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 The critical challenge of tomato leaf disease demands effective solutions 

surpassing manual detection limitations, ensuring rapid intervention, optimal 

crop health, and maximizing yield for farmers. DenseNet, a convolutional 

neural network (CNN) architecture, is lauded for its adept handling of 

gradient flow issues by extensive interlayer connectivity. Its application 

holds significant promise in tackling the intricate task of identifying tomato 

leaf diseases. This research introduces an innovative methodology 

employing particle swarm optimization (PSO) to fine-tune the DenseNet 

architecture and hyperparameter. The proposed approach efficiently 

converges on optimal configurations encompassing parameters, such as the 

number of layers in dense blocks, growth rates, dropout rates, activation 

functions, and optimizers tailored for DenseNet. The DenseNet-PSO model 

achieves remarkable accuracy and precision in classifying various tomato 

leaf diseases, outperforming alternative architectures in total parameters, 

computational efficiency, and overall performance compared with six other 

architecture models. These outcomes elucidate DenseNet-PSO's efficacy in 

tomato leaf disease detection and demonstrate. 
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1. INTRODUCTION 

Tomatoes (Solanum Lycopersicum) have garnered recognition as a "functional food" due to their 

rich composition of bioactive compounds, which confer health benefits extending beyond basic nutritional 

value. This attribute positions tomatoes as a crucial contributor to global food security and economic 

prosperity [1]. The Food and Agriculture Organization of the United Nations (FAO) reports that global 

tomato production reached 186 million tons in 2022 [2], solidifying its status as the sixth most abundant 

vegetable crop worldwide [3]. In Indonesia, the production of tomatoes has experienced significant 

expansion, witnessing an average annual growth rate of 11.60%, reaching 1.16 million tons in 2022 [4]. 

However, this impressive trajectory is continually threatened by the persistent challenge of tomato leaf diseases. 

These pathologies, caused by a diverse array of fungal, bacterial, and viral agents, have the potential to inflict 

substantial damage, potentially reducing crop yields by up to 40% [5]. Consequently, the timely and accurate 

diagnosis of these diseases is paramount for safeguarding food security and maintaining economic stability. 

Traditionally, identifying tomato leaf diseases relied heavily on visual inspection by farmers or 

trained personnel. However, this approach is inherently time-consuming, labor-intensive, and necessitates a 

level of expertise and experience that is often scarce in resource-limited environments [6]. Fortunately, 

advancements in artificial intelligence (AI) and machine learning have ushered in a new era of disease 
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detection methodologies that promise enhanced efficiency and reliability. In recent years, image processing 

techniques utilizing various classifiers have emerged as powerful tools, offering automated and objective 

analysis of leaf images [7]. Machine learning algorithms, such as support vector machines (SVM) [8] and 

random forests [9] have shown potential in disease classification, but they often struggle with large datasets 

and diverse disease categories. Additionally, extracting critical features from complex leaf images poses 

challenges for these algorithms, limiting their generalizability and reliability [7]. 

Deep learning, a subfield of AI, has recently gained significant traction due to its ability to 

automatically learn intricate features from data [10]. Within this domain, convolutional neural networks 

(CNNs) have emerged as a transformative force in image classification, demonstrating remarkable efficacy in 

tasks such as plant disease and pest identification [11]–[13], crop yield estimation [14], [15], and product 

quality assessment [16]. CNNs have evolved from pioneering architectures like AlexNet [17] and visual 

geometry group network (VGGNet) [18] to more efficient models such as GoogLeNet [19] and  

Inception-v3 [20]. The pursuit of lightweight models suitable for mobile applications led to the development 

of EfficientNet [21] and MobileNet V2 [22], which achieved impressive performance. A pivotal advancement 

in deep learning architecture came with the introduction of ResNet [23] which incorporated residual 

connections to facilitate the training of deeper networks and mitigate the vanishing gradient problem. Building 

upon these innovations, DenseNet [24] emerged as a powerful contender, boasting exceptional accuracy of 

99.97% on the ImageNet dataset while maintaining a comparatively modest model size. Studies have 

demonstrated that variants such as DenseNet-201 consistently outperform other architectures like ResNet-50 

and Inception-v3 in this domain [25]. The ability of DenseNet to effectively learn relevant features from 

images and classify them accurately has been a key factor in its success in plant disease classification tasks. Its 

effectiveness arises from its capability to address vanishing gradients and its distinctive characteristic of 

reusing features across layers, thereby notably decreasing memory and processing requirements [26].  

The performance of DenseNet architectures is primarily influenced by two key parameters: the number 

of layers within dense blocks (L) and the growth rate (k). Increasing L generally enhances accuracy and the 

ability to learn complex features but also escalates model complexity and computational cost [27]. Conversely, 

employing a smaller L in certain scenarios can yield similar or superior accuracy while providing added benefits 

in terms of efficiency and efficacy. This can be attributed to factors such as reduced overfitting risk and lower 

computational requirements, facilitating faster training and deployment processes [28]. The growth rate (k) in 

DenseNet architectures governs the number of new feature maps added in each dense block layer. While higher 

k values offer richer feature representations and potentially improved performance, they also contribute to 

increased model size and complexity. Conversely, excessively low k values risk underfitting, while excessively 

high k may lead to overfitting and memory constraints [29]. Therefore, it is essential to explore various 

combinations L and k values and carefully consider the trade-off between accuracy, efficiency, and 

computational cost to achieve an optimal DenseNet architecture tailored to the specific task and dataset. 

Achieving peak performance with DenseNet requires precise architectural adjustments and 

hyperparameter fine-tuning. However, manual tuning these hyperparameters is a tedious and time-consuming 

process, often leading to suboptimal results. Studies on [30] have demonstrated the computational challenges 

inherent in identifying optimal hyperparameter settings for CNN models, highlighting the limitations of 

manual tuning approaches. Considering these challenges, particle swarm optimization (PSO) emerges as a 

promising alternative. Inspired by the collective intelligence of natural swarms, PSO possesses a  

well-established capability to navigate complex search spaces and identify globally optimal configurations 

[31]. This approach transcends the limitations of manual tuning by automating the exploration of various 

DenseNet architecture and hyperparameter variations. PSO facilitates the discovery of an architecture that is 

tailored to the specific challenges of tomato leaf disease classification by dynamically adjusting these 

parameters. The effectiveness of PSO-based optimization for deep learning models has been demonstrated in 

numerous studies, encompassing tasks like modified national institute of standards and technology (MNIST) 

classification [32] and leaf spot disease segmentation [33]. For instance, one study introduced a novel PSO 

algorithm tailored for searching optimal architectures in deep CNNs, employing variable-length particles 

with exceptional efficacy [34]. Another study proposed a PSO-based method for evolving deep CNNs, 

leveraging PSO's capability to tackle optimization challenges devoid of domain knowledge [35]. Variants 

like cPSO-CNN further augment exploration capabilities, leading to even more effective hyperparameter 

tuning [36]. Notably, PSO-CNN architectures consistently outperform regular CNNs, showcasing the 

potential of this approach for significantly enhancing deep learning model performance. This research 

proposes a novel approach that leverages the power of PSO to optimize both the hyperparameters and 

architecture of DenseNet for tomato leaf disease classification. By integrating PSO with DenseNet, this study 

aims to achieve several key benefits: i) enhanced accuracy and robustness: optimizing architecture and 

hyperparameters with PSO has the potential to significantly improve the accuracy and generalization of 

DenseNet, leading to more accurate and reliable disease detection; ii) reduced training time and memory 
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consumption: PSO offers a faster way to explore different configurations, cutting down on training time and 

computational resources compared to manual tuning; and iii) automated architecture exploration: this 

approach goes beyond hyperparameter tuning, actively probing diverse DenseNet architecture configurations 

to autonomously identify the most efficient structure. 

This innovative approach not only unlocks possibilities for advancements in disease identification 

but also lays the groundwork for making DenseNets better for classifying tomato leaf diseases. It could lead 

to simpler and more accurate models than traditional methods. Although using PSO in deep learning has 

shown promise in other areas, its potential in optimizing DenseNets for agricultural disease classification 

hasn't been explored much. Ultimately, this research helps improve food security in regions with limited 

resources by making disease detection better and could be applied to different crops in the future. 

 

 

2. METHOD  

2.1.  Dataset 

The experimental data originated from a publicly available dataset [37], comprising 11,000 images 

categorized into 10 classes. These classes encompassed nine distinct tomato leaf disease pathologies and a 

dedicated class for healthy leaves. Visual representations for each class are provided in Figure 1, where 

Figure 1(a) shows a healthy, Figure 1(b) shows a bacteria spot, Figure 1(c) shows a early blight, Figure 1(d) 

shows a leaf mold, Figure 1(e) shows a late blight, Figure 1(f) shows a septoria leaf spot, Figure 1(g) shows a 

two-spotted spider mite, Figure 1(h) shows a mosaic virus, Figure 1(i) shows a target spot, and Figure 1(j) 

shows a yellow leaf curl virus. The dataset comprises images in .jpg format with a uniform resolution of 

256×256 pixels and utilizes the RGB color space. The dataset has been meticulously divided into training and 

testing subsets, maintaining an 80:20 ratio to facilitate model training and evaluation. 
 

 

     

(a) (b) (c) (d) (e) 

     

(f) (g) (h) (i) (j) 

 

Figure 1. Visual representations for each class of tomato leaf diseases of (a) healthy, (b) bacteria spot,  

(c) early blight, (d) leaf mold, (e) late blight, (f) septoria leaf spot, (g) two-spotted spider mite,  

(h) mosaic virus, (i) target spot, and (j) yellow leaf curl virus 

 

 

2.2.  Data preprocessing 

Data preprocessing assumes a pivotal role in readying image data for deep learning models, 

employing diverse techniques to refine data quality, boost model performance, and enhance accuracy.  

In this study, we resized all images to a uniform size of 224×224 pixels to match the input requirements of 

the architecture models used. This step ensures that all images are processed consistently and efficiently by 

the models. Furthermore, we implemented data augmentation techniques to enrich the dataset and improve 

model generalization. Data augmentation emerges as a prevalent strategy for image classification tasks, 

generating additional images through diverse transformation methods to address limited training data.  

Table 1 provides a detailed overview of the data augmentation parameters used. 

 

2.3.  Model 

DenseNet serves as the cornerstone of this investigation due to its renowned effectiveness in feature 

reuse and dense connectivity. Each layer in a DenseNet leverages features from all preceding layers as input, 

while its own features contribute to all subsequent layers in the network. Its core architecture revolves around 

dense blocks, meticulously structured with 3×3 kernel convolutional layers and batch normalization to ensure 

stability. In the dense blocks, each layer benefits from access to all preceding feature maps, promoting 

comprehensive information flow and facilitating feature reuse. Each layer in the dense block produces k feature 
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maps post-convolution, with k representing the growth rate hyperparameter. This parameter dictates the quantity 

of new feature maps incorporated in each layer, necessitating meticulous exploration to achieve a harmonious 

equilibrium between expressive capability and model complexity. The number of layers within each dense L is 

equally significant, influencing the richness of extracted features and potential accuracy gains. However, 

excessive layering poses a risk of overfitting, wherein the model memorizes training data rather than learning to 

generalize effectively. Transition layers elegantly connect these blocks, employing 1×1 convolutions and 

pooling to manage spatial dimensions and overall model size. Its structure is batch normalization 

(BatchNorm)+activation function+1×1 convolution+2×2 AvgPooling. Additionally, global average pooling 

replaces traditional fully connected layers to enhance the model's generalization capabilities. This is followed by 

a single output neuron with softmax activation, which provides class probabilities for the classification task. 

The PSO-guided optimization process commences with the formation of a particle swarm, each 

representing a potential configuration for DenseNet. These particles encapsulate hyperparameter values, 

including the number of layers in dense block, growth rate, dropout rate, activation function, and optimizer. 

Initial values are drawn from predefined boundaries in Table 2 to ensure exploration within feasible limits. The 

particles performance evaluated through metrics such as training accuracy, drives the iterative optimization 

process, which is governed by initial parameters specified in Table 3. As the swarm iterates through the search 

space, continuous evaluation propels collective movement towards an optimal configuration until the predefined 

number of iterations progressively converge towards the most effective DenseNet architecture for the task at 

hand. The position (𝑥𝑖) and velocity (𝑣𝑖) of each particle are updated using (1) and (2). 

 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑣𝑖
𝑡+1 (1) 

 

𝑣𝑖
𝑡+1 = 𝜔. 𝑣𝑖

𝑡 + 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡,𝑖
𝑡 − 𝑥𝑖

𝑡) + 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡
𝑡 − 𝑥𝑖

𝑡) (2) 

 

Where 𝜔 is the inertial coefficient, 𝑐1 and 𝑐2 are acceleration coefficient, 𝑟1 and 𝑟2 are random numbers 

produced in every iteration, falling within the range of [0, 1], 𝑝𝑏𝑒𝑠𝑡,𝑖
𝑡  denotes the personal or local best 

position of particle 𝑖 at iteration 𝑡, 𝑔𝑏𝑒𝑠𝑡
𝑡  denotes the globally best position within the entire particle swarm. 

 

 

Table 1. Data augmentation technique 
Technique Value 

Rescale 1/255 

Rotation 20° 

Shear range 20° 
Vertical shift 20% 

Horizontal shift 20% 

Zoom 20% 

Horizontal flip True 

Vertical flip True 
Fill mode Nearest 

 

 

Table 2. The search space bounds for the DenseNet architecture and hyperparameters utilizing PSO 
Hyperparameter Search space 

Number of layers in 1st block [1, 6] 

Number of layers in 2nd block [1, 12] 
Number of layers in 3rd block [1, 48] 

Number of layers in 4th block [1, 32] 

Growth rate 12, 16,2 4, 32, 48 

Dropout rate 10%, 20%, 30%, 40%, 50% 

Activation function ReLU, Tanh, Sigmoid 
Optimizer SGD, ADAM 

 

 

Table 3. Initial parameters 
Parameter Value 

𝑐1, 𝑐2  1.494 

𝜔  0.792 

Number of particles 10 

Batch size 128 
Loss function Categorical cross-entropy 

Maximum iteration 20 

Number of iterations for convergency criteria 10 

Number of experiments 20 
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2.4.  Evaluation 

The study adopts a macro-based evaluation approach, treating each disease class with equal 

importance regardless of the number of images per class. This method ensures unbiased assessment despite 

potential imbalances in the dataset. Several key metrics were employed: 

‒ Accuracy: reflects the overall model performance by measuring the percentage of correctly classified 

images across all classes. A higher accuracy signifies better overall prediction capability. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑ 𝑇𝑃𝑘

∑ 𝑇𝑃𝑘+∑ 𝐹𝑃𝑘+∑ 𝐹𝑁𝑘
 (3) 

 

‒ Macro-precision: represents the average precision across all classes. Precision indicates the proportion 

of true positives within the model's predictions for each specific disease. It gauges how accurate the 

model's positive predictions are: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑘 =
𝑇𝑃𝑘

𝑇𝑃𝑘 + 𝐹𝑃𝑘
, 

𝑀𝑎𝑐𝑟𝑜𝐴𝑣𝑔𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑀𝐴𝑃) =
∑ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑘

𝐾
𝑘=1

𝐾
 (4) 

 

‒ Macro-recall: captures the average recall across all classes. Recall quantifies the model's effectiveness 

in identifying all genuine cases within each disease class. A higher recall value indicates better 

detection of true positives with fewer missed cases. 

 

𝑅𝑒𝑐𝑎𝑙𝑙𝑘 =
𝑇𝑃𝑘

𝑇𝑃𝑘 + 𝐹𝑁𝑘
, 

𝑀𝑎𝑐𝑟𝑜𝐴𝑣𝑔𝑅𝑒𝑐𝑎𝑙𝑙 (𝑀𝐴𝑅) =
∑ 𝑅𝑒𝑐𝑎𝑙𝑙𝑘

𝐾
𝑘=1

𝐾
 (5) 

 

‒ Macro-F1-score: calculates the harmonic mean of precision and recall for each class, providing a 

balanced assessment that considers both false positives and false negatives. A high F1 score indicates a 

good balance between precision and recall, signifying the model can accurately predict both the 

presence and absence of diseases. 

 

𝑀𝑎𝑐𝑟𝑜 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2×𝑀𝐴𝑃×𝑀𝐴𝑅

𝑀𝐴𝑃+𝑀𝐴𝑅
 (6) 

 

 

3. RESULT AND DISCUSSION 

3.1.  DenseNet-PSO architecture 

The PSO approach has been applied to optimize the performance and efficiency of the DenseNet 

architecture by finding the optimal parameters by conducting 20 trials. The documentation of the optimal 

architecture and hyperparameters of DenseNet-PSO along with the comparison with the default 

hyperparameters of other DenseNet architecture types are presented in Table 4. DenseNet-PSO features a 

lighter and simpler structure compared to other DenseNet architectures. The overall structure of DenseNet-

PSO is detailed in Figure 2, presenting a comprehensive scheme comprising bottleneck layers, dense blocks, 

and transition layers. The DenseNet-PSO architecture implements a more conservative growth rate compared 

to its predecessors, yielding a more compact parameter space and enhancing both memory efficiency and 

computational performance. This model also employs a lower dropout rate, which mitigates overfitting 

through selective neuronal deactivation during the training phase, fostering generalized learning while 

preserving model stability. Furthermore, this lower dropout rate contributes to the model's training stability 

by attenuating excessive fluctuations often associated with high dropout implementations. DenseNet-PSO 

employs the same activation function and optimizer as other DenseNet architectures. DenseNet-PSO 

capitalizes on rectified linear unit (ReLU) capacity for non-linear representation learning and gradient 

preservation along with utilizing Adam's adaptive learning rate adjustment contributes to faster model 

convergence during the training process. 

 

3.2.  Comparison of DenseNet-PSO model with other architectures 

The DenseNet-PSO model in this section is compared with other architectural models that have been 

used or proposed in previous research, such as DenseNet-121, DenseNet-169, DenseNet-201, ResNet-101, 

InceptionV3, and MobileNet. This comparative analysis encompasses a comprehensive evaluation of model 

efficiency and performance metrics. Specifically, we examine total parameters, computation time, and 
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storage memory requirements to assess computational efficiency. Additionally, we evaluate model 

performance through key metrics such as accuracy, precision, recall, and F1-score. 

 

3.2.1. Comparison based on total parameters, time computation, and memory usage 

Based on the comparison listed in Table 5, the DenseNet-PSO model stands out compared to the 

other six models because it has significantly fewer total parameters. This shows the efficiency of the model in 

utilizing memory and computational resources. DenseNet-PSO showed superior performance in the overall 

evaluation behind its simplicity with lower complexity. Computation times across all models, including 

DenseNet-PSO, are notably similar, with minimal variations in mean and standard deviation, indicating 

consistent and stable prediction and training times. Additionally, DenseNet-PSO's lower storage memory 

requirements enhance its efficiency, making it particularly suitable for deployment on devices with limited 

memory resources. This combination of compact design, high performance, and resource efficiency positions 

DenseNet-PSO as a standout model among its peers. 

 

 

Table 4. Comparison of architecture and hyperparameters 
Hyperparameter DenseNet-PSO DenseNet-121 DenseNet-169 DenseNet-201 DenseNet-161 

Number of layers in 1st block 3 6 6 6 6 
Number of layers in 2nd block 9 12 12 12 12 
Number of layers in 3rd block 32 24 32 48 36 
Number of layers in 4th block 17 16 32 32 24 
Growth rate 12 32 32 32 48 
Dropout rate 0.1 0.5 0.5 0.5 0.5 
Activation function ReLU ReLU ReLU ReLU ReLU 

Optimizer Adam Adam Adam Adam Adam 

 

 

 
 

Figure 2. Full schematic representation of DenseNet-PSO 

 

 

Table 5. Comparison based on total parameters, time computation, and memory usage 

Model Total Parameter 
Total time computation (seconds) Total memory usage (MB) 

Avg Std Avg Std 

DenseNet-PSO 1, 257, 027 749.6868 2.3490 13,620.09 3.6840 

DenseNet-121 7, 047, 754 752.4470 5.7617 16,243.04 0.7864 

DenseNet-169 12, 659, 530 750.2726 4.1358 16,509.17 21.3546 
DenseNet-201 18, 341, 194 755.9802 1.7955 16,077.62 18.8820 

ResNet-101 42, 678, 666 749.8854 5.2668 16,252.44 2.3335 

InceptionV3 21, 823, 274 753.9185 2.4259 16,197.90 59.9983 

MobileNet 3, 239, 114 748.6338 1.5583 15,923.28 104.279 

 

 

3.2.2. Comparison based on evaluation metrics 

DenseNet-PSO emerges as the standout model, demonstrating superior and stable performance 

across evaluation metrics compared to the six other models tested. As visualized in Figure 3 and detailed in 
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Table 6, it achieved the highest average accuracy of 97.39% (±0.74%), along with top macro-precision 

(97.47%), macro-recall (97.39%), and macro-F1-score (97.38%). These results not only showcase the 

model's exceptional accuracy and balanced performance in disease detection but also highlight its efficiency, 

as it accomplishes this with fewer parameters than its counterparts. The consistently low standard deviations 

across metrics indicate stable and resilient performance, highlighting DenseNet-PSO's ability to maintain 

high accuracy across varied datasets. 

 

 

 
 

Figure 3. Comparison chart of average evaluation metric results 

 

 

Table 6. Comparison based on evaluation metrics 

Model 
Accuracy Macro-precision Macro-recall Macro-F1-score 

Avg Std Avg Std Avg Std Avg Std 

DenseNet-PSO 0.9739 0.0074 0.9747 0.0069 0.9739 0.0074 0.9738 0.0074 

DenseNet-121 0.9031 0.0485 0.9262 0.0316 0.9031 0.0485 0.9023 0.0493 

DenseNet-169 0.8970 0.0638 0.9203 0.0398 0.8970 0.0638 0.8935 0.0676 

DenseNet-201 0.9210 0.0571 0.9372 0.0380 0.9210 0.0571 0.9186 0.0608 
ResNet-101 0.8795 0.0563 0.9056 0.0393 0.8795 0.0563 0.8781 0.0571 

InceptionV3 0.9169 0.0531 0.9318 0.0395 0.9169 0.0531 0.9169 0.0527 

MobileNet 0.9408 0.0312 0.9484 0.0248 0.9408 0.0312 0.9402 0.0323 

 

 

4. CONCLUSION 

This research investigated the effectiveness of DenseNet-PSO, a model optimized using the PSO 

algorithm for classifying tomato leaf diseases. The model achieved an impressive overall accuracy of 97.39% 

and consistently outperformed six other architectures in terms of various metrics, including macro-precision, 

macro-recall, macro-F1-score, total parameters, computational time, and storage memory. These findings 

suggest DenseNet-PSO's potential for robust performance, efficient resource utilization, and reduced 

overfitting, leading to reliable generalization capabilities. The implementation of this model in agriculture 

holds the promise of transforming disease diagnosis, empowering informed decision-making, and ultimately 

enhancing crop quality, minimizing losses, and fostering a more sustainable agricultural paradigm.  

This research paves the way for utilizing advanced deep learning models like DenseNet-PSO to address crucial 

challenges in agriculture and contribute towards ensuring global food security. However, further and in-depth 

studies may be needed to confirm its generalization performance across diverse datasets and real-world 

scenarios, especially regarding its robustness to overfitting. It's worth noting that the PSO optimization process 

may encounter challenges related to local optima, especially under constraints such as limited particles or 

iterations due to computational resources. Future research could focus on enhancing PSO's exploration 

capabilities or exploring alternative optimization algorithms to overcome such limitations effectively. 
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