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 The emergence of various convolutional neural networks (CNN) 

architectures indicates progress in the computer vision field. However, most 

of the architectures have large parameters, which tends to increase the 

computational cost of the training process. Additionaly, imbalanced data 

sources are often encountered, causing the model to overfit. The aim of this 

study is to evaluate a new method to classify retinal fundus images from 

imbalanced data into the corresponding classes by using fewer parameters 

than the previous method. To achieve this, squeeze-excitation half U-Net 

(SEHUNET) architecture, a modification of half U-Net with squeeze-excite 

process to provide attention mechanism on each feature maps channel of the 

model, in combination with synthetic minority oversampling technique 

(SMOTE) is proposed. The test accuracy of SEHUNET is 98.52% with area 

under the curve of receiver operation characteristic (AUROC) of 0.999. This 

result outperforms the previous study that used CNN with Bayesian 

optimization, achieving accuracy of 95.89% and AUROC of 0.992. 

SEHUNET is also able to compete with the transfer learning methods used 

in previous research such as InceptionV3 with 96.35% accuracy, visual 

geometry group (VGG) with 96.8%, and ResNet with 98.63%. This 

performance can be achieved by SEHUNET with only 0.268 million 

parameters compared to the architecture parameters used in previous 

research ranging from 11 million to 33 million. 
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1. INTRODUCTION 

Papilledema is a serious eye condition characterized by increased intracranial pressure that can 

cause permanent damage to the optic nerve if not detected and treated promptly [1]. The detection of 

papilledema requires a visual analysis of the fundus images taken from the patient’s eye. The determining 

attributes for the analysis are mainly consisted of the clarity of the optical disc and the blood vessels around 

the center of the eye. However, this detection proves to be rather difficult because similar symptoms can be 

seen in other conditions, such as pseudopapilledema which really mimics the real disorder [2]. 

The fundamental difference between papilledema and pseudopapilledema lies in the causes and 

effects of both. Papilledema is caused by the presence of pressure from within the eye that causes the back of 

the eye to be pressed into the brain, causing the patient to possibly experience blurred and double vision 

accompanied by headaches or nausea. On the other hand, in pseudopapilledema, there is no pressure as in the 
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case of papilledema, but visually, the fundus image provided has some similarities. In the fundus image of a 

papilledema patient, the optic disc undergoes elevation and swelling, causing the edge of the disc to become 

blurred accompanied by dilation of the blood vessels around the disc, which is characterized by an effect 

such as being pressed or paler than other blood vessels. On the other hand, pseudopapilledema has 

characteristics that resemble the blurring of the disc edge, but tends to be without accompanied dilation of 

blood vessels. This can occur due to the factor of the appearance of drusen, dots that appear around the disc 

due to anatomical differentiation or aging [3]. 

As an effort to help doctors diagnose papilledema by observing the fundus images faster so that 

action for the patients can be done immediately, many artificial intelligence researches have been done  

to develop methods and tools that can support doctors in classifying papilledema. For example,  

research in [4], [5] where both of them use manual feature extraction that is then processed by support vector 

machine (SVM) [6]. The latest research with the same purpose also done Ahn et al.[7] that uses 

convolutional neural networks (CNN) with Bayesian optimization utilizing local average color subtraction 

for the preprocessing step. 

In addition to the standard CNN architecture [8], the derivative architecture of CNN, especially  

U-Net [9], is also used to classify papilledema images. For instance, a study conducted by Milea et al. [10] 

employed the one versus rest (OVR) technique on the U-Net and DenseNet architecture. There is also a study 

conducted by Saba et al. [11] that uses a combination of U-Net and DenseNet accompanied by a Gabor filter. 

Furthermore, there are research conducted in [12], [13] who used the same dataset for papilledema 

classification, where the data used came from by Kim’s Eye Hospital [7]. Kokulu and Göker [12] uses 

MobileNetV2 with histogram equalization and 3D box filtering techniques to preprocess the input images. 

Meanwhile, Al-Azzawi et al. [13] uses ResNet-50 in combination with segmentation optimization to prepare 

the inputs. 

The use of the U-Net architecture is not limited to papilledema classification alone. Abedalla et al. [14] 

uses the Ens4B-UNet architecture that combines four transfer learning models as part of the encoder from the 

U-Net architecture to perform thorax image segmentation. This shows the potential offered by U-Net in the 

biomedical field. However, the main challenge of using CNN derivative architectures such as U-Net and 

transfer learning models is the need for large computational costs due to the large number of parameters. The 

standard U-Net has more than 30 million parameters [15], while transfer learning models such as VGG [16], 

ResNet [17], and InceptionV3 [18] have more than 24 million parameters [7]. The high numbers signal the 

need for parameter efficiency so that computational costs and model size can be minimized. In addition to the 

number of parameters, another issue that arises is the probability of imbalanced data, which makes the 

training process difficult. Data with unbalanced classes can easily cause the model to overfit for just one 

class, hence making it useless for detecting other classes. This can be addressed by synthetic minority 

oversampling technique (SMOTE) [19], which offers a way to synthesize data from imbalanced composition. 

The use of SMOTE makes the data balanced, thus providing better detection results. 

The use of U-Net architecture is widely used for medical image segmentation but has high 

architectural complexity. In research conducted by Lu et al. [15] proposed the use of half U-Net for medical 

image segmentation which is a development of U-Net, namely by using ghost module as a substitute for 

convolutional blocks in U-Net. Test results conducted using mammography, lung nodule, and left ventricular 

magnetic resonance imaging (MRI) datasets show that, when using the standard Half U-Net architecture has 

0.21 million parameters, while the standard U-Net has 31.04 million parameters. These results show that  

half U-Net is able to reduce the number of parameters while maintaining its performance compared to the 

standard U-Net. CNN are built on convolutional operations, which extract informative features by combining 

spatial and channel information together in a local receptive field. To improve the representational power of 

the network, several recent approaches have shown the benefits of improved spatial encoding. In the research 

conducted by Hu et al. [20] proposed a new architectural unit, namely squeeze-and-excitation (SE), which 

adaptively recalibrates channel feature responses explicitly modeling the interdependencies between 

channels. The performance of SE has been demonstrated in a competition by Abedalla et al. [14], where 4 of 

the top 5 rankings used SE blocks combined into the ResNeXt [21] model to improve encoder performance 

on standard U-Net. SE has also been shown to provide improvements to U-Net on USE-Net [22]. 

Referring to a number of studies that have been conducted, this study proposes a papilledema 

classification model using a combination of Squeeze-Excitation and Half U-Net, hereinafter referred to as 

squeeze-excitation half U-Net (SEHUNET). The combination of SE aims to provide weight calibration for 

each ghost module contained in the half U-Net, so that its output has an attention mechanism for certain 

feature map channels. To overcome data imbalance, the SMOTE method is applied. The system model is 

built using a dataset from the Kim Eye Hospital. Model performance is measured using accuracy parameters, 

area under the curve of receiver operation characteristic (AUROC), and the number of model parameters. 
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2. METHOD 

Figure 1 shows the flow summary of the method used in this study. The aforementioned flow is 

consisted of dataset collection, dataset preprocessing, model building, model training, and performance 

evaluation. These steps are done sequentially, meaning that the flow is not able to be processed further if the 

previous step is not done. 

 
 

 
 

Figure 1. Method flowchart 
 

 

2.1.  Collecting dataset 

The dataset used in this study is fundus retinal dataset from Kim’s Eye Hospital used in [7] which 

can be accessed on Kaggle. The available classes are normal with 779 images, papilledema with 295 images, 

and pseudopapilledema with 295 images. The dataset was collected from patients who underwent fundus 

photography as part of their eye examination.  

 

2.2.  Preprocessing dataset 

This study adopts SMOTE as a crucial technique to tackle the imbalanced class challenge.  

It operates by flattening the input images into a one-dimensional numerical data, and then synthesizing 

artificial instances for the minority class by interpolating between its closest neighbors in the feature space 

[19]. Thus, using the SMOTE technique is able to equalize the class distribution and enrich the information 

for the model to learn from. 

The preprocessing step is illustrated in Figure 2 where 20% of the data will be taken from the initial 

data to be the testing set. The rest then will go through the SMOTE oversampling process for synthesizing, 

creating new similar instances on every class based on the input images, hence forming a balanced 

composition between each class. When the synthesizing process is done, the synthetic datawill enter the 

horizontal flip augmentation stage which will flip the image horizontally and add it to the training 

processeverytime the data generator is called. The result of the last process will be divided into 20% as 

validation data and 80% as the train data for the SEHUNET model.  

 

 

 
 

Figure 2. Dataset preprocessing (N: normal, PE: papilledema, PPE: pseudopapilledema) 
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2.3.  Building model 

The structure of SEHUNET architecture proposed in this study is illustrated in Figure 3. The 

SEHUNET architectural design is consisted of ghost module and SE block combination which forms the 

ghost-SE module, stacked to mimic the structure from half U-Net architecture. The ghost module [23] 

functions as generator to generate more feature maps from the input with lighter operations than the regular 

convolutional block. This makes the ghost module produces the same number of outputs compared to the 

regular convolutional block with much less computational cost and hence will contribute to reduce the final 

model size. 

Half U-Net from Lu et al. [15] uses the ghost module to reduce computational complexity and avoid 

adding more parameters from the standard U-Net. In addition, half U-Net architecture standardizes the 

number of all channels to be combined in the decoder part of the architecture by performing full-scale feature 

fusion. This will further reduce the model size and the total computational cost of its training while still 

maintaining the performance. 

 

 

 
 

Figure 3. SEHUNET model architecture 

 

 

The development carried out in this study involves the insertion of an SE block after each ghost 

module in half U-Net as ghost-SE module. The main purpose of the SE block addition is to provide an 

attention mechanism and the ability to recalibrate each feature maps by calculating their corresponding 

weights [20]. This enables the SE block to enhance the representational power of the feature maps by 

learning the interdependencies between them. The combination of ghost module and SE block allows 

SEHUNET to generate feature maps efficiently while having the ability to provide attention focus on each of 

these feature maps so that the modelis able to achieve better performance than the regular half U-Net. The 

ghost-SE module structure can be seen in Figure 4. 

 

2.4.  Training model 

In this study, a set of training experiments was conductedto determine which one is better between 

half U-Net and SEHUNET using the original data, then the best model from the previous trial will be trained 

using the SMOTE synthesized data. The training process was run on Google Colaboratory with the code fully 

written in Python programming language utilizing Tensorflow framework. It ran withGPU runtime type so 

that the training time can be minimized. The training used the Adam optimizer [24] with the startinglearning 

rate value of 10-3. The batch size used for training was 32 with a preset of 300 epochs. The training system 

will reduce the learning rate to 1/10 of the previous value if the validation accuracy does not increase for 20 



                ISSN: 2252-8938 

Int J Artif Intell, Vol. 14, No. 2, April 2025: 1410-1419 

1414 

epochs with the minimum learning rate value being10-6. In addition, the training will be stopped and the 

model will restore the best weights if there is no increase in validation accuracy for 50 epochs.  

 

 

 
 

Figure 4. Ghost-SE module structure 

 

 

2.5.  Performance evaluation 

The performance of the training experiments will be evaluated using testing set which consists of 

20% from the original data. The main determining metric used is accuracy and followed by both categorical 

cross entropy (CCE) loss and AUROC [25] as the secondary metrics. The main factor of using accuracy as 

the primary metric involves the previous studies shown in [7], [12], [13] that collectively use accuracy as the 

main deterministic factor. 

 

 

3. RESULTS AND DISCUSSION 

The experiments conducted in this research will have three main steps. First, the experiment of 

training Half U-Net without SMOTE. Second, the experiment of training SEHUNET which also without 

SMOTE. Lastly, the experiment for the best architecture defined by comparison of the previous experiments, 

trained using SMOTE. 

 

3.1.  Experiments 

The first experiment conducted was the training of Half U-Net using the original dataset, in the 

other word without SMOTE oversampling. The results of the tests conducted can be shown in Table 1.  

It performed well with the test accuracy score reaching 93.72%. This experiment lasted for 130 epochs, 

meaning that it reached its peak on epoch 80. The corresponding test loss graph is shown in Figure 5. 

 

 

Table 1. Half U-Net performance without SMOTE 
Metrics Score (%) 

Validation accuracy 96.78 

Validation loss 

Test accuracy 

Test loss 
AUROC 

0.15 

93.72 

0.16 
0.994 

 

 

The second experiment conducted was the training of SEHUNET using original dataset without 

SMOTE oversampling. The result from this experiment will be compared to the result from the first 

experiment to determine which one performs the best on the same scenario. The results of the tests conducted 

can be shown in Table 2. It performed well with the test accuracy score reaching 95.94%. This experiment 

lasted for 159 epochs, meaning that it reached its peak on epoch 109. The corresponding test loss graph is 

shown in Figure 6. 
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Figure 5. Half U-Net loss graph without SMOTE 

 

 

Table 2. SEHUNET performance without SMOTE 
Metrics Score (%) 

Validation accuracy 97.24 

Validation loss 

Test accuracy 

Test loss 

AUROC 

0.17 

95.94 

0.17 

0.993 

 

 

 
 

Figure 6. SEHUNET loss graph without SMOTE 

 

 

From the results of two experiments above, SEHUNET model performed better than the original 

half U-Net model in the main determining metric collectively used in the previous studies, accuracy, for both 

validation and test data. Consequently, it come to the conclusion that SEHUNET has better performance than 

the standard half U-Net and will go through the next experiment using the SMOTE synthesized dataset.  

The SMOTE will create a synthetic image from the original image, in order to balance the data. The sample 

of the SMOTE results on a retinal image can be shown in Figure 7. If the original image is as shown in  

Figure 7(a), then the synthesized image is shown in Figure 7(b). The results of the SEHUNET experiment 

with SMOTE are shown in Table 3. 
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(a) (b) 

 

Figure 7. The sample of SMOTE result image: (a) original papilledema and (b) synthetic papilledema 
 
 

Table 3. SEHUNET performance with SMOTE 
Metrics Score (%) 

Validation accuracy 99.19 

Validation loss 

Test accuracy 
Test loss 

AUROC 

0.04 

98.52 
0.07 

0.997 

 

 

This experiment lasted for 117 epochs, meaning that it reached its peak on epoch 67.  

The corresponding test loss graph is shown in Figure 8. SEHUNET with SMOTE gave the best result 

compared to the first two experiments, reaching the test accuracy score of 98.52%. 
 
 

 
 

Figure 8. SEHUNET loss graph with SMOTE 

 

 

3.2.  Comparison with previous study 

This study investigated the effects of SMOTE and an enhanced half U-Net architecture to image 

classification field in papilledema with a premise to achieve the tiniest model size and a considerable 

performance. While earlier studies have explored the impact of different transfer learning model on the 

classification performance based on Kim’s Eye Hospital data, they have not addressed the parameter size 

minimization thoroughly. To gain some insight regarding that matter, the SEHUNET model in combination 

with SMOTE oversampling will be compared in terms of performance and the number of parameters with 

previous studies to prove that this architecture can achieve computational cost efficiency while still excelling 

in performance. The metrics used as evaluators are test accuracy, AUROC, and the number of parameters. 

The researchesthat will be compared to SEHUNET are research Ahn et al. [7] which uses the CNN Bayesian 

optimization, VGG, ResNet, and InceptionV3 architectures; research Kokulu and Göker [12] which uses 

MobileNetV2; and research Al-Azzawi et al. [13] which uses ResNet-50.  
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Table 4 shows the comparison between each study. CNN Bayesian optimization from Ahn et al. [7] 

and SEHUNET are the only architectures trained from scratch without utilizing any transfer learning model. 

In the study of Ahn et al. [7] achieved the best accuracy of 98.63% using the transfer learning ResNet model 

with 0.999 AUROC and 24.2 million parameters. In the study of Kokulu and Göker [12] achieved 96.83% 

accuracy using the transfer learning MobileNetV2 model. In the study of Al-Azzawi et al. [13] achieved 

97.5% accuracy using the transfer learning ResNet-50 model. The proposed SEHUNET model achieved 

98.52% with 0.997 AUROC and 0.268 million parameters. 

 

 

Table 4. Performance comparison 
Arch Learning type Preprocessing Acc (%) AUROC Params 

CNN Bayesian optim. [7] Scratch Local Avg color subtraction 95.89 0.992 11.6 million 

VGG [7] Transfer Local Avg color subtraction 96.8 0.999 33.3 million 

InceptionV3 [7] Transfer Local Avg color subtraction 96.35 0.997 24.8 million 

ResNet [7] Transfer Local Avg color subtraction 98.63 0.999 24.2 million 

MobileNetV2 [12] Transfer Histogram equalization 3D box filtering 96.83 - - 
ResNet-50 [13] Transfer Segmentation optim. 97.5 - - 

SEHUNET (proposed) Scratch SMOTE oversampling 98.52 0.997 0.268 million 

 

 

Based on the comparison results above, it can be seen that SEHUNET becomes the second top 

performance architecture after almost matching the accuracy of ResNet transfer learning model from  

Ahn et al. [7] with much smaller parameters. Thus, SEHUNET successfully achieved computational cost 

efficiency with total percentage of parameters reduction from ResNet [7] by 98%. The performance of 

SEHUNET in the form of a confusion matrix [26] from the test set is shown in Figure 9.  

 

 

 
 

Figure 9. SEHUNET performance on confusion matrix 

 

 

3.3.  Model output 

The following images contain the example of successful prediction results for each class collected in 

Figure 10. These images show that the SEHUNET model can accurately distinguish between normal, 

papilledema, and pseudopapilledemain for the most cases. Figure 11 however, shows the example of failed 

prediction attempts by the model. The first correlated outputs are the prediction of normal image as 

pseudopapilledema and the opposite, which is suspected to be caused by the lack segmentation of drusen that 

make the disks appear to be blurry. The next prediction is a failed attempt to predict pseudopapilledema 

image as papilledema which is suspected to be caused by the high level of blurriness of the optic disc which 

very closely mimics the papilledema image from Figure 10, accompanied by the thinness of the blood vessels 

around the disc. 
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Figure 10. Correct predictions from SEHUNET 
 
 

   
 

Figure 11. Failed predictions from SEHUNET 
 
 

4. CONCLUSION 

Based on the results of this study, it can be concluded that SEHUNET is effective for papilledema 

image classification. The performance offered by SEHUNET matches and even exceeds the methods used 

previously in other studies with much lower computational cost in terms of the number of model parameters. 

This performance can be achieved using the combination of ghost module, half U-Net, and SE block as the 

main components of the proposed architecture. As for improvement suggestion in the future research, the 

images can be further subjected to additional augmentation such as color channel cropping and contrast 

limited adaptive histogram equalization (CLAHE). An additional segmentation process to help the model 

understand the disk better can also be applied, such as segmentation for the drusen, the blood vessels, or even 

the disk itself. 
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