parameter 𝒟 while taking contention-window 𝒜 into account, 

which is the average MAC protocol overhead. Consider ℎ to be the average value for the back-off variable 

that each mobile-terminal can choose. Because the back-off variable is evenly chosen among zero alongside 

the 𝒜 − 1 interval (i.e., [0, 𝒜 − 1]), this work deduces that h =
(𝒜 − 1)

2⁄ . This allows us to calculate the 

average overhead as (13). 
 

𝒟(𝒜) =  (([𝒜 − 1]φ 2) + sSENS⁄ + sSYNCH + sRTS + sCTS + 3s𝑃𝐷𝑇)/Sℐ (13) 
 

Where 𝑠𝑆𝐸𝑁𝑆 is the time of sensing, 𝑠𝑆𝑌𝑁𝐶𝐻  is the size of synchronization packets,𝑠𝑅𝑇𝑆 defines request to 

send, 𝑠𝑅𝑇𝑆 defines ready to send, 𝑠𝑃𝐷𝑇  defines propagation delay time, 𝑆ℐ stands for the cycle time and 𝜑 

represents the period of time corresponding to a single back-off variable. Depending on how resources are 

distributed, the overhead 𝒟 will vary. As a result, the DRA model is modified with the present channel 

allocation for 𝒟. Because 𝒟 is rather stable, our DRA approach works efficiently and without problems 

leading to improved throughput, spectrum access failure, and spectrum access success-all of which are 

demonstrated empirically in the next section. 
 
 

4. RESULTS AND DISCUSSION 

This section presents an experiment analysis of the proposed SENRS and existing system network 

and resource selection (ES-NRS) model [16]. The proposed and existing model is implemented using the 

SIMITS simulator [34]. The SUI channel fading model [35] from NYUSIM implemented in MATLAB is 

used to validate the proposed model under the MIMO-OFDM network. The scenarios are created similarly to 

DeepMIMO [16]. The simulation is studied under mobility patterns representing the highway scenarios. The 

SIMITS simulator allows live spectrum access and failure monitoring considering mobile-terminal mobility. 

In this work, the 5G propagation simulation is utilized with the following parameters: a central frequency of 

28 GHz, a bandwidth of 100 MHz, a network cellular area of 350 meters, a BS power level of 46 dBm, along 

with RRC even Y2, X1, and X2, of -95 dBm, -125 dBm, and -130 dBm, respectively. The duration of the 

simulation has been set at 50 milliseconds. Here experiment is conducted to evaluate performance in terms of 

throughput, spectrum access failure, and spectrum access success under varied mobile-terminal sizes. 
 

4.1.  Throughput performance 

This section studies the throughput performance of both SENRS and ES-NRS considering mobile 

terminal sizes of 20 and 40. The throughput is measured in terms of total number of packets transmitted  

per channel. A higher value indicates better performance. Figure 3 shows the throughput performance of both 

ES-NRS and SENRS for 20 mobile terminals. Similarly, Figure 4 shows the throughput performance of both 

ES-NRS and SENRS for 40 mobile terminals. From the results, the proposed SENRS model can attain better 

throughput in comparison with ES-NRS considering 20 and 40 mobile terminal sizes. An average throughput 

enhancement of 16.17% is seen for 20 mobile terminal and an average throughput enhancement of 9.25% is 

seen for 40 mobile terminals. 
 

4.2.  Spectrum access failure performance 

This section studies the spectrum access failure performance of both SENRS and ES-NRS 

considering mobile terminal sizes of 20 and 40. The spectrum access failure is measured in terms of the total 

number of times the mobile-terminal fails to transmit the packets on a given spectrum. A lower value 
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indicates better performance. Figure 5 shows the spectrum access failure performance of both ES-NRS and 

SENRS for 20 mobile terminals. Similarly, Figure 6, shows the spectrum access failure performance of both 

ES-NRS and SENRS for 40 mobile terminals. From the results, the proposed SENRS model can reduce 

spectrum access failure in comparison with ES-NRS considering 20 and 40 mobile terminal sizes. An 

average spectrum access failure reduction of 54.41% is seen for 20 mobile terminals and an average 

throughput enhancement of 14.96% is seen for 40 mobile terminals. 
 

4.3.  Spectrum access success performance 

This section studies the spectrum access success performance of both SENRS and ES-NRS considering 

mobile terminal sizes of 20 and 40. The spectrum access success is measured in terms of the total number of 

times the packets are successfully transmitted. A higher value indicates better performance. Figure 7 shows the 

spectrum access success performance of both ES-NRS and SENRS for 20 mobile terminals. Similarly, Figure 8, 

shows the spectrum access success performance of both ES-NRS and SENRS for 40 mobile terminals. From the 

results, the proposed SENRS model can attain better throughput in comparison with ES-NRS considering 20 and 

40 mobile terminal sizes. An average spectrum access success enhancement of 16.17% is seen for 20 mobile 

terminals and an average throughput enhancement of 9.25% is seen for 40 mobile terminals. 
 

 

  

 

Figure 3. Throughput performance for 20 mobile 

terminals 

 

Figure 4. Throughput performance for 40 mobile 

terminals 
 

 

  

 

Figure 5. Spectrum access failure performance for 20 

mobile terminals 

 

Figure 6. Spectrum access failure performance for 40 

mobile terminals 
 
 

  

 

Figure 7. Spectrum access success performance for 

20 mobile terminals 

 

Figure 8. Spectrum access success performance for 

40 mobile terminals 
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5. CONCLUSION 

In this work, a novel network and resource selection method is introduced to improve spectrum 

efficiency. The proposed model simulated results showing significant improvement in throughput, and better 

spectral access success with minimal spectrum access failure. The significant spectral efficiency aids in 

increased resource availability, thereby reducing overall latency and improving system reliability. The model is 

tested using scenarios created employing DeepMIMO and the SUI channel fading model is used for studying 

the model in practical highway-like mobility and path-loss scenarios. The proposed SENRS model is compared 

with existing NRS methodologies showing significant enhancement in terms of throughput and spectral usage 

performance. The performance enhancement is due to multi-split cross-validation XGB-based network-

selection and improved resource selection that maximizes the system throughput with minimal spectrum access 

failure with enhanced backoff time optimization using both FRA and DRA. Future work would consider 

incorporating software-defined radio to dynamically optimize the contention window according to network 

traffic and the mobile nature of the user under different real-world environment scenarios will be studied, 

including assessment of signal quality, coverage, interference resilience, error rates, and spectral efficiency. 
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