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 Big data classification involves the systematic sorting and analysis of 

extensive datasets that are aggregated from a variety of sources. These 

datasets may include but are not limited to, electronic records, digital 

imaging, genetic information sequences, transactional data, research outputs, 

and data streams from wearable technologies and connected devices. This 

paper introduces the scalable deep ensemble learning framework for big data 

classification (SDELF-BDC), a novel methodology tailored for the 

classification of large-scale data. At its core, SDELF-BDC leverages a 

Hadoop-based map-reduce framework for feature selection, significantly 

reducing feature-length and enhancing computational efficiency. The 

methodology is further augmented by a deep ensemble model that 

judiciously applies a variety of deep learning classifiers based on data 

characteristics, thereby ensuring optimal performance. Each classifier's 

output undergoes a rigorous optimization-based ensemble approach for 

refinement, utilizing a sophisticated algorithm. The result is a robust 

classification system that excels in predictive accuracy while maintaining 

scalability and responsiveness to the dynamic requirements of big data 

environments. Through a strategic combination of classifiers and an 

innovative reduction phase, SDELF-BDC emerges as a comprehensive 

solution for big data classification challenges, setting new benchmarks for 

predictive analytics in diverse and data-intensive domains. 
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1. INTRODUCTION 

In recent years, big data has become the main tech talk between academia and practitioners in the 

digital competitive playyard. Big data is an important asset that attracts the attention of many chief executive 

officers (CEOs) in different organizations to gain faster insights and high revenue [1]. The journey of big 

data started when many organizations recognized that the large volume of their data exceeded the capabilities 

of their organizations, process, capacity, structure, technology infrastructure, and governance. They struggled 

to deal with the requirements for analyzing the high volume of various data [2]. 

According to statistical reports, the number of users on different social media platforms has reached 

more than 2 billion. WhatsApp, for example, has over 600 million users, more than half a billion photos, and 

one hundred million videos transferred and shared between users daily [3]. Also, due to the huge advances in 

smartphone technology, it has become easier for users to share images and write posts on such social media 

https://creativecommons.org/licenses/by-sa/4.0/
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platforms. Some reports show that the number of posts on Twitter in 2007 was 5K, this number became 

around 500 million after about 6 years, which indicates the massive amount of available data on social media 

in general. This amount of data is not restricted to social media, as many other platforms generate and store 

huge data volumes [4]. This amount of data needs to be processed and analyzed to use it for building useful 

knowledge discovery and machine learning big data -based applications, like facial big data applications, 

signal big data, and various industry big data -based applications [5]. Volume (big), variety, and velocity are 

among the most distinguishing characteristics of big data, and as a result, it is attractive to have an efficient 

classification/prediction system to learn from such big data. Such applications include, but are not limited to, 

medical, financial, security, and image-based applications [6]. 

Big data analysis offers service tools, such as Hadoop distributed file system (HDFS) which 

supports managing and storing huge amounts of data, fast automated decisions and decreases the risks of 

human estimations. The HDFS is accepted as the most widely used dataset tool that supports redundancy, 

reliability, scalability, parallel processing, and distributed architecture systems [7], and is designed to handle 

different big data types; structured, semi-structured, and unstructured. Moreover, the Hadoop MapReduce 

job-scheduling algorithm [6] supports clustering big data in a spread network environment. In addition, big 

data analysis provides significant opportunities for solving different information security problems by using 

Hadoop technologies and HDFS tools. The data value that is generated from big data through the analysis 

phase is of extreme importance [8]. During the previous few decades, classifiers have been intensively 

studied and analyzed. Classifiers are widely used in many modern applications as key computer technology. 

Many classifiers exist, such as k-nearest neighbor (KNN), support vector machine (SVM), naive Bayes (NB), 

random forest (RF), decision tree (DT), and many more. In terms of accuracy and time consuming building a 

trained model, each classifier has advantages and limitations; some are more effective with specific datasets 

than others, and hence there is no optimal classifier that can perfectly classify all types of data [8]. 

Deep learning architectures such as convolutional neural networks (CNNs) and recurrent neural 

networks (RNNs), including long short-term memory networks (LSTMs), offer tailored advantages for big 

data classification. CNNs excel in spatial hierarchy learning from images, enabling robust feature extraction 

without manual intervention, making them ideal for image-based classification tasks. Their structure, 

composed of convolutional, pooling, and fully connected layers, ensures efficiency and scalability, even with 

high-dimensional data. On the other hand, RNNs and LSTMs shine in sequence data analysis, such as time 

series, speech, or text, by effectively capturing temporal dependencies and handling variable-length inputs. 

LSTMs further mitigate the vanishing gradient problem, allowing for the learning of long-term dependencies. 

These architectures collectively enhance big data classification by offering scalable, efficient, and accurate 

modeling capabilities, capable of extracting deep insights from complex datasets, thereby driving innovation 

across diverse domains [9]. 

The integration of deep learning with MapReduce, a programming model for processing and 

generating large data sets with a parallel, distributed algorithm on a cluster, offers a powerful approach for 

enhanced classification tasks on big data. This integration leverages the computational efficiency of 

MapReduce to handle the massive scalability requirements of deep learning algorithms, allowing for the 

distributed processing of data across multiple nodes, which significantly speeds up the training of complex 

models on large datasets. For instance, deep learning models, such as CNNs for image classification or RNNs 

for sequence data, can be trained more efficiently using this integrated approach, enabling more sophisticated 

and accurate classification capabilities. However, this integration is not without its limitations. The 

complexity of configuring and managing a distributed computing environment can introduce overhead and 

potential bottlenecks, especially in terms of network communication and data transfer speeds. Additionally, 

the inherent challenges of parallelizing deep learning algorithms, such as synchronization of model updates 

and the non-uniform distribution of data, can affect the efficiency and scalability of the solution. Despite 

these challenges, the combination of deep learning and MapReduce holds significant promise for advancing 

big data classification by harnessing the strengths of both technologies [10]–[12]. 

The exponential growth of big data across various sectors, coupled with its profound impact on  

decision-making, innovation, and competitive advantage, has sparked significant interest among researchers 

and practitioners alike. This burgeoning interest is rooted in the realization that big data, characterized by its 

volume, velocity, and variety, holds the key to unlocking novel insights and fostering advancements across 

various fields including healthcare, finance, security, and beyond. The motivation behind this research stems 

from the challenges and opportunities presented by the vast amounts of data generated by social media 

platforms, IoT devices, and digital transactions, which exceed the processing capabilities of traditional data 

analysis tools. As organizations strive to harness the full potential of big data for knowledge discovery, 

machine learning, and predictive analytics, there arises a critical need for efficient classification and 

prediction systems capable of managing this complexity. The integration of deep learning architectures and 

MapReduce frameworks presents a promising avenue for addressing these challenges, offering scalable, 

efficient solutions for big data classification. This research is driven by the ambition to contribute to the 
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development of advanced big data analysis tools that can not only manage the sheer scale of data but also 

provide actionable insights, thereby enabling organizations to make informed decisions, enhance operational 

efficiency, and achieve strategic goals. 

Advanced deep ensemble learning architecture: devised a sophisticated framework that integrates a 

suite of deep learning classifiers, orchestrated within a Hadoop-based infrastructure. This approach is 

engineered to refine classification by conducting precise feature selection and employing a hybrid of 

algorithmic strategies. The result is a substantial improvement in accuracy and efficiency, particularly suited to 

the complexities of big data classification. Innovative hybrid heuristic optimization technique: introduced a 

cutting-edge optimization method that is implemented within a map-reduce framework, this technique enhances 

the selection and classification of features, thereby elevating the effectiveness and precision of big data systems. 

The research is organized in this paper into four sections. The first section gives a brief overview of 

the big data classification process, and the second section discusses the existing literature and shortcomings 

associated with each. In the third section, a model is proposed to overcome this and in the fourth section a 

comparison is carried out with the existing and the proposed techniques, and the results are tabulated in the 

form of graphs. 

 

 

2. RELATED WORK 

In the realm of big data classification, recent studies have innovated methods to enhance feature 

selection and classification accuracy in large datasets. For example, a novel approach integrates MapReduce 

with feature subset selection and hyperparameter-tuned deep belief networks (DBN), aiming to address the 

complexities of big data processing and improve classification performance. A classification model named 

random forest-based feature selection and extraction (RFSE)-gated recurrent unit (GRU) [13] was developed, 

integrating GRU with a strategic approach for feature selection and data balance. This model leverages the 

RF algorithm to identify the most impactful features for classification. To mitigate the challenges posed by 

data imbalance, it employs a combination of the synthetic minority oversampling technique (SMOTE) for 

oversampling and the edited nearest neighbor (ENN) technique for under-sampling, enhancing the model's 

classification accuracy. Technologies such as text and data mining, online and mobile mining, process 

mining, statistical analysis, network analytics, social media analytics, audio and video analytics, and web 

analytics are all included in big data analytics. To enhance healthcare data sets, a range of data mining 

techniques may be used, such as summarization, association rules, clustering, classification, anomaly 

detection, and large-scale data visualization [14]. Modern data analytics algorithms employ certain data 

properties to evaluate sensor and high-speed data streams. Big data has several applications, including 

improving diagnosis, averting illness, monitoring patients from a distance, reducing hospital stays, 

integrating medical imaging, reducing fraud, strengthening data security, and more. Introducing a brand-new 

deep learning-based mobile traffic data categorization solution. 

The proposed RFSE-GRU model is a classification model that incorporates feature selection, data 

balancing, and the GRU algorithm [15]. The RF method selects features according to their significance for 

the classification process. Additionally, the combination of the SMOTE oversampling strategy with the ENN 

under-sampling method reduced the negative impact of data imbalance on classification performance. This 

paper presents a redesigned KNN technique and compares it to the traditional KNN algorithm. Within the 

vicinity of the query instance, the traditional KNN classifier is employed to do the classification, assigning 

weights to each class. The technique considers the class distribution surrounding the query instance to 

prevent the weight assignment from adversely affecting the outliers [16]. The current study addresses the 

shortcomings of the traditional KNN technique with large datasets by introducing an improved KNN strategy 

that combines density cropping and cluster denoising. This approach uses clustering to improve denoising 

processing and boost the classification efficiency of the KNN algorithm by accelerating the KNN search 

without compromising the algorithm's classification accuracy. Jiang and Li [17] proposal's edge processing 

unit is composed of two primary components: a data transmission unit that uses appropriate communication 

methods to send data to railway control centers based on the type of data received, and a data classification 

model that separates internet of things (IoT) data into two categories: maintenance-critical data (MCD) and 

maintenance-non-critical data (MNCD). For multiclass classification with large datasets, we may reduce the 

temporal complexity and increase the computational efficiency of energy balance-related behaviors (EBRBs) 

by using a domain division-based rule reduction technique, a more straightforward evidential reasoning 

algorithm, and a method to do away with rule weight calculation. This is a Micro-EBRBS, which is an 

EBRBS that has been shrunk down. Furthermore, Apache Spark, a well-liked cluster computing tool, is used 

in the development of micro-EBRBS's parallel rule generation and inference methodologies for big data 

multiclass classification issues [18]. Offering a novel approach to fault line selection that uses big data and 

feature classification to overcome the shortcomings of existing techniques. This method addresses the fault 
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line selection issue as a classification task by feeding large datasets associated with faults into the classifiers 

during training. The four main steps in the procedure are data gathering, training, classification, and 

assessment. Data preparation is in charge of preprocessing and data collection, whereas training employs 

processed data to train classifiers [19], [20] presents a more advanced KNN technique and compares it with 

the traditional KNN algorithm. Within the vicinity of the query instance, the traditional KNN classifier is 

employed to do the classification, assigning weights to each class. The technique considers the class 

distribution surrounding the query instance to prevent the weight assignment from adversely affecting the 

outliers. By including cluster denoising and density cropping, this study presents an improved KNN method 

that overcomes the shortcomings of the traditional KNN strategy when working with large datasets. This 

approach enhances denoising capabilities and increases KNN algorithm efficiency by employing clustering to 

speed up the search for nearest neighbors without losing classification accuracy [21]–[24]. 

 

 

3. PROPOSED METHODOLOGY 

The proposed scalable deep ensemble learning framework for big data classification (SDELF-BDC) 

methodology begins with the first step which is feature selection, where relevant data attributes are identified 

using a Hadoop-based map-reduce framework to minimize feature length. The chosen features are then 

processed through a deep ensemble model that utilizes a variety of deep learning classifiers such as CNN, 

DBN, LSTM, extreme learning machine (ELM), and deep neural network (DNN). These classifiers are 

applied conditionally, based on their suitability to the data characteristics. In the classification and reduction 

phase, the results from each classifier are combined, and an optimization-based ensemble approach is 

employed to refine the results further. This combination aims to generate a decisive strategy that maximizes 

the prediction metrics within the map-reduce framework. The final output is a robust prediction model. 

Figure 1 shows the block diagram. 

 

3.1.  Feature selection 

The proposed Hadoop-based map reduction model chooses the relevant features from the map phase 

which is generated by the proposed model to minimize each feature's length which gets many effective 

features. The relevant features are chosen using the proposed algorithm that minimizes the computation time 

and overfitting issue. This is essential to enhance the accuracy, with added relevant features used to reduce 

the number of input variables that eliminate non-relevant features. These features are selected from two 

different datasets. Thus the optimal features for this model are expressed as hu
fine−tune, wherein  

u = 1,2, ………… . . , U using the proposed algorithm. 

 

3.2.  Proposed algorithm 

The proposed heuristic optimization method, which is generated by the map reduction framework-

based classification system, adjusts several parameters to get the best-projected results. The reason this model 

chooses a novel optimization algorithm is that it can guarantee quick convergence and prevent problems with 

local optima. However, its inability to get the best outcomes worldwide renders it ineffective for a variety of 

optimization tasks. It has been coupled with an optimization approach to overcome the shortcomings of the 

present optimization approach because of its capacity to boost performance when addressing engineering 

optimization challenges and to increase efficiency in global search. The proposed algorithm increases the 

classification using efficiency by utilizing the map-reduce architecture. The parameters Ru1 and Ru2 in the 

proposed algorithm are computed using the deviation of the optimization approach and another optimization 

approach. The outcome of the deviation is shown in (1). The SD for Ru1 and Ru2 are evaluated to be 

SD(Ru1, Ru2), finally the updated value is denoted by D as shown in (2). 

 

𝐷 = 𝑚𝑖 𝑛(𝑅𝑢1, 𝑅𝑢2) + 𝑆𝐷(𝑅𝑢1, 𝑅𝑢2) (1) 

 

𝐹𝑖𝑛𝑎𝑙𝑜𝑢𝑡 = 𝐹𝑖𝑛𝑎𝑙𝑜𝑢𝑡 + 𝐷 (2) 

 

Here Finalout denotes the outcome of the solution. This method utilizes parameters to define a set 

of coyote packs, or Reil. Each pack consists of unique coyotes, EAam, showcasing specific social behaviors 

within their group, il, over a specific time frame, Vm. An alpha coyote, known for its superior adaptability 

and behavior that suits changing environmental conditions, assumes leadership in every pack. In (3) 

summarizes the leadership characteristics of the alpha coyote. The information relevant to the coyotes gained 

from the groups for performing cultural tendency is shown in (4). Here Se 
il,Vm depicts the ranked social 

status of the coyote involved through the search dimension km within the pack il in the period Vm. The birth 

rate is evaluated and termed as a life event for the new coyote denoted by the (5). 
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αEAil,Vm = Bsam
il,Vm  for minHsam

il,Vm
 (3) 

 

𝑒𝑣𝐸𝐴tkm
il,Vm = {

SeEAam+1
2

il,Vm , k                                EAam    is odd

SeEAam+1
2

il,Vm , km                                                       orelse
  

} (4) 

 

𝑑𝑡𝐸𝐴tkm
il,Vm =

{
 
 
 

 
 
 

Bttp1jl                   ttjl<Duw  or km=km1

Bttp2jl                   ttjl<Duw  or km=km2    

il,Vm

   
tfjl                                                     else

il,Vm

}
 
 
 

 
 
 

 (5) 

 

The design dimension denoted by km1 or km2. The term Duv is evaluated to scatter probabilities 

and Dcr is indicated as the association of probabilities. The random variables denoted by   ttjl and 
 
tfjl in the 

range [0, 1]. The final status is determined by correlating the prior and upgraded status as shown in (6).  

The optimal solution is finalized through the condition which is incorporated by this searching dimension. 

According to the hunting mechanism the prey enclosed by the alpha parameters by determining their position 

with the assistance of a specific agent, the encircling strategy is given by (7). 

 

Btam
il,Vm+1

={
Btam

il,Vm+1              py
Htam
il,Vm+1<Ht 

il,Vm

Btam
il,Vm                 else

} (6) 

 

mstr(ws + 1) = μ1 ∑
[τq(ws)−mstr(ws)]

ps

ps
0=1 −ms∗(ws) (7) 

 

The arbitrary number is denoted by μ1in the range [-2, 2] the best solution observed from the 

previous step is denoted by ms∗(ws) whereas the present solution is mstr and the population is denoted by 

Ws. The subset of the solution is denoted by τq(ws), the new position within the solution is denoted by 

mstr(ws + 1) whereas the random variable is denoted by ps, they chase the prey by tracking the position 

they are within, this feature is denoted in (8). The search agent is referred to as the msg(ws), mstr(ws + 1) 

depicts the movement and the arbitrary number denoted by μ1 in the range [-1, 1]. This classification is 

observed as in (9) with the survival rate the computation is performed in (10). 

 

mstr(ws + 1) = ms∗(ws) + μ1 ∗ zs
μ2 ∗ (msg(ws) − mstr(ws)) (8) 

 

mstr(ws + 1) = 0.5[as
μ2 ∗ msg(ws)−(−1)

γ ∗ mstr(ws)] (9) 

 

ut(tc) =
fmax−f(t)

fmax−fmin
 (10) 

 

The f(t) designates the consistent value of  tvj search agent. Ms∗(ws) is depicted by the best 

solution through the previous iteration. The variables fmax and fmin which represents the worst-case optimal 

fitness value, whereas the optimal fitness values and the parameter γ are represented by the binary number. 

The algorithm is given as shown in Algorithm 1. Figure 2 shows the proposed algorithm flowchart. 

 

Algorithm 1. Proposed algorithm 
Step 1 Initialization of population 

Step 2 Compute fitness for all solutions 

Step 3 If termination is not met, then: 

- For every solution in the population: 

• Update the position following the procedure 

- Evaluate the Ru1 

• Update the position according to the procedure 

- Evaluate the  Ru2 
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- Calculate the final deviation using (1) 

- Continue execution 

Else 

- Upgrade final position by (2) 

- Improvisation 

Return to step 3 to check for termination again 

Step 4 Else: 

- Obtain the best optimal solution and terminate the algorithm 

 

 

 
 

Figure 1. Block diagram 
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Figure 2. Proposed algorithm flowchart 

 

 

3.3.  Deep ensemble model 

The deep ensemble model for the classification algorithm harnesses the power of multiple deep 

learning classifiers to predict physical activities based on sensor data, such as accelerometer readings.  

This approach is designed to improve prediction accuracy by leveraging the collective strengths and 

compensating for the weaknesses of individual models. The process begins with the pre-processing of input 

data, ensuring it is normalized and partitioned into training, validation, and test sets to facilitate effective 

model training and evaluation. 

The core of the algorithm lies in its conditional application of different deep learning techniques, 

each selected based on the specific characteristics of the data at hand. For data sets where spatial pattern 

recognition is paramount, the CNN is employed. CNNs are adept at extracting hierarchical spatial features 

from data, making them ideal for analyzing images or sensor data that have a spatial structure. On the other 

hand, when the data involves temporal dependencies or sequences where the order of data points is crucial, 

the LSTM network is utilized. LSTMs excel in remembering information over extended periods, making 
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them suited for time-series data or sequences where past information influences future predictions.  

For scenarios demanding rapid training and straightforward predictions without the need for capturing 

complex relationships or time dependencies, the ELM offers a fast and efficient solution. ELMs are  

single-layer feedforward networks that can achieve high-speed training and generalization performance, 

making them suitable for simpler tasks or when computational efficiency is a priority. 

The ensemble model's strategy involves evaluating the performance of each classifier on the 

validation set and then combining these models in a way that leverages their strengths. If there's consensus 

among the models, the algorithm might simply take the majority vote as the final prediction. However, in 

cases of disagreement, the algorithm opts for a more nuanced approach by weighting the outputs of each 

model based on their validation accuracy and computing a weighted average prediction. This method ensures 

that more accurate models have a greater influence on the final prediction, enhancing the overall prediction 

performance of the ensemble. After selecting the combination strategy based on model agreement and 

performance weighting, the ensemble model is trained on the entire training set. This integrated training 

approach allows the ensemble to learn from the comprehensive data available, ensuring it is well-adjusted to 

make accurate predictions. The final step involves evaluating the ensemble model's performance on the test 

set, providing an assessment of its ability to generalize to unseen data. For new inputs, the model predicts 

data classes by preprocessing the data to match the training format and then applying the trained ensemble 

model to generate predictions. 

This algorithm represents an efficient approach to predictive modeling in the context of data 

classification, leveraging the unique capabilities of different deep learning models to create a robust, 

accurate, and efficient tool for data class prediction. By combining the predictions from various models, the 

ensemble method achieves a balance between the depth of learning and computational efficiency, ultimately 

enhancing the reliability and accuracy of data class predictions. Algorithm 2 shows the deep ensemble 

algorithm. Figure 3 deep ensemble flowchart for prediction. 

 

Algorithm 2. Deep ensemble algorithm 
Input Dataset  
Step 1 Pre-processing: 

- Normalize the data to ensure uniformity and better model training 

Step 2 Initialization: 

- CNN_model=Train a convolutional neural network on the data. 

- DBN_model=Train a deep belief network on the data. 

- LSTM_model=Train a long short-term memory network on the data. 

- ELM_model=Train an extreme learning machine on the data. 

- DNN_model=Train a deep neural network on the data. 
Step 3 Define the ensemble prediction technique: 

- Collect predictions from each model. 

- For each instance in the test data, do the following: 

• if CNN_model confidence > threshold, use CNN_model prediction. 

• else if DBN_model confidence > threshold, use DBN_model prediction. 

• else if LSTM_model confidence > threshold, use LSTM_model prediction. 

• else if ELM_model confidence > threshold, use ELM_model prediction. 

- else, use DNN_model prediction as a default. 
Step 4 Evaluate the performance of each model on the validation set. 

Step 5 Combine predictions for the final decision: 

- if the models agree on the prediction: 

• Accept the majority vote as the final prediction. 

- else 

• Weight the outputs based on their validation accuracy, and compute a 

weighted average prediction. 

Step 6 Train the ensemble model on the entire training set using the selected 

strategy from step 5. 

Step 7 Evaluate the ensemble model on the test set to assess its prediction 

performance. 

Step 8 for new sensor data inputs: 

- Pre-process the data as in step 1. 

• Predict the classes using the trained ensemble model. 

output The predicted class. 

 

3.4.  Classification and reduction phase 

The proposed framework for monitoring develops an optimization-based ensemble approach for the 

prediction of physical activities through the optimal features known as hu
fine−tune from the proposed algorithm. 

The proposed algorithm incorporates all this in the combining phase. The developed framework is used to 

maximize the metrics in the map-reduce framework for prediction. The proposed map-reduce system aggregates 
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results from the combining stage to be processed in the reduction stage, where all outcomes are combined to 

generate a decisive strategy. This framework is crucial for big data classification with different application. 

 

 

 
 

Figure 3. Deep ensemble flowchart for prediction 
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4. PERFORMANCE EVALUATION 

The performance evaluation involves assessing the accuracy of different methodologies, including 

the proposed model, across four datasets: supersymmetry (SUSY), higgs, modified national institute of 

standards and technology (Mnist), and United States postal service (USPS). Additionally, the evaluation 

includes comparing the time taken and speed-up achieved specifically for the SUSY and Higgs datasets.  

The results are presented comprehensively through tables and graphs to provide a clear comparison of the 

methodologies' effectiveness across the various datasets and performance metrics. 

 

4.1.  Accuracy 

Analyzing the performance of various methods on the SUSY dataset, we see a range of accuracy 

scores from these classification algorithms. Multivariate decision tree 2 (MDT2) demonstrates the highest 

accuracy among the majority of the traditional algorithms, with a score of 0.749, suggesting that its method 

of classification is particularly well-suited to this dataset. Constant-time ensemble learning classifier 

(CTELC) [(existing system) ES], an ensemble strategy, slightly outperforms MDT2 with a score of 0.758, 

indicating the effectiveness of combining multiple models to enhance predictive performance. Notably, the 

proposed system (PS) method stands out with the highest accuracy of 0.8063, which could imply an 

advanced feature selection or optimization process that significantly benefits the model's performance on this 

dataset. On the other end of the spectrum, national benchmark tests (NBT) scores the lowest at 0.594, which 

may indicate that its probabilistic approach is less effective for the patterns present in the SUSY data. The 

identical scores of moving range k-nearest neighbor (MR-KNN) and KNN-IS (KNN design based on spark) 

suggest similar capabilities in handling the data, potentially due to shared reliance on the proximity of data 

points. Fuzzy classifiers show robustness with a score of 0.735, which might be due to their ability to handle 

uncertain or imprecise information. Lastly, furthest-pair-based binary search tree (FPBST) and 

minimum/maximum norms-based binary tree (MNBT) are tied at 0.71, which could suggest a parity in their 

ability to generalize or an underlying similarity in their approach to the SUSY dataset. Table 1 and Figure 4 

show the accuracy comparison for the SUSY dataset. 

 

 

Table 1. Accuracy comparison 
Method SUSY 

MDT1 [25] 0.729 

MDT2 [25] 0.749 

FPBST [26] 0.71 

MR-KNN [27] 0.694 
KNN-IS [28] 0.694 

Fuzzy [29] 0.735 

NBT [30] 0.594 

MNBT [30] 0.71 

CTELC [ES] [31] 0.758 
PS 0.8063 

 

 

 
 

Figure 4. Accuracy comparison for the SUSY dataset 
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In the analysis of classification methods on the Higgs dataset, the PS method significantly outshines 

all others with an accuracy of 0.7643, suggesting that its advanced approach, possibly involving sophisticated 

feature selection or optimization techniques, is exceptionally well-suited for this type of complex data. 

MDT2 emerges as the runner-up, with an accuracy score of 0.6, indicating its competency but also room for 

improvement. CTELC [ES], leveraging ensemble strategies, shows moderate success at 0.59, underscoring 

the potential of combining multiple models to tackle intricate datasets. Multivariate decision tree 1 (MDT1) 

and FPBST display near-identical performances, hovering just above the 0.58 mark, which may point to 

similarities in their classification strategies or their collective median efficacy in this context. At the lower 

end of the spectrum is MNBT, with an accuracy of only 0.529, hinting at its struggle with the dataset's 

complexity and the need for refinement in its method to better capture the underlying patterns in the Higgs 

data. The wide range of accuracies reflects the diverse capabilities of these methods when applied to the 

challenging task of classifying data in high-energy physics. Table 2 and Figure 5 show the accuracy 

comparison for the Higgs dataset. 

 

 

Table 2. Accuracy comparison for the Higgs dataset 
Method HIGGS 

MDT1 [25] 0.581 

MDT2 [25] 0.6 

FPBST [26] 0.582 

MNBT [30] 0.529 

CTELC [ES] [31] 0.59 
PS 0.7643 

 

 

 
 

Figure 5. Accuracy comparison for the Higgs dataset 

 

 

Analyzing the classification performance on the Mnist dataset, it is apparent that the PS method 

outperforms the others with a notable accuracy of 0.9463, indicating its robustness and potentially more 

advanced feature processing capabilities. CTELC [ES] also performs admirably, showing a high degree of 

accuracy at 0.868, which suggests the effectiveness of ensemble methods in handling image data.  

Both FPBST and MNBT yield strong results, with 0.855 and 0.858 respectively, possibly due to their ability 

to capture the essential features within image data. LC-KNN stands out as the more effective of the two KNN 

variations with an accuracy of 0.839, indicating that its approach to leveraging locality in data is beneficial. 

In stark contrast, NBT significantly underperforms with an accuracy of just 0.19, signaling that its method 

may be unsuitable for the intricacies of image-based datasets like Mnist. This spread of performance metrics 

showcases the importance of choosing the right algorithm for the dataset at hand, with some methods 

distinctly more suited to the complex patterns present in handwritten digit recognition. Table 3 and Figure 6 

show the accuracy comparison for the Mnist dataset. 

 

 

Table 3. Accuracy comparison for the Mnist dataset 
Dataset RC-KNN [27] LC-KNN [27] FPBST [26] NBT [30] MNBT [30] CTELC [ES] [31] PS 

Mnist 0.722 0.839 0.855 0.19 0.858 0.868 0.9463 
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Figure 6. Accuracy comparison for the Mnist dataset 

 

 

The performance metrics for classification methods on the USPS dataset reveal that the PS method 

achieves exceptional accuracy at 0.9943, far surpassing the other techniques and indicating its superior 

handling of postal digit recognition tasks, likely through sophisticated feature learning and selection 

strategies. Random clustering-k nearest neighbor (RC-KNN) also shows impressive performance with an 

accuracy of 0.95, suggesting that its radius-based approach to KNN is very effective for this dataset. FPBST 

and local centralities-based k nearest neighbor (LC-KNN) follow with solid accuracies of 0.936 and 0.903, 

respectively, indicating that feature-based and locality-conscious approaches are beneficial in classifying the 

handwritten digits in the USPS dataset. NBT's performance is fairly good at 0.873, but MNBT falls 

significantly behind with an accuracy of 0.336, which may point to a fundamental mismatch between its 

modeling approach and the dataset's characteristics. CTELC [ES], despite being an ensemble method, shows 

a lower-than-expected accuracy of 0.864, hinting that the specific ensemble technique used may not be fully 

optimized for this type of data. Overall, these results emphasize the importance of algorithm selection in 

machine learning tasks, where the PS method's advanced capabilities lead to a clear advantage in accurately 

classifying the USPS dataset. Table 4 and Figure 7 show the accuracy of the USPS dataset. 

 

 

Table 4. Accuracy comparison for the USPS dataset 
Dataset RC-KNN [27] LC-KNN [27] FPBST [26] NBT [30] MNBT [30] CTELC [ES] PS 

USPS 0.95 0.903 0.936 0.873 0.336 0.864 0.9943 

 

 

 
 

Figure 7. Accuracy comparison for the USPS dataset 

 

 

4.2.  Time comparison 

Figure 8 shows the time comparison of the SUSY dataset for the existing system with the proposed 

system. The analysis shows that the proposed system takes less time for execution with the proposed system. 

Henceforth showing that the proposed system ensures better performance in comparison with the existing 

system. Figure 9 shows the time comparison of the USPS dataset for the existing system with the proposed 

system. The analysis shows that the proposed system takes less time for execution with the proposed system. 

Henceforth showing that the proposed system ensures better performance in comparison with the existing 

system. 
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Figure 8. Time comparison for the SUSY dataset 
 

 

 
 

Figure 9. Time comparison for the Higgs dataset 
 

 

4.3.  Speed-up comparison 

The speed-up comparison for the SUSY dataset illustrates the relative performance improvements of 

various methodologies. MDT1 [25] and MDT2 [25] represent the baseline performance, with MDT1 [25] 

showing the lowest speed-up and MDT2 [25] displaying a minor increase. NBT demonstrates a significant 

enhancement in speed-up, nearly tripling the value of MDT2 [25]. MNBT, while lower than NBT, still holds a 

considerable gain over the MDT methodologies. ES presents a further improvement, suggesting a refinement 

over MNBT. PS stands out with the highest speed-up value, indicating it as the most efficient method among 

those compared. The chart suggests that, in the context of performance acceleration, methodologies have 

evolved from MDT1 to PS with notable enhancements in speed-up, culminating in PS as the most superior 

method in this comparison. Figure 10 shows the speed-up comparison for the SUSY dataset.  

The speed-up comparison for the USPS dataset illustrates the relative performance enhancements in 

comparison with six different methodologies. The methodologies, MDT1 and MDT2, show minimal  

speed-up, indicating a marginal gain in performance efficiency. Conversely, NBT demonstrates a significant 

improvement, doubling the speed-up value observed in MDT2, which suggests a considerable enhancement 

in performance. MNBT's [30] performance is on par with NBT [30], maintaining the gains achieved. ES, 

however, represents a decrease in speed-up compared to NBT [30] and MNBT [30], implying a reduction in 

efficiency. The most striking observation is the performance of PS, which towers over the other 
methodologies with the highest speed-up value. This suggests that PS is substantially more efficient than the 

rest, potentially offering a performance improvement that is several folds higher. Overall, the chart depicts 

PS as the standout methodology for speed-up, with NBT [30] and MNBT [30] also showing strong 

performance gains. Figure 11 speed-up comparison for USPS dataset. 

 

 

 
 

Figure 10. Speed-up comparison of SUSY dataset 
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Figure 11. Speed up comparison for USPS dataset 
 

 

5. CONCLUSION 

This paper presents a comprehensive framework, the SDELF-BDC, which stands as a significant 

advancement in the field of big data classification. The framework's innovative approach to feature selection, 

rooted in a Hadoop-based map-reduce architecture, facilitates the handling of extensive datasets with 

increased efficiency and reduced computational overhead. The strategic integration of multiple deep learning 

classifiers harnesses the strengths of each, forming a robust ensemble that delivers enhanced predictive 

accuracy. Through meticulous design and execution, the SDELF-BDC framework emerges as a versatile and 

powerful tool in the big data arena, capable of addressing the complex and dynamic challenges posed by vast 

datasets. The framework's effectiveness, verified through extensive testing and analysis, validates the 

potential of deep ensemble learning in transforming big data classification methodologies. Future research 

could explore the scalability of the framework, the integration with emerging technologies, and its 

adaptability to other complex data-driven tasks beyond a particular domain. The SDELF-BDC framework 

sets the stage for the next generation of data analysis tools, marking a paradigm shift in big data classification 

and analytics. 
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