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 This study addresses urban traffic congestion through deep learning for traffic 

signal control (TSC). In contrast to previous research on single traffic light 

controllers, our approach is tailored to the TSC challenge within a network of 

two intersections. Employing convolutional neural networks (CNN) in a deep 

Q-network (DQN) model, our method adopts centralized training and 

distributed execution (CTDE) within a multi-agent reinforcement learning 

(MARL) framework. The primary aim is to optimize traffic flow in a two-

intersection setting, comparing outcomes with baseline strategies. 

Overcoming scalability and partial observability challenges, our approach 

demonstrates the efficacy of the CTDE-based MARL framework. 

Experiments using urban mobility simulation (SUMO) exhibit a 68% 

performance enhancement over basic traffic light control systems, validating 

our solution across diverse scenarios. While the study focuses on two 

intersections, it hints at broader applications in complex settings, presenting a 

promising avenue for mitigating urban traffic congestion. The research 

underscores the importance of collaboration within MARL frameworks, 

contributing significantly to the advancement of adaptive traffic signal control 

(ATSC) in urban environments for sustainable transportation solutions.  
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1. INTRODUCTION 

Traffic congestion is a pervasive issue in urban areas worldwide, causing significant economic losses 

due to the total time lost by commuters. These economic losses are estimated to reach billions of dollars 

annually in countries suffering from traffic congestion. As a result, addressing the economic impact of 

alleviating traffic congestion has become a crucial priority. Managing traffic congestion has emerged as a 

pressing and unsolved problem in numerous urban areas around the world. 

The traditional static traffic light control system (TLCS) has long been the conventional solution for 

managing traffic flow. However, with the increasing complexity and scale of urban transportation networks, 

traditional traffic light control system is no longer adequate in effectively mitigating traffic congestion. To 

overcome these limitations, researchers have turned to deep reinforcement learning frameworks, which 

leverage the power of reinforcement learning algorithms and neural networks such as deep neural networks 

(DNN) and convolutional neural networks (CNN) [1]. Notable advancements in this field include systems like 

intellilight, which utilize deep reinforcement learning for adaptive traffic signal control (ATSC), demonstrating 
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significant improvements in traffic efficiency [2]. In addressing urban traffic congestion, our focus lies in 

optimizing traffic flow efficiency within a two-intersection scenario. We emphasize the use of CNN in our 

deep Q-network (DQN) model and employ a centralized training and distributed execution (CTDE) approach 

within a multi-agent reinforcement learning (MARL) framework [3]. 

This article proposes a novel multi-agent perspective to enhance the performance of traffic light 

control systems, recognizing the importance of agent collaboration in supporting efficient traffic flows [4]. By 

adopting a MARL approach, our goal is to develop a system where multiple agents regulate traffic at adjacent 

intersections, collaborating to optimize traffic flow. We acknowledge the potential for broader applications in 

more complex settings, and our work aims to address scalability and partial observability challenges in large-

scale multi-agent deep reinforcement learning systems [5]. To validate the effectiveness of our approach, we 

conducted several experiments using traffic simulations involving two intersecting roads. These experiments 

aimed to observe how agents achieve collaboration and improve traffic flow through independent deep Q 

network (IDQN) techniques. 

By addressing the economic impact of traffic congestion and introducing a novel multi-agent 

perspective, our proposed approach offers a promising solution for optimizing traffic flow in complex urban 

environments. Through the integration of real-time data, scalability, and considerations for mixed traffic 

scenarios, we aim to improve overall traffic efficiency and create smarter, more sustainable cities. This research 

provides valuable insights into the challenges and potential solutions for managing traffic congestion using 

deep reinforcement learning techniques. 

Numerous studies have demonstrated the effectiveness of reinforcement learning in adaptive traffic 

light control, with a particular focus on single traffic light controllers [6], [7]. However, when addressing multi-

agent systems, the challenge arises in determining whether traffic control should be approached as a 

collaborative or competitive problem [8]. In such environments, the conflict between local and global optima, 

coupled with the interdependence of agent actions, adds complexity to the dynamics of transport networks. 

Additionally, factors such as driver behavior and co-evolution further complicate the challenges of traffic light 

control in urban environments. 

Our work contributes to this landscape by delving into the complexities of traffic signal control (TSC) 

in networks with multiple intersections. Introducing a novel MARL framework, our approach emphasizes 

collaboration among agents to enhance traffic flow. It capitalizes on the advantages of independent traffic light 

control, ensuring stable operations even in the event of failures in other components. To enable efficient 

decision-making, we employ CNNs to model our agents and incorporate a comprehensive representation of 

the state of adjacent intersections. While existing studies [6], [7] have predominantly focused on single traffic 

light controllers, our work extends the scope to multi-intersection scenarios, presenting a promising approach 

for addressing traffic congestion in urban environments. The outlined comparisons aim to underscore the 

innovative aspects of our proposed system within the broader landscape of traffic light control methodologies. 

In the domain of deep reinforcement learning, a DNN typically represents the Q function. Value-based 

methods, such as DQN [9], utilize DNN to extract state representations directly from the environment. The 

DQN outputs Q values for all possible actions, enabling the approximation of optimal strategies. To enhance 

the performance, stability, and effectiveness of the DQN agent, two commonly employed mechanisms, namely 

the target network and replay memory, are integrated during training. 

Our exploration aligns with this approach, and we further contribute by examining various  

DQN-based models, including double deep Q-network (DDQN) [10], dueling DQN [11], DDQN with 

proportional prioritization based on DDQN [12], and dynamic frame skip deep Q-network (DFDQN) [13]. 

While artificial neural networks (ANN) have been widely used as model architectures [14], [15], there is a 

growing utilization of CNN in this context [16]–[19]. By integrating CNN-based models and examining their 

impact on the learning quality of agents, our paper contributes to advancing the understanding of deep 

reinforcement learning in traffic light control. The findings shed light on the strengths and limitations of 

different neural network architectures, providing insights into their effectiveness in optimizing traffic flow. 

 

 

2. THE COMPREHENSIVE THEORETICAL BASIS AND THE PROPOSED METHOD 

2.1.  Single-agent reinforcement learning 

Figure 1 illustrates how a single agent in reinforcement learning learns by interacting with a dynamic 

environment using a trial-and-error approach. The goal is to derive the best possible policy by maximizing the 

expected total of cumulative rewards. In a reinforcement learning problem, the agent iteratively observes its 

environment, and then it takes an action. Consequently, he receives from the environment a reward following 

his chosen action; his objective is to accumulate the rewards in the long term. Then according to its rules and 

the state transition probability, the environment moves to the next state. The foundation of reinforcement 

learning is the Markov decision process, a stochastic model described by the tuple (S, A, R, P). Where S is the 

states set and 𝑠𝑡 ∈ 𝑆 the state of the environment at the time-step t, A the actions set 𝑎𝑡 ∈ 𝐴 the chosen action 
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at the time-step t by the agent, 𝑟𝑡 ∈ 𝑅 the immediate reward value received by the agent in the state 

𝑠𝑡  performing action 𝑎𝑡 and finally P the state transition probability.  

 

 

 
 

Figure 1. Single agent reinforcement learning for TSC 

 

 

In traffic signal problems, the agent interacts with the intersection at discrete time steps t = 0, 1, 2, 

first observing the state of the intersection St at the start of the time step t, then selects an action At depending 

on a policy π. After the vehicle moves under the active traffic light, the state of the intersection changes to the 

new state of St+1. At the end of the time step t, the agent receives a reward Rt following its decision to choose 

a signal. Assuming that the reward at each time step t must be multiplied by the discount factor γ ϵ [0, 1] to 

determine the importance given to immediate and future rewards, the cumulative reward from time step t to 

the end of time T is expressed as follows: 𝑅𝑡 = ∑ 𝛾𝑘 𝑅𝑡+𝑘
∞
𝑘=0  . The value function Qπ (s,a) represents the action 

At taken in the current state St, followed by the application of policy π until the episode concludes. During this 

process, the cumulative rewards earned by the agents can be expressed as (1). 

 

𝑄𝜋(𝑠, 𝑎) = 𝐸[𝑅𝑡| 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] (1) 

 

The agent's objective is to identify the optimal policy for selecting actions, represented as π∗ in (2), which 

maximizes the cumulative future reward or Q-values and enables the agent to accomplish its objective. 

 

𝜋∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝜋 𝑄𝜋(𝑠, 𝑎) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠 ∈ 𝑆, 𝑎 ∈ 𝐴 (2) 

 

The Q-values that correspond to the optimal policy 𝜋∗ are denoted as 𝑄∗(𝑠, 𝑎) = 𝑄𝜋∗(𝑠, 𝑎) and can 

be approximated using linear function approximators. The primary objective is to identify the optimal policy 

𝜋∗ and subsequently, determine the optimal Q-values 𝑄∗(𝑠, 𝑎). The recursive relation for the optimal Q-values 

𝑄∗(𝑠, 𝑎) is provided by Bellman's optimality equation. 

 

𝑄∗(𝑠, 𝑎) = 𝐸[𝑅𝑡 + 𝛾𝑄∗(𝑆𝑡+1, 𝐴𝑡+1)| 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] (3) 

 

Linear function approximators, as well as nonlinear function approximators such as DNN, can be employed to 

estimate action-value functions or policy. 

 

2.2.  Multi-agent reinforcement learning 

MARL is built around a stochastic game that relies on a Markov decision process. This process is 

defined by the tuple 𝑆, 𝐴1, … , 𝐴𝑛, 𝑅1, … , 𝑅𝑛, 𝑃, where n represents the number of agents involved., as shown in 

Figure 2. The joint action space 𝐴 =  𝐴1 × …× 𝐴𝑛 and 𝑅1, … , 𝑅𝑛 represent the rewards of each agent. In  

multi-agent environments, state transitions arise from the collective actions of all agents, and each agent's 

rewards are influenced by the joint policy denoted as 𝐻: 𝑆 ×  𝐴 →  [0, 1]. The rewards for each agent is 

calculated as follows: 𝑅𝑖
𝐻 = 𝐸[𝑅𝑡+1|𝑆𝑡 = 𝑠, 𝐴𝑡,𝑖 = 𝑎,𝐻]. Consequently, the Bellman equation can be 

expressed as (4). 
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𝑄𝑖
𝐻(𝑠, 𝑎) = 𝐸𝑖

𝐻[𝑅𝑡 + 𝛾𝑄𝑖
𝐻(𝑆𝑡+1, 𝐴𝑡+1)| 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] (4) 

 

 

 
 

Figure 2. Agents' interaction with the environment 

 

 

Stochastic games can be categorized into three types: fully cooperative, fully competitive, and mixed 

games. In fully cooperative games, all agents share the same reward function, aiming to maximize the total 

reward collectively. Cooperation among agents is essential to reach this objective. Approaches based on the 

Q-learning algorithm have been developed to tackle coordination challenges, focusing on a single optimal joint 

action [20]. Lauer's distributed Q-learning algorithm [21] addresses the issue while maintaining low 

computational complexity. However, this algorithm only applies to deterministic scenarios with non-negative 

reward functions. 

When dealing with a perfectly competitive game, where there are two agents with opposing goals and 

R1 = -R2, most of the literature on reinforcement learning focuses on the two-agent scenario. The minimax 

principle is applied in such a situation, which aims to maximize an agent's profit while considering the  

worst-case scenario, where the opponent will always try to minimize it. To achieve this, adversary-independent 

algorithms are used, such as the minimax-Q algorithm [20], [22], which computes stage game strategies and 

values using the minimax principle and propagates values through state pairs-stock using a time-difference rule 

similar to Q learning. 

Mixed stochastic games involve agents with different and correlated rewards, where no constraints 

are imposed on the agents' reward functions. This model is suitable for self-interested agents, but even 

cooperating agents may encounter conflicts of interest, such as when competing for resources. Game theory 

concepts such as equilibrium play a significant role in algorithms for mixed stochastic games. Single-agent 

reinforcement learning to MARL methods make no assumptions about the task and can be applied to mixed 

stochastic games, along with other techniques such as agent-independent, agent-tracking, and agent-aware 

methods. However, there is no guarantee of success in these scenarios. 

Setting learning goals for agents can be challenging since it is difficult to define good general 

objectives. The two primary aspects of learning goals are stability and adaptability. Stability refers to an agent's 

ability to converge to a stable policy, while adaptability ensures that an agent's performance does not decline 

when other agents change their strategies [23], [24].  

 

 

3. METHOD 

In this study, we introduce an innovative approach to address the persistent challenge of urban traffic 

congestion using advanced artificial intelligence techniques. The primary objective is to optimize traffic flow 

at complex intersections by integrating CNN into a DQN model within a MARL framework. Our approach 

leverages a CTDE architecture, crucial for scalability and effective coordination among multiple agents 

controlling traffic signals. 

To formulate the problem, the primary aim is to enhance traffic flow optimization in a scenario with 

each intersection's state is discretized into irregularly shaped cells using discrete traffic state encoding (DTSE). 

These cells represent different zones monitored by the agents, capturing vehicle presence and traffic dynamics. 

The agent's state representation, denoted as two intersections, and we benchmark our results against baseline 
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approaches. Our innovative approach leverages data such as vehicle positions, queue lengths, and current traffic 

light states. This detailed situational awareness enables agents to make informed decisions to optimize traffic 

flow. 

The action space consists of four distinct actions per agent: adjusting traffic lights to prioritize 

north/south or east/west traffic, encompassing both straight and turning movements. Actions are selected based 

on the agent's observation of the current state aimed to minimize cumulative waiting times. The reward function 

across all vehicles at the intersection is defined as the reduction in cumulative waiting time from t-1 to t, 

emphasizing the agent's role in improving traffic efficiency over time. 

The CTDE framework facilitates collaborative action selection among agents by sharing their last 

chosen actions, enhancing by sharing their last chosen actions, enhancing coordination and traffic 

synchronization between adjacent intersections. This sharing mechanism optimizes traffic flow across 

interconnected road networks, crucial for mitigating congestion hotspots and improving overall urban mobility. 

To evaluate the effectiveness of our approach, we simulate realistic traffic scenarios using the Weibull 

distribution: high-traffic (4,000 cars), low-traffic (600 cars), NS-traffic (2,000 cars, 90% north/south), and  

EW-traffic (2,000 cars, 90% east/west). These scenarios simulate diverse traffic conditions to robustly test the 

adaptability and performance of our CTDE-based MARL framework under varying load and directional traffic 

distributions. Through rigorous experimentation and simulations, we validate the efficacy of our approach we 

validate the effectiveness and efficiency of our CTDE-based MARL framework in enhancing traffic 

management strategies. Performance metrics such as average waiting times, intersection throughput, and 

overall traffic flow efficiency provide quantitative insights into the framework's capability to optimize urban 

traffic operations effectively.  

 

3.1.  Environment design 

The test environment for evaluating our approach consists of two neighboring intersections,  

as illustrated in Figure 3. We intentionally opted for this minimalist simulation setup to ensure a straightforward 

implementation process and minimize unnecessary complexities. The simulation of urban mobility (SUMO) 

tool was utilized for modeling and simulating the urban traffic scenarios [25].  

 

 

 
 

Figure 3. Environment of the simulation 

 

 

Our environment is composed of an integrated traffic light system where each 4-arm intersection 

(shown in Figure 4) consists of eight lanes each (four inbound lanes and four outbound lanes). Each arm is 750 

meters long from the vehicle access point to the intersection traffic lights. Each vehicle chooses its incoming 

lane according to its destination. The possible directions for each vehicle are explained as follows: 

− Go straight using the two central lanes and the one on the far right. 

− Turn right only using the rightmost lane. 

− Turn left only using the leftmost lane. 
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Figure 4. Details of the possible directions of each intersection 

 

 

The traffic lights regulating each intersection arise from the following equation and shown in  

Figure 5. As in real life, the traffic lights are either red, yellow, or green and at each time step, the traffic light 

is either yellow or green in phase. The color phase transition is cyclical (red-green-yellow-red) and mandatory 

to clear the center of the intersection and to avoid probable accidents. The duration of each phase is fixed, 10 

seconds for the green time and 4 seconds for the yellow time. The red phase, therefore, lasts the time elapsed 

since the previous phase change. 

 

𝑇𝐿 = {𝑇𝐿𝑁 , 𝑇𝐿𝑁𝐿 , 𝑇𝐿𝑆 , 𝑇𝐿𝑆𝐿 , 𝑇𝐿𝐸 , 𝑇𝐿𝐸𝐿 , 𝑇𝐿𝑊 , 𝑇𝐿𝑊𝐿}  (5) 

 

 

 
 

Figure 5. Traffic lights for each inbound lane of each intersection in the simulated environment 

 

 

3.2.  Agents 

In the context of MARL, ATSC involves coordinating the actions of multiple intersection traffic light 

controllers to achieve network-wide traffic optimization. Each intersection traffic light controller acts as an 

agent within the MARL framework, perceiving traffic conditions at their respective intersections and making 

decisions on phase control signals accordingly. Through interaction and collaboration, agent controllers adapt 

their policies to changing traffic dynamics, leveraging collective network intelligence to optimize traffic flow 

across the entire system. This collaborative approach allows officers to learn from each other's experiences, 

improve decision-making processes, and ultimately improve the efficiency of the TSC system. By using MARL 

in ATSC, the network-wide control loop shown in Figure 6, facilitates the coordination and synchronization of 

agent actions, leading to a more efficient and adaptive traffic management solution. This approach not only 

considers local optimization at each intersection, but also considers the overall impact of signal control 

decisions, resulting in improved traffic flow, reduced congestion, and improved traffic overall performance of 

the transport network.  
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Figure 6. Network-wide MARL control loop: Policy optimization in ATSC as an interactive MDP process 

with 2 agents 

 

 

Using deep Q-Learning, each agent in our proposed method retrieves the discretized representation of 

the environment state, denoted as St = (𝑃𝑡 , 𝐶𝑡
𝑐, ∆𝐶𝑡

𝑐, 𝑉𝑡
𝑐) (detailed in the next section). As our approach is based 

on the CTDE design of a multi-agent environment, knowledge sharing between the agents of the two 

intersections is crucial in a partially observable environment. To enable this knowledge sharing, at each time 

step t, each agent shares the last executed action at time step t-1 with the other agent. This information is 

provided as inputs to the CNN network, which estimates the Q-values 𝑄(𝑆𝑡 , 𝑎, 𝜃) for all possible actions in the 

action space, as shown in Figure 7. 

Furthermore, using the replay memeory mechanism, each agent records the observed interaction 

experience 𝐸𝑡  =  (𝑆𝑡 , 𝐴𝑡 , 𝑅𝑡 , 𝑆𝑡+1) into a replay memory M =  {𝐸1, 𝐸2,· · · , 𝐸𝑡}. To address the issue of 

oscillation during the training phase, we employ the target network mechanism, which utilizes the same 

architecture as the CNN network depicted in Figure 7. In addition to updating the CNN parameters, the agent 

also updates the target network parameters using a method called soft updating, as explained in section 3.6. 

The agent system structure of our proposed method and his training process are depicted in Figure 7, illustrating 

the integration of these components and the overall flow of information and updates within the system.  

 

 

 
 

Figure 7. Agent system and training process 

 

 

3.3.  State representation 

To apply reinforcement learning, we need to formulate the problem as a Markov process, so we first 

need to define the state representation used by the agent. The state is the agent's perception of the environment 

at time step t and is commonly denoted by St. Choosing the right situational representation is important for the 

 

                                  

             

        

                 1 

            

       [𝑠𝑡, 𝑎𝑡 , 𝑟𝑡+1, 𝑠𝑡+1,    ] 

         

               

                        

𝑎 
   𝑟   = 𝑟 +   𝑚𝑎𝑥𝑄(𝑠 , 𝑎  𝜃 ) 

𝐿 = 𝐸  , , ,         𝑄(𝑠, 𝑎  𝜃) 
2
  

𝑆𝑡 = (𝑃𝑡 , 𝐶𝑡
𝑐 , ∆𝐶𝑡

𝑐 , 𝑉𝑡
𝑐) 



Int J Artif Intell  ISSN: 2252-8938  

 

Enhancing traffic flow through multi-agent reinforcement learning for adaptive traffic light … (Nada Faqir) 

507 

agent to learn how to optimize traffic effectively. This choice is also motivated by the quantity and quality of 

information provided to the agent. 

Vidali et al. [19] used a discretized representation of each arm of a junction where each cell is irregular 

based on formula DTSE [14], except that less information is encoded. Not all cells are the same size, as shown 

in Figure 8. At each intersection, there are 20 cells per arm, with 10 cells allocated to the left lane and the 

remaining 10 cells covering the other three lanes, resulting in 80 cells per intersection. These cells are not of 

the same size and their length is determined by their distance from the stop line. It is important to strike a 

balance between cell length and computation complexity. If the cell is too long, cars may not be detected, while 

if it is too short, the computation required covering the path length increases. The paper proposes a cell length 

that is 2 meters longer than the car's length for the shortest cell closest to the stop line. Whenever the agent 

observes the environment, it receives a set of cells that indicate the presence of vehicles in each approach road 

zone.  

 

 

 
 

Figure 8. State representation design of an intersection arm with cell lengths 

 

 

In our approach and for each intersection we retrieve the state from sumo, in the form of four metrics as follows: 

− The phase 𝑃𝑡  of the traffic signal at time step t; 

− The congestion level 𝐶𝑡
𝑐 of each cell c, at time step t;  

− The variation in congestion level ∆𝐶𝑡
𝑐 for each cell c during a single step; 

− The mean speed 𝑉𝑡
𝑐 of the vehicles of each cell c, at time step t. 

Where congestion level 𝐶𝑡
𝑐 must be in the range of [0, 1]; A value of 1 is assigned when a vehicle is present, 

up to the maximum occupancy of the cell., is in cell c of each incoming lane of the intersection and 0 when no 

vehicle is in this cell. We define the congestion level as (6). 

 

𝐶𝑡
𝑐 =

𝑁𝑣𝑒ℎ
𝑐

𝐿𝑐(𝑆𝑣𝑒ℎ+𝑔𝑚𝑖𝑛)
 (6) 

 

Where 𝑁𝑣𝑒ℎ
𝑐  the number of vehicles in cell c, the length of the cell c 𝐿𝑐, 𝑆𝑣𝑒ℎ the size of the vehicle veh and 

𝑔𝑚𝑖𝑛. This refers to the minimum distance maintained between vehicles. (in SUMO 𝑆𝑣𝑒ℎ = 5 meters and 

𝑔𝑚𝑖𝑛 = 2.5). 

To identify congested lanes, the congestion level is employed, and if a lane has high congestion levels, 

it should shift to the traffic signal phase that allows traffic to proceed and reduces congestion. The status of 

neighboring traffic signals is determined using the change in congestion denoted as ∆𝐶𝑡
𝑐. If the congestion 

levels at the lanes of adjacent intersections increase, the signaling phase that permits traffic to enter the 

intersection. must be adopted. Each traffic signal can potentially achieve cooperative control with neighboring 

signals by considering the change in congestion level as a state. ∆𝐶𝑡
𝑐 at time step t can be calculated by taking 

the difference between 𝐶𝑡
𝑐 and 𝐶𝑡−1

𝑐  then ∆𝐶𝑡
𝑐 can be in the range [-1,1]. We normalize ∆𝐶𝑡

𝑐 as (7). 

 

∆𝐶𝑡
𝑐 =

1+𝐶𝑡
𝑐− 𝐶𝑡−1

𝑐

2
 (7) 

 

The speed 𝑉𝑡
𝑐 is determined by normalizing the speed of each vehicle against the maximum speed allowed for 

the edge. In summary, the traffic signal agent in this environment establishes the state at a specific discrete 

time step t as St=(𝑃𝑡 , 𝐶𝑡
𝑐, ∆𝐶𝑡

𝑐, 𝑉𝑡
𝑐). 

Our approach is based on the CTDE design of a multi-agent environment where the sharing of 

knowledge between the agents of the two intersections in a partially observable environment implies that each 

agent at time step t shares with the other the last action executed at time step t-1. The detail of the state of the 

environment that we have adopted also takes the partially observable nature of this environment. This is 

justified by the change congestion level metric ∆𝐶𝑡
𝑐 added to the representation of the state. 
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3.4.  Action space 

In our case, we have four different actions that can be taken by each agent as shown in Figure 9. 

− A1: Activate green lights for vehicles in the north and south arms going straight or turning right. 

− A2: Activate green lights exclusively for vehicles coming from the north and south who want to turn left. 

− A3: Activate green lights for vehicles that are in the east and west arm and wish to continue straight or 

turn right. 

− A4: Activate green lights exclusively for vehicles in the east and west arm turning left. 

When the action chosen at time step t differs from the one selected at time step t+1, a transition phase must be 

executed. This transition consists of activating a yellow light phase lasting 4 seconds, but only if the action at 

time step t is not the same as the previous one. In this case, there are 10 simulation steps separating two identical 

actions, as each simulation step in SUMO represents 1 second. If consecutive actions are different, the yellow 

light phase adds 4 more simulation steps, resulting in 14 steps between the two actions.  

 

 

 
 

Figure 9. Possible actions for each agent 

 

 

3.5.  Reward definition 

At the core of reinforcement learning lies the fundamental concept where an agent undertakes an 

action and subsequently garners feedback from the environment in the form of a reward, denoted as Rt. In our 

approach, we direct our attention specifically to negative rewards, emanating from suboptimal actions, with a 

primary objective of mitigating their impact. Our overarching aim is to curtail negative rewards, thereby 

enhancing the fluidity of traffic flow within the intersection as time progresses. 

While numerous traffic parameters such as throughput, average delay, and travel time offer diverse 

metrics, our deliberate choice centers on the metric of total waiting time. This strategic decision is rooted in 

the metric's capacity to furnish a comprehensive evaluation of TSC strategies in urban environments. Unlike 

singular parameters, total waiting time encapsulates the cumulative influence on the entire traffic system, 

presenting a holistic perspective on congestion levels. Computed by summing the waiting times of all vehicles 

in the environment at time step t, a vehicle's waiting time is incremented when its speed falls below 0.1 m/s, as 

defined by (8). 

 

𝑇𝑜𝑡𝑎𝑙 𝑇𝑡 = ∑ 𝑡𝑖,𝑡 (8) 

 

Where  𝑡𝑖,𝑡 present the waiting time of the vehicle i at timestep t. then the reward can be defined as (9). 

 

𝑟  𝑎𝑟 𝑡 =  𝑇𝑜𝑡𝑎𝑙 𝑇𝑡−1  𝑇𝑜𝑡𝑎𝑙 𝑇𝑡  (9) 

 

The waiting time of a vehicle is the time (in seconds) after the appearance of the vehicle in the 

environment where its speed is less than 0.1 m/s at the step of the agent t. As a metric, each agent considers 

the total cumulative waiting time for step t of each vehicle (𝐶𝑢𝑚𝑢𝑙_𝑇𝑜𝑡𝑎𝑙 𝑇𝑡). If the vehicle manages to move 

forward but fails to pass the intersection, this metric does not reset the value of the total cumulative waiting 

time (10). This saves us from misleading statistics during agent training. 

 

𝐶𝑢𝑚𝑢𝑙_𝑇𝑜𝑡𝑎𝑙 𝑇𝑡 = ∑𝑐𝑢𝑚𝑢𝑙_ 𝑡𝑖,𝑡 (10) 
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Where 𝑐𝑢𝑚𝑢𝑙_ 𝑡𝑖,𝑡 is the accumulated waiting time of the vehicle i at timestep t. Then our reward function is 

the accumulated total waiting time of all the cars in the intersection captured respectively at agent step t and  

t – 1 presented as (11). 

 

𝑟𝑡 = 𝐶𝑢𝑚𝑢𝑙_𝑇𝑜𝑡𝑎𝑙 𝑇𝑡−1  𝐶𝑢𝑚𝑢𝑙_𝑇𝑜𝑡𝑎𝑙 𝑇𝑡   (11) 

 

In (9) and (11) produce negative values. As more vehicles accumulate in the queues at the agent's step t, the 

reward becomes increasingly negative, prompting the agent to assess its action more carefully. Consequently, 

in our results, we focus on visualizing the negative reward at each time step to evaluate the behavior of each 

agent. 

 

3.6.  Training algorithm 

Algorithm 1 summarizes the complete training process of each agent. Using deep Q-learning, each 

agent first retrieves the environment state St = (𝑃𝑡 , 𝐶𝑡
𝑐, ∆𝐶𝑡

𝑐 , 𝑉𝑡
𝑐) and provides it as inputs to the CNN network, 

which estimates the Q-values 𝑄(𝑆𝑡 , 𝑎, 𝜃) as outputs for all possible actions in the action space. As illustrated 

in Figure 7. Each agent records observed interaction experience 𝐸𝑡  =  (𝑆𝑡 , 𝐴𝑡 , 𝑅𝑡 , 𝑆𝑡+1) into a replay memory 

M =  {𝐸1, 𝐸2,· · · , 𝐸𝑡}. As part of our adopted CTDE approach, agents engage in recognition-sharing, wherein 

each agent shares its last taken action at time t-1 with others, and vice versa. This collaborative strategy allows 

us to harness the advantages of centralized training while addressing challenges related to partial observability 

and minimizing dimensionality concerns associated with centralized execution. 

 

Algorithm 1: DQN with experience replay and target network for ATSC 
1: Initialize CNN network with random weights θ0 

2: Initialize target network with weights  

3: Initialize hyperparameters ϵ, γ, α, and the number of episodes N 

4: for each episode episode = 1,2,...,N do 

 5: Initialize action A0 

 6:   Start a new time step 

 7:     for each time step time = 1,2,...,T do 

 8: if a new time step t begins then 

 9:                The agent observes the current intersection state St ; 

10:               The agent selects an action A = argmaxa Q(St,a;θ) with probability 1 − ϵ, 

and randomly selects a random action At with probability ϵ, 

 11:               if A == At−1 then 

 12                       No transition phase for traffic signals; 

 13:               else 

 14:                      Apply a transition phase for traffic signals; 

 15:               end if 

 16:     end if 

 17:  Execute the selected action At; 

 18:        Vehicles move according to the current traffic signals; 

 19:  Increment time time = time + 1; 

 20:  if the time step t ends then 

 21: The agent observes the reward R and the current intersection state St+1; 

 22:               Store the observed experience (St,At,Rt,St+1) in replay memory M; 

 23:       Randomly sample a minibatch of 100 experiences (Si,Ai,Ri,Si+1) from M; 

 24:         Form the training data: input set X and targets y; 

 25:               Update θ with the training data; 

 26:               Update the target network θ′ according to equation (12); 

 27:        end if 

 28:   end for 

 29: end for 

 

The replay memory M has a finite capacity of 50,000 samples, and once full, the oldest data is 

discarded. To learn CNN parameters that best approximate 𝑄∗(s, a), the agent requires training data: input data 

set X =  {(𝑆𝑡 , 𝐴𝑡): t ≥  1} and the corresponding targets y =  {𝑄∗(𝑆𝑡 , 𝐴𝑡) ∶  t ≥  1} can be retrieved from 

replay memory M for the input data set. However, the target 𝑄∗(𝑆𝑡 , 𝐴𝑡) is unknown. We use its estimated value 

𝑅𝑡 + γ 𝑚𝑎𝑥   (𝑄(𝑆𝑡+1, 𝑎   𝜃 ) as the target instead, as in [16], [26]–[28], where 𝑄(𝑆𝑡+1, 𝑎   𝜃 ) is the output 

of a separate target network with parameters 𝜃 . These parameters are softly updated using the equation (soft 

update for weights), and the target network's input is the corresponding 𝑆𝑡+1 from interaction experience  

𝐸𝑡  =  (𝑆𝑡 , 𝐴𝑡 , 𝑅𝑡 , 𝑆𝑡+1). The target network employs the same architecture as the CNN network depicted in 

Figure 7. Thus, targets y =  {𝑅𝑡 + γ 𝑚𝑎𝑥   (𝑄(𝑆𝑡+1, 𝑎   𝜃 ) ∶  t ≥  1}. 
We use the stochastic gradient descent algorithm root mean squared propagation (RMSProp) [29] 

with a minibatch size of 100 to reduce computational costs. During the training process of the CNN network, 

the agent utilizes the experience replay technique by randomly selecting 100 samples from the replay memory 
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M to create input data and target pairs. These pairs are then utilized to update the CNN parameters θ using the 

RMSProp algorithm. Along with updating the CNN parameters, the agent also needs to update the target 

network           ′ using a method called soft updating as illustrated in (12) [27]. 

 

𝜃  = 𝛽𝜃 +  (1   𝛽)𝜃   (12) 

 

Where β is update rate, β ≪ 1. 

In [16], [26]-[28], we explain why experience replay and target network mechanisms can improve 

algorithm stability. To achieve optimal Q-values and learn the best action policy, the agent is trained on a 

limited number of intersection states, which may result in poorly estimated Q-values for inexperienced states 

or outdated estimates due to changing state spaces. This creates a trade-off for the agent, choosing between 

using previously learned but potentially inaccurate or out-of-date Q-values and selecting the highest Q-value 

action or exploring other options to improve Q-value estimation and action policy. To address this, the agent 

employs the ε-greedy approach, selecting either the action with the highest Q-value with probability 1-ε 

(exploitation) or a random action with probability ε (exploration). In other words, the current episode h has a 

probability of selecting an exploratory action or a probability of 1-ε for an exploitative action. The agent 

parameters are set as shown in Table 1. 

 

𝜀𝑒 = 1  
𝑒

𝑇𝑜𝑡 𝑙_𝑒𝑝𝑖 𝑜𝑑𝑒 
 (13) 

 

 

Table 1. Training parameters 
Parameters Values 

Learning rate α 0.001 

Β 0.001 
Γ 0.75 

Training epochs 800 

Number of episodes 100 
Number of steps in an episode 5400 (Each episode corresponds to a traffic of 1.5 hours) 

 

 

4. RESULTS AND DISCUSSION 

4.1.  Traffic scenarios  

Because a high level of realism is required, traffic generation is a critical component of the simulation. 

That is why the Weibull distribution with a shape of two was chosen. This approximation shows that the 

number of cars increases in the early stages until it reaches a peak. Following that, the number of incoming 

vehicles decreases. The source and destination of each car are determined at random using a seed that changes 

with each episode. Four different scenarios have been developed: 

− High-traffic scenario: 4,000 cars are generated in this scenario. It represents the peak traffic volume. Even 

with good control, this scenario results in long queues. The goal is to see if it is feasible and how much it 

can be mitigated.  

− Low-traffic scenario: 600 cars are generated in this scenario, which represents a typical flow with no peak 

time. However, a large number of cars can cause traffic jams if traffic control is inadequate.  

− NS-traffic scenario: 2,000 cars produced, with 90% of traffic originating at the north and south junctions. 

The remaining 10% begin at the east and west intersections. This scenario depicts an unbalanced situation 

in which a traffic deviation may occur, forcing vehicles to drive on the east-west axis.  

− EW-traffic scenario: 2,000 cars produced, with 90% of traffic originating at the east and west junctions. 

The motivation is similar to the one described in the preceding point.  

 

4.2.  Results 

Our study distinguishes itself by addressing the more complex task of optimizing traffic light control 

in a network with multiple intersections. While earlier studies have explored fixed configurations of traffic 

lights and the use of ANN for traffic management, they have not explicitly addressed the influence of 

knowledge sharing between agents in a multi-intersection environment. We compare our results with two 

existing approaches in the literature. The first approach considers a fixed configuration of traffic lights, a 

method that fails to adapt to dynamic traffic conditions and thus often leads to suboptimal traffic flow. The 

second approach builds upon the work of [19], which models environmental agents using an ANN and employs 

a basic, straightforward representation of the environment's state. This state is discretized for each arm of an 

intersection, where each cell follows an irregular pattern based on the DTSE formula [14]. 
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However, the work in [21] is limited to an environment based on an isolated intersection. This 

limitation prevents its extension to a more complex multi-agent environment with an extended discrete traffic 

state encoding (DTDE) design, where no knowledge sharing between the agents is feasible. As a result, these 

approaches fall short when applied to real-world scenarios involving multiple interconnected intersections, 

where coordinated decision-making is crucial for effective traffic management. 

Our approach, guided by a CTDE framework, allows for knowledge sharing between agents, 

addressing scalability issues often associated with MARL approaches. Despite using only two intersections in 

this study, our CTDE design lays the groundwork for extending the model to larger networks, ensuring the 

relevance and generalization of our approach. Our study suggests that the use of CNNs and a detailed DTDE 

representation enhances traffic management efficiency without compromising scalability. Unlike previous 

approaches limited to isolated intersections, our CTDE framework facilitates effective coordination between 

multiple intersections, leading to significant improvements in traffic flow dynamics. 

For example, research by Lauer and Riedmiller [21], which relies on ANN and a basic environmental 

state representation, is constrained by its application to isolated intersections. This lack of inter-agent 

communication hinders its scalability and efficiency in managing urban traffic. In contrast, our CTDE 

framework's ability to enable knowledge sharing among agents significantly improves traffic synchronization 

and overall network performance. 

Our contribution demonstrates significant improvements in traffic flow while effectively minimizing 

the total waiting time for vehicles at intersections. This is evident as our agents were able to accumulate fewer 

negative rewards, reflecting remarkable robustness. Figure 10 illustrates that our approach outperforms the 

neural network method in terms of accumulated negative rewards. 

 

 

  
 

Figure 10. Cumulative negative reward over 100 episodes for both agents using CNN and neural network 

architectures, with basic and advanced state representations 

 

 

In Table 2, we present a comparison of our results against the neural network approach and a basic 

representation of the environmental state. For the four traffic scenarios examined, the neural network-based 

agent only surpassed the classical traffic light management model in the east-west (E-W) scenario. In contrast, 

our approach, utilizing a CNN with an advanced and detailed representation of traffic intersection conditions, 

excelled across all traffic scenarios.  

Figures 11 to 14 illustrate the performance of each agent at the two intersections, allowing us to 

visualize the impact of our contribution on agent behavior in various traffic situations. Figure 15 further 

complements this analysis by presenting the management of vehicle queue lengths at both intersections for 

both approaches across all proposed traffic scenarios. Notably, our method achieved optimal queue 

management, particularly in the HIGH scenario, leading to reductions in total waiting times of 7%, 70%, 58%, 

and 97% for the high, low, north-south (NS), and east-west (EW) traffic scenarios, respectively, compared to 

the fixed traffic light configuration. Conversely, the neural network approach, despite knowledge sharing 

between agents, showed only a marginal reduction in vehicle waiting times, primarily limited to the E-W 

scenario.  

While our study focused on a limited scale with two intersections, future research should explore the 

scalability of our CTDE approach to larger networks. Additionally, further investigation is warranted to assess 

the adaptability of our model under varying environmental conditions and traffic dynamics. The current study, 

although promising, represents an initial step towards comprehensive urban traffic management. 

Our findings highlight the potential for extending our CTDE framework to more complex urban 

networks. Future studies could explore adaptive learning mechanisms within the MARL framework to 
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dynamically adjust traffic management strategies based on real-time traffic conditions and environmental 

changes. Moreover, investigating the integration of other advanced AI techniques, such as reinforcement 

learning algorithms with dynamic state representations, could further enhance the adaptability and efficiency 

of traffic management systems. 

In conclusion, our study demonstrates the effectiveness of integrating CNNs and a detailed DTDE 

representation within a CTDE framework for optimizing traffic flow at multiple intersections. By significantly 

reducing vehicle waiting times across diverse traffic scenarios, our approach contributes to advancing 

intelligent traffic management systems and lays a foundation for scalable applications in urban environments. 

This work not only addresses current limitations in traffic management research but also opens avenues for 

future exploration and development in the field. 

 

 

  
 

Figure 11. Agent 1 and Agent 2 queue management for HIGH traffic scenarios in both approaches 

 

 

  
 

Figure 12. Agent 1 and Agent 2 queue management for LOW traffic scenarios in both approaches 

 

 

  
 

Figure 13. Agent 1 and Agent 2 queue management for EAST-WEST traffic scenarios in both approaches 
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Figure 14. Agent 1 and Agent 2 queue management for NORTH-SOUTH traffic scenarios in both approaches 

 

 

  

  
 

Figure 15. Vehicle queue length management at both intersections provided by both approaches across all 

proposed traffic scenarios 

 

 

5. CONCLUSION 

This paper explored the feasibility of utilizing reinforcement learning for adaptive traffic signal 

management. Using a validated traffic simulator, we established a robust framework for evaluating and training 

reinforcement learning agents in a controlled environment. Key investigations included detailed environmental 

state representation, knowledge sharing among agents in a partially observable setting, and the development 

of a refined reward mechanism focused solely on negative value accumulation to assess agent performance. 

Future research endeavors will build upon these foundations to enhance the outcomes achieved in this study. 

Specifically, we intend to further refine reinforcement learning algorithms and investigate their implementation 

across larger, more complex road networks. Additionally, we aim to explore the coordination potential among 

multiple reinforcement learning agents to achieve global traffic flow improvements rather than local 

optimizations alone. These analyses are pivotal in understanding both the potential advantages and unintended 

consequences associated with deploying self-adaptive systems in real-world settings. By continuing to refine 

our approaches and methodologies, we aim to contribute meaningfully to the ongoing evolution of intelligent 

transportation systems. 
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