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 In the context of our research project, which involves developing a robotic 

system capable of eliminating weeds using deep learning technics, the 

selection of powerful object detection model is essential. Object detectors 

typically consist of three components: backbone, neck, and prediction head. 

In this study, we propose an enhancement to the you only look once version 5 

(YOLOv5) network by using the most popular convolutional neural networks 

(CNN) networks (such as DarkNet and MobileNet) as backbones. 

The objective of this study is to identify the best backbone that can improve 

YOLOv5 's performance while preserving its other layers (neck and head). 

In terms of detecting and ultra-localizing pea crops. Additionally, 

we compared their results with those of the most commonly used object 

detectors. Our findings indicate that the fastest models among the networks 

studied were MobileNet, YOLO-tiny, and YOLOv5, with speeds ranging 

from 5 to 14 milliseconds per image. Among these models, MobileNetv1 

demonstrated the highest accuracy, achieving average precision (AP) score of 

89.3% for intersection over union (IoU) threshold of 0.5. However, the 

accuracy of this model decreased when we increased the threshold, suggesting 

that it does not provide perfect crop delineation. On the other hand, while 

YOLOv5 had a lower AP score than MobileNetv1 at an IoU threshold of 0.5, 

it exhibited greater stability when faced with variations in this threshold.  

Keywords: 

Computer vision 

Convolutional neural networks 

backbone 

Deep learning 

Object detectors 

Smart farming 

Weed detection 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Mohammed Habib 

Laboratory of Spectrometry, Materials and Archaeomaterials “LASMAR”, Faculty of Sciences 

Moulay Ismail University 

Meknes, Morocco 

Email: habibmohamedtsei@gmail.com 

 

 

1. INTRODUCTION 

With the growing global population and the need to produce more food sustainably, farmers and 

researchers are turning to advanced technologies, including machine learning to optimize agricultural 

processes. This technology helps solve various agricultural issues, such as weed control. Machine learning 

methods can aid in the precise identification and management of weeds, thereby reducing the need for chemical 

products and improving crop yields. 

In this context, our research team has already made significant progress in solving problems related 

to weed control. In their work, Tannouche et al. [1] utilized a method based on a set of discriminant classifiers 

constructed using Haar-like features. They achieved a notable milestone by developing an efficient shape 
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descriptor specifically designed to distinguish between two types of weed species: monocots and dicots [2]. 

Both studies employed machine learning techniques with the aim of optimizing herbicide usage. 

In the context of site-specific weed management (SSWM), which aims to target and precisely control 

weeds, we have developed research to meet this need. Our studies focused on using deep learning models for 

detecting and identifying crops among weeds. In our initial study, we trained the Faster region-based 

convolutional neural network (RCNN) residual networks (ResNet)-50 model to detect and locate crops with 

high precision [3]. In a subsequent project, we evaluated the performance of the you only look once version 5 

(YOLOv5) object detector by testing different sizes and learning methods, including training from scratch and 

transfer learning. This allowed us to achieve high accuracy and fast localization speeds for crops. Furthermore, 

we explored various segmentation networks to effectively distinguish crops from weeds [4]. This analysis 

enabled us to accurately determine the positions of weeds by eliminating the crop regions identified by 

YOLOv5. In another study, we proposed a classification model based on ResNet and MobileNet for identifying 

and differentiating between crops and weeds, and compared its performance with popular convolutional neural 

networks (CNNs) [5].  

In the same context, Wang et al. [6] summarized the progress made in weed detection using computer 

vision and image processing techniques. All these techniques have focused on direct detection of weed features, 

a delicate task in view of the wide variety of weed species. Our weed detection method involves a two-step 

approach: vegetation/ground discrimination (segmentation) followed by crop/weed discrimination (object 

detection), which allows us to extract the weeds alone. 

Object detection continues to be a significant area of research in deep learning, with various 

applications showcasing the capabilities of object detectors in solving computer vision problems. These include 

facial recognition [7], pedestrian detection [8], video analysis [9], and logo detection [10]. Currently, there are 

two major categories of object detectors: two-stage detectors, such as RCNN and its variants, and single-stage 

detectors, which are generally more powerful than the former, like the YOLO model and its versions. 

The remarkable success of YOLO's architecture has led to numerous research efforts aimed at its 

improvement. In [11], [12], the authors optimized the number and size of bounding boxes generated by 

YOLOv3 and YOLOv5  during training using K-means and K-means++ clustering techniques. A feature fusion 

method called PB-FPN was proposed, building upon path aggregation network (PANet) and bidirectional 

feature pyramid network (BiFPN) techniques [13]. Another study focused on optimizing the YOLOv5 model 

specifically for plant disease identification [14]. Additionally, researchers proposed a dilation technique for the 

spatial pyramid module (SPP) to incorporate multi-scale information and address scale variation issues in 

YOLOv3 [15]. In the domain of kiwi agriculture fault detection, the authors of [16] introduced several 

enhancements to YOLOv5. These improvements included the addition of a small target detection layer and a 

SELayer, as well as modifications to the loss function from distance-intersection over union (DioU) to 

complete-intersection over union (CioU). 

When it comes to enhancing the accuracy of object detection networks, architecture plays a vital role 

among various parameters. Typically, object detectors consist of three main components: the backbone, the neck, 

and the prediction head. In this research, we propose an enhancement to the YOLOv5  network by using the most 

popular CNN networks (such as DarkNet, and MobileNet) as backbones. The objective of this study is to identify 

the best backbone that can improve YOLOv5's performance while preserving its other layers (neck and head). 

We focus on evaluating their performance in the accurate detection and localization of pea crops. Additionally, 

we will compare the results obtained by these networks with those of other commonly used object detectors.  

 

 

2. METHOD  

In this section we will show you the methods and materials we used to carry out this study. A modern 

object detector consists of 3 main parts, a backbone, a neck, and a head (Figure 1). The backbone component 

of an object detection model consists of a set of layers responsible for extracting features from input images. 

These layers aim to capture detailed information from the images. The neck component, on the other hand, is 

typically used to gather and merge the output features obtained from the backbone. It then sends feature maps 

of different sizes back to the detection heads. This process enables the model to detect objects of varying sizes 

within the image. Finally, the detection head performs calculations for bounding box regression and probability 

estimation. In this study we propose to make a modification to the architecture of YOLOv5 by replacing its 

backbone with the popular CNNs: DarkNet, MobileNet, ResNet and visual geometry group (VGG), as shown 

in Figure 1, and to evaluate the performance of each model. 

 

2.1.  YOLOv3 

YOLO, or "you only look once," is a well-known one-stage object detector that predicts the location 

and class of objects in a single pass, making it generally faster than detectors using region proposal networks 

(RPN) [17]. YOLOv3, one of the most popular versions, enhances the YOLO architecture, resulting in 
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improved accuracy and speed. YOLOv3's architecture consists of three main components: the backbone, neck, 

and head. It uses Darknet53 as the backbone, comprising 53 convolutional layers inspired by Darknet19, 

including Bottleneck modules with shortcut connections for efficient feature extraction.  

 

 

 
 

Figure 1. The structure of a modern object detector network 

 

 

The neck incorporates the feature pyramid network (FPN) method to fuse low and high-level features, 

upsampling the backbone's output and combining it with low-level outputs. The head uses k-means clustering 

to determine bounding box coordinates, distributing nine clusters among three output scales [18], [19]. In a 

separate study, researchers proposed YOLOv3-tiny, a compact version using Darknet19 as the backbone and 

a simplified neck with a single concatenation. YOLOv3-tiny employs two feature maps of different scales for 

detection predictions, which are then processed by a similar sensing head as in YOLOv3 [20]. This compact 

version balances speed and accuracy, making it suitable for embedded systems with limited computational 

resources. 

 

2.2.  YOLOv4 

YOLOv4 is a recent iteration of YOLO detectors, featuring a modern architecture with 

CSPDarkNet53 as its backbone. Built upon the DarkNet 53 architecture used in YOLOv3, CSPDarkNet53 

includes Conv modules and a new BottleNeckCSP module inspired by the CSPNet technique [21]. After 

numerous experiments, the authors determined that CSPDarkNet53 is the optimal model compared to other 

networks tested. YOLOv4's neck incorporates an additional SPP module to generate representations from 

images of arbitrary sizes [22]. It also uses PANet in the neck, improving object localization accuracy through 

enhanced feature fusion from bottom to top and top to bottom. The head of YOLOv4 is similar to that of 

YOLOv3. Another study introduced YOLOv4-tiny, a smaller version with a reduced CSPDarkNet53 backbone 

featuring 3 BottleNeckCSP modules instead of 27. The extracted features are processed by a reduced neck 

based on the FPN technique, similar to YOLOv3-tiny, before being sent to the YOLOv3 head for predicting 

location and class [23].  

 

2.3.  YOLOv5  

YOLOv5, a recent YOLO version, is known for its impressive accuracy and speed. Its architecture 

closely resembles YOLOv4, using the CSPDarkNet53 backbone with modifications. YOLOv5 includes unique 

modules like C3, comprising three Conv modules and a BottleNeckCSP, which mitigates gradient information 

duplication. It also features the SPPF module for improved feature expression, inspired by SPP networks but 

faster. YOLOv5 's neck uses PANet for feature fusion, and the outputs are sent to the detection head, similar 

to YOLOv3, for predicting object location and class [13].  

 

2.4.  The MobileNet networks 

MobileNet is renowned for its speed and lightweight architecture, ideal for mobile applications. It 

utilizes depthwise separable convolutions (DWConv) for efficient feature extraction, consisting of a depthwise 

convolution layer followed by batch normalization (BatchNorm) and ReLU activation. MobileNet v1 uses 

DWConv-sep blocks, which include DWConv modules followed by Conv modules [24]. MobileNet v2 

introduces BottleNeck-Mob blocks, featuring convolution layers with an expansion layer at the input and a 

projection layer at the output, incorporating shortcut connections and the DWConv module at their core [25].  

 

2.5.  The ResNet models 

ResNet was introduced to tackle the vanishing gradient problem in training deep neural networks. 

ResNet models are similar to VGG networks but include shortcut connections that link the input and output of 

each module, ensuring smooth gradient flow. These connections help mitigate the vanishing gradient issue. 
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Depending on the model size, ResNet can contain different numbers of ResConv modules, such as 34, 50,  

or 101 [26].  

 

2.6.  The VGG models 

VGG networks are recognized as fundamental convolutional networks known for their 

straightforward architecture. They consist of a sequence of convolutional layers (Conv) stacked on top of each 

other. The various versions of VGG are distinguished by the number of convolutional layers employed, such 

as VGG16 and VGG19 [27].  

 

2.7.  Generalized intersection over union loss 

When training object detectors, the loss is determined by two functions, the classification loss and the 

bounding box regression loss. The most commonly used loss function for bounding box regression is the 

intersection over union (IoU) and its derivations. The IoU is defined by (1). 

 

𝐼𝑜𝑈(𝐴, 𝐵) =
𝐴∩𝐵

𝐴∪𝐵
 (1) 

 

where A is the prediction and B is the true bounding box.  

The loss function is expressed as a distance, LossIoU = 1 − IoU. There are other functions derived from 

IoU that enable the evaluation of the dissimilarity between the predicted and true bounding boxes, even in 

cases where they do not overlap. One such function is the generalized intersection over union (GIoU), which 

addresses the issue of disjoint bounding boxes (A and B). GIoU possesses the same scale invariance properties 

as IoU and is defined by the (2) and (3). 

 

𝐺𝐼𝑜𝑈(𝐴, 𝐵) = 𝐼𝑜𝑈(𝐴, 𝐵) − 
|𝐶|−|𝐴∪𝐵|

|𝐶|
 (2) 

 

𝐿𝑜𝑠𝑠𝐺𝐼𝑜𝑈 = 1 − 𝐺𝐼𝑜𝑈(𝐴, 𝐵) = 1 − 𝐼𝑜𝑈(𝐴, 𝐵) +  
|𝐶|−|𝐴∪𝐵|

|𝐶|
 (3) 

 

with C is the small box that encloses the boxes A and B [13].  

In this study, we will utilize the GIoU function to calculate the bounding box regression loss at each 

iteration. For classification, we used the binary cross entropy with logits loss function from the YOLOv5 model 

training. The BCEWithLogits loss combines the functionalities of two Sigmoid functions and the BCELoss by 

using the log-sum-exp method. The BCELossWithLogits is defined as (4).  

 

ℓ(𝑥, 𝑦) = 𝐿 = {𝑙1, … , 𝑙𝑁}𝑇 , 𝑙𝑛 = −𝑤𝑛[𝑦𝑛 ⋅ 𝑙𝑜𝑔𝜎(𝑥𝑛) + (1 − 𝑦𝑛) ⋅ 𝑙𝑜𝑔(1 − 𝜎(𝑥𝑛))] (4) 

 

N is the batch size. The result is a more numerically stable function compared to using Sigmoid followed by 

BCELoss separately [28].  

 

2.8.  Dataset acquisition 

DataSet acquisition still remains one of the great challenges of DeepLearning, a great DataSet means 

a good learning. In our study, we utilized a previously collected and prepared DataSet from our earlier work 

[3] for model training. The images we have collected contain the pea crop and the weeds with these different 

species. Figure 2 illustrates the techniques employed for image acquisition. To further enhance the DataSet, 

we employed image processing tools for data augmentation.  

 

 

 
 

Figure 2. The materials used for the acquisition of dataset a digital camera was fixed in 40 cm from the ground 
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For image labeling, we utilized the YOLO models' specific annotation format. Each bounding box is 

characterized by the coordinates of its center point (x, y), its length, width, and the corresponding object class. 

These coordinates are normalized and saved in a text file. The DataSet was divided into three subsets:  

7,360 images for training, 1,840 images for validation, and 54 images for testing. 

 

 

3. RESULTS AND DISCUSSION  

In this section, we will present the results of training and validation of object detectors using the 

previously discussed backbone architectures. We will evaluate their performance in crop identification and 

ultra-localization. The models we will examine are derived from the neural networks already studied. Table 1 

provides an overview of the constructed models, including their size and computational requirements. It 

summarizes the characteristics of each model. 

 

 

Table 1. The properties of the trained models 
Model Name Backbone Neck Layers Parameters Gflops 

YOLOv5  CSPDarkNet53 (mod) PANet 214 7235389 16.6 

YOLOv4 CSPDarkNet53 PANet 383 40020445 102.1 

YOLOv3 DarkNet53 FPN 262 61949149 156.6 

YOLOv4-Tiny CSPDarkNet19 FPN-tiny 91 3105526 6.5 

YOLOv3-Tiny DarkNet19 FPN-tiny 49 8852366 13.3 
VGG16 VGG16 FPN-tiny 68 25996222 272.1 

VGG19 VGG19 FPN-tiny 77 31307198 340.1 

Mobnetv1 Mobilenetv1 FPN-tiny 105 16973630 13.3 

Mobnetv2 Mobilenetv2 FPN-tiny 200 16774670 18.9 

Resnet50 ResNet50 FPN-tiny 284 61283390 89.5 

 

 

The Gflops refers to the number of floating-point operations per second, expressed in Giga. As shown 

in the Table 1, YOLOv4, YOLOv3, and VGG models have high computational requirements, indicating that 

their execution and training times will be relatively long. On the other hand, YOLO-tiny and MobileNet models 

have lower computational demands, allowing them to be executed efficiently even on low-performance 

processors. 

 

3.1.  Training preparation 

We built these models with the functionality of the Pytorch library with which the YOLOv5 model 

was written. We trained, validated and tested all the created models under the same conditions in terms of 

dataset, pre-processing techniques, and using the Tesla T4 graphics processor. The hyperparameters for model 

training are listed in Table 2.  

 

 

Table 2. The hyper-parameters of the training of the models 
Epochs Warmup epochs Batch Size Img. Size lr0 Optimizer Momentum Loss function 

50 3 16 320 0.01 SGD 0.937 BCEWithLogitsLoss, GIoU 

 

 

3.2.  Validation results 

After training our models, we validated their performance by introducing the validation images and 

comparing the predicted bounding boxes with the true bounding boxes. We varied the size of the input images 

from 320 to 640 to observe its impact on the results. Precision and recall are the most commonly used metrics 

for evaluating the performance of a CNN during validation. They are defined as (5) and (6): 

 

𝑝 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (5) 

 

𝑟 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (6) 

 

TP representing true positive, TN for true negative, FP for false positive, and FN for false negative. In our case, 

the positive class corresponds to peas, while the negative class represents the background [5]. 

Precision recall (PR) curves are used to represent precision versus recall, where precision measures 

result accuracy and recall measures the relevance of results. The x-axis of PR curves shows recall, and the  
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y-axis shows precision. Figure 3 displays PR curves for model validation across various IoU thresholds. PR 

curves are common in binary classification tasks, like distinguishing between Pea and background, to evaluate 

model performance [29]. A higher area under the curve (AUC) indicates better accuracy and recall, with high 

precision signifying fewer false positives and high recall indicating fewer false negatives. 

From Figures 3(a) to 3(d), it is evident that the VGG, ResNet50, and YOLOv3 models exhibited 

superior AUC values compared to the other models across all IoU thresholds. Conversely, the MobileNets, 

YOLOv5, and YOLOv4-tiny models achieved the minimum AUC values. It is worth noting that the YOLOv3 

model remained relatively stable in terms of AUC as the IoU threshold varied. However, the MobileNets 

models demonstrated significant changes, particularly in precision, with varying IoU thresholds. Regarding 

recall, there were no significant differences observed among the models or across the different IoU thresholds.  

 

 

  
(a) 

 

(b) 

 

  
(c) (d) 

 

Figure 3. The PR_curves of the validation of the studied models with an IoU threshold: (a) 0.5, (b) 0.75,  

(c) 0.85, and (d) 0.9 

 

 

In order to clarify the results of model validation, we used one of the metrics that better reflects the 

AUC is the averge precision (AP). It is defined by (7) [3]. 
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𝐴𝑃 = ∫ 𝑝(𝑟)
1

0
𝑑𝑟 (7) 

 

The results of AP validation of the models studied in function of IoU threshold as well as the speed of inference 

(detection) for a single image are shown in Table 3. 

The Table 3 further supports the findings depicted in the PR curves. The VGG, ResNet, and YOLO 

models exhibit the highest precision values and demonstrate stability in precision as the IoU threshold varies. 

However, these models tend to be slower in terms of execution time. On the other hand, YOLOv5 stands out 

as a fast model while maintaining good precision. The YOLO-tiny, MobileNets, and YOLOv5 models are 

identified as the fastest models, prioritizing computational efficiency.  

 

 

Table 3. The validation results of the models studied as a function of IoU threshold 
The model AP50 AP75 AP85 AP90 Speed (ms) 

YOLOv5  0.881 0.874 0.852 0.798 10 
YOLOv4 0.906 0.890 0.859 0.818 29 

YOLOv3 0.915 0.912 0.898 0.871 28.4 

YOLOv4-Tiny 0.881 0.851 0.769 0.654 4.7 

YOLOv3-Tiny 0.891 0.877 0.806 0.663 5.9 

VGG16 0.946 0.935 0.898 0.830 32.5 
VGG19 0.945 0.937 0.900 0.822 40.4 

MobileNetv1 0.893 0.862 0.752 0.593 10.1 

MobileNetv2 0.865 0.842 0.788 0.657 13.9 

ResNet50 0.923 0.917 0.896 0.841 27.7 

Faster RCNN ResNet 50 0.957 0.956 - - 136 
SSD-MobileNetv2 0.956 0.899 - - 17 

 

 

4. DISCUSSION 

This section evaluates the results and limitations of our methods, focusing on identifying the best 

backbone to enhance YOLOv5 's performance while preserving its other parameters (neck and head). We 

discovered that VGG, ResNet50, and YOLOv3 models, which demonstrated high precision and recall, are 

effective for achieving accurate results and capturing most positive instances. However, considering the 

constraints of low-capacity computing systems, prioritizing faster models like MobileNet, YOLO-tiny, and 

YOLOv5 is reasonable due to their good balance of speed and accuracy, making them suitable for deployment 

in resource-limited environments. For an IoU threshold of 0.5, MobileNetv1 achieved the highest AUC, 

reflecting strong performance in precision and recall. Yet, increasing the IoU threshold causes a drop in 

precision, as illustrated in Figures 4(a) and 4(b), where MobileNetv1’s bounding box fails to accurately enclose 

the object compared to YOLOv5 [29]. 

 

 

  
(a) (b) 

 

Figure 4. Comparison between the prediction of (a) Mobilenetv1 and (b) YOLOv5 models 

 

 

YOLOv5 stands out as the most stable among fast models, maintaining consistent average precision 

(AP) across varying IoU thresholds and accurately surrounding the pea crop. In contrast, MobileNetv1 excels 

at an IoU threshold of 0.5 but struggles with precise localization and suffers from occlusion errors, which can 

lead to parts of the crop being excluded from the bounding box and misclassified as weeds in subsequent 

segmentation. Therefore, when selecting a model, it is important to consider both detection capabilities and 
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stability across different IoU thresholds. Solutions to improve performance include expanding the bounding 

box to ensure complete coverage or modifying the model architecture to enhance results. 

 

 

5. CONCLUSION 

This study successfully utilized established CNNs to develop an object detector capable of accurately 

localizing crops amidst weeds in real-time images. Initial hypotheses were validated, and findings underscore 

the superiority of models based on VGG, ResNet, YOLOv3, and YOLOv4 in terms of accuracy, despite their 

high computational demands. However, for our application aiming to integrate this detector into an embedded 

system capable of simulating manual weed removal, speed is crucial. The fastest models like MobileNet, 

YOLO-tiny, and YOLOv5 performed well, with speeds ranging from 5 to 14 milliseconds per image. 

MobileNetv1 showed the best performance, achieving an AP of 89.3% for an IoU threshold of 0.5, though its 

performance decreases with higher IoU thresholds. Looking ahead, our focus will be on optimizing model 

architectures, particularly enhancing MobileNetv1 with advanced techniques to achieve even better results in 

terms of accuracy and speed. 
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