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 A brain stroke, medically referred to as a stroke, represents a critical condition 

triggered by the disruption of blood flow to a region of the brain. Early 

detection of stroke is crucial to prevent fatal complications. In this study, we 

worked with an unbalanced dataset of 4981 entries on stroke, which we 

balanced using the K-means synthetic minority over-sampling technique 

(KMeansSMOTE) algorithm. We then employed five machine learning 

algorithms: decision tree, random forest, support vector machine, K-nearest 

neighbors, and gradient boosting. We compared the hyperparameter 

optimization of these algorithms using four metaheuristic techniques: gray 

wolf optimization, particle swarm optimization, genetic algorithm, and 

artificial bee colony. The models' effectiveness was evaluated using multiple 

metrics, such as accuracy, recall, precision, F1-score, and area under the 

receiver operating characteristic curve. Our findings indicate that the random 

forest optimized by the genetic algorithm achieved the best performance, with 

an accuracy of 97.39% and an F1-score of 97.35%. This study highlights the 

effectiveness of balancing and metaheuristics techniques in optimizing 

machine learning models for stroke forecasting. 
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1. INTRODUCTION 

Brain stroke, also known as stroke, is a critical health problem worldwide, constituting one of the 

foremost causes of mortality and long-term handicap [1]. When a stroke occurs, the risk of death is high. If not 

fatal, a stroke can cause vision or speech impairment, paralysis, and confusion. Every year, 15 million people 

are reported to have a stroke: 5 million die, and 5 million are left permanently disabled, burdening families and 

societies [1], [2]. A stroke happens when blood flow to a section of the brain is disrupted, leading to oxygen 

deprivation, and subsequently, tissue damage. Prompt recognition and early intervention are paramount in 

mitigating the devastating consequences of this condition [3]. While there are many treatments available for 

stroke, including surgery, radiation therapy, chemotherapy, and targeted therapeutic approaches [4], these 

interventions can be costly, and their effectiveness often depends on how quickly the stroke is diagnosed and 

treated. Therefore, early diagnosis of stroke is of utmost importance, as it not only improves the health situation 

of patients but also reduces the costs associated with their rehabilitation [5]. 

Although potentially serious, stroke remains a challenging condition to predict and manage effectively 

[3], [4]. Machine learning techniques have become promising instruments in the healthcare field, facilitating 

the analysis of complex medical data and aiding clinical decision-making [6]. These advancements have also 

improved the prediction of various diseases, including brain tumors [7], liver disease [8], and others [9], notably 
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through the utilization of dataset balancing and hyperparameter optimization techniques [10], [11]. In the 

context of stroke, the utilization of machine learning algorithms and diverse optimization techniques for early 

prediction holds significant promise for improving patient care outcomes and alleviating the burden on 

healthcare systems. These innovative approaches enable predictive models to be tailored to the nuances of 

medical data, thereby enhancing their accuracy and reliability [12]. 

In this context, Daidone et al. [13] examined the use of machine learning techniques in stroke 

prediction. They emphasized the importance of developing sophisticated technologies to enhance diagnosis, 

treatment, and patient results. Their findings demonstrate that emerging machine learning techniques have 

shown exceptional precision in analyzing images, diagnosing subtypes of stroke, and predicting patient 

prognosis. However, several challenges persist, including data standardization and model validation.  

Sirsat et al. [14] conducted a study on the use of machine learning for accurate stroke prediction. They 

concluded that machine learning is a potent instrument in healthcare, providing tailored clinical care to stroke 

patients. They identified a need for research in certain underexplored areas, particularly in stroke treatment. 

The study highlighted the efficacy of random forest (RF) and support vector machine (SVM) in stroke 

forecasting. Emon et al. [15] built a model for the early forecasting of stroke-related diseases using various 

machine learning techniques. They identified several factors, including heart disease, body mass index, 

hypertension, stroke history, and age, as significant predictors. Their model involved training ten classifiers, 

the results of which were combined via weighted voting, resulting in 97% accuracy. The weighted voting 

classifier proved to be the best performer for predicting stroke, exhibiting the lowest false positive and false 

negative rates. Tazin et al. [16] developed stroke prediction models utilizing a variety of machine learning 

methods. Their research incorporated physiological data and algorithms, including logistic regression, RF 

classification, decision tree (DT) classification, and voting classifiers, to train four distinct models. Among 

these algorithms, RF emerged as the most effective, achieving an accuracy of approximately 96%. These results 

showcased notably higher accuracy compared to previous studies, affirming the reliability of the developed 

models. 

Akter et al. [17] developed a precise model for predicting strokes utilizing machine learning 

algorithms. They evaluated DT, SVM, and RF models during training and testing. The efficiency of each 

classifier was assessed using various evaluation metrics such as accuracy, sensitivity, false negative rate, false 

positive rate, and error rate. The proposed model attained a maximum accuracy of 95.30% with the RF 

classifier, demonstrating its effectiveness in accurate stroke prediction. Paliwal et al. [18] investigated the 

substantial influence of early detection and swift intervention in mitigating stroke damage and enhancing 

survivors' quality of life. Employing a variety of machine learning methods, including DT, logistic regression, 

SVM, and RF, they devised a model targeting stroke prediction. The emphasis was on assessing the efficacy 

of oversampling techniques for managing unbalanced data. Their results revealed that the K-means synthetic 

minority over-sampling technique (KMeansSMOTE) technique yielded the highest accuracy of 96%, with 

minimal false positives and false negatives, showcasing its effectiveness in stroke prediction.  

Srivastav et al. [19] have created a model aimed at predicting stroke occurrence through different measures 

such as precision, recall, F1-score, and root mean square error (RMSE). An analytical comparison of prediction 

performance was conducted using several machine learning algorithms, and it was found that logistic 

regression yielded the best performance with an accuracy of 95.02%. Srinivas and Mosiganti [20] developed 

an ensemble learning model for stroke prediction, combining forecasts from extremely randomized trees, RF, 

and histogram-based gradient boosting (GB). This soft voting model improved precision and reliability, 

achieving 96.88% accuracy. 

In our study, we extend previous research on machine learning applications for predicting brain 

strokes. Existing studies have explored various techniques, but no universally applicable method has emerged. 

Previous research primarily focused on developing and evaluating machine learning models using diverse 

datasets, often overlooking the critical importance of data balancing and hyperparameter optimization 

techniques. Our study addresses these gaps in the literature by introducing a comprehensive approach that 

evaluates the effectiveness of KMeansSMOTE, a powerful data balancing technique, in conjunction with 

advanced metaheuristic optimization techniques for hyperparameters, including gray wolf optimization 

(GWO), particle swarm optimization (PSO), genetic algorithm (GA), and artificial bee colony (ABC). We 

rigorously assess the combined impact of these techniques on model performance using five different machine 

learning algorithms: DT, SVM, K-nearest neighbors (KNN), GB, and RF. Importantly, our methodology 

demonstrates superior effectiveness compared to previous research endeavors, particularly in terms of 

achieving balanced datasets and optimized hyperparameters, which are crucial for enhancing model accuracy 

and robustness. This study not only fills a significant gap in the existing literature but also offers a novel 

contribution to the field of stroke prediction through a well-rounded and innovative methodological framework. 

The following sections of this study are structured as follows: section 2 provides an in-depth 

explanation of the materials and methods utilized. Section 3 presents and discusses the results, including an 
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analysis of the effects of the techniques employed. Lastly, section 4 offers a summary of the key findings and 

proposes potential avenues for future investigations. 

 

 

2. MATERIAL AND METHOD 

2.1.  Proposed methodology 

In our study focused on predicting strokes using machine learning algorithms, we devised a 

methodology encompassing several crucial steps. Initially, we acquired the stroke dataset, which provides 

comprehensive information about patients afflicted by this medical condition. Subsequently, we conducted a 

data preprocessing phase, involving operations like encoding, data partitioning, and normalization, to ensure 

uniform data scaling. Furthermore, we addressed the challenge of data imbalance by assessing various 

balancing techniques, with KMeansSMOTE identified as the optimal solution. Subsequently, we assessed a 

variety of machine learning methods, such as DT, KNN, SVM, RF, and GB. To improve the efficacy of these 

models, we conducted hyperparameter optimization for each using metaheuristic optimization techniques such 

as GWO, PSO, GA, and ABC. Finally, Figure 1 illustrates the methodological approach adopted in this study. 

 

 

 
 

Figure 1. Suggested methodology 

 

 

2.2.  Dataset 

In our brain stroke prediction project, we utilize the dataset sourced from Kaggle [21], which serves 

as a valuable asset in the medical domain. This dataset offers a robust foundation for researchers and healthcare 

practitioners interested in exploring the correlation between clinical attributes and brain strokes. Comprising 

11 anthropometric and biological characteristics, the brain stroke dataset encompasses 4981 records, providing 

a comprehensive basis for brain stroke analysis and prediction. The brain stroke dataset is divided into two 

classes: stroke patients (4.97%) and non-stroke patients (95.03%). This significant class imbalance can present 

challenges during the training of machine learning models, leading to biased performance assessments. 

Therefore, addressing unbalanced classes is crucial to ensure accurate and balanced predictions. Further details 

regarding the dataset composition are outlined in Table 1. 

 

 

Table 1. Dataset composition 
Attribute Description 

Gender Gender of patient 

Age Patient's age 
Hypertension 0 for no hypertension, 1 for hypertension 

Heart_disease 0 for no heart disease, 1 for heart disease 

Ever_married "No" or "Yes" 
Work_type "children", "Govt_jov", "Never_worked", "Private" or "Self-employed" 

Residence_type "Rural" or "Urban" 
Avg_glucose_level Average blood glucose level 

BMI Body Mass Index 

Smoking_status "formerly smoked", "never smoked" or "smokes" 
Stroke Target variable, 0: Healthy, 1: Affected 

 

 

2.3.  Balancing dataset 

Dataset balancing is crucial in our study to ensure accurate and balanced predictions, particularly in 

the presence of unbalanced classes like stroke and non-stroke patients. In our research, we evaluated multiple 

data balancing techniques, including SMOTE, adaptive synthetic sampling (ADASYN), SVMSMOTE, and 

KMeansSMOTE [8], [22]–[24]. We selected these techniques due to their widespread adoption and 
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demonstrated effectiveness in medical research, where class imbalances are prevalent [8], [22]–[24]. Among 

these techniques, KMeansSMOTE emerged as the best-performing option. The KMeans algorithm is utilized 

to identify clusters in the original data, followed by a separate application of SMOTE to each group to generate 

synthetic data points that closely resemble examples from the minority class [25]. This approach enabled us to 

generate a synthetic dataset that better represents the minority class, enhancing our model's ability to generalize 

and produce exact predictions for stroke patients. 

 

2.4.  Machine learning algorithms 

In our study, we evaluated several machine learning algorithms for stroke prediction. These algorithms 

were selected for their efficiency in modeling classification problems and have been widely used in similar 

medical fields to predict clinical outcomes [8], [23], [26]–[28]. The evaluated algorithms include as follows. 

 

2.4.1. Decision tree 

The DT is a simple and interpretable algorithm widely used for classification tasks. It can effectively 

capture non-trivial correlations between predictors and the outcome variable while also handling missing data 

and outliers efficiently. The decision rules it generates are explainable, making it particularly useful in fields 

such as medicine [26]–[28]. 

 

2.4.2. K-nearest neighbors 

KNN is a basic classification technique that assigns data points to the most common class among their 

nearest neighbors. It's straightforward to implement and doesn't assume any specific data distribution, making 

it robust to noisy data. However, it may incur significant computational costs, particularly with  

high-dimensional datasets [23], [26]–[28]. 

 

2.4.3. Support vector machine 

SVM is known for its effectiveness in handling high-dimensional data and finding non-linear decision 

boundaries. It works by finding the decision boundary that optimally segregates distinct classes while 

maximizing the margin between them. SVM is particularly useful in scenarios with complex data relationships 

but may require careful tuning for optimal performance [26]–[28]. 

 

2.4.4. Random forest 

RF is a versatile ensemble learning algorithm known for its robustness and high accuracy. It builds 

numerous DT during the training phase and integrates their results to formulate predictions. RF is resilient to 

overfitting, performs well with high-dimensional data, and provides valuable insights into feature  

importance [7], [26]–[28]. 

 

2.4.5. Gradient boosting 

GB is a robust ensemble learning method that constructs a potent predictive model by iteratively 

incorporating weak learners. Often DTs, to minimize the loss function. It effectively handles complex datasets, 

reduces bias and variance, and can model complex interactions between predictors and the response  

variable [23], [26]–[28]. 

 

2.5.  Hyperparameter optimization with metaheuristics 

Optimizing hyperparameters is crucial for fine-tuning the effectiveness of machine learning models. 

Traditionally, this optimization is performed using methods such as grid search, which evaluates every 

potential combination of parameters to detect the best configuration [8]. However, this approach may be 

inefficient for large or complex parameter spaces. Metaheuristic techniques provide a more effective 

alternative, efficiently exploring the solution space to discover optimal configurations within reasonable time 

frames. Unlike grid search, they offer greater flexibility, reduced susceptibility to local minima, and enhanced 

suitability for addressing the complexities of hyperparameter optimization [29], [30]. In our study, we opted to 

utilize the following four techniques, widely recognized and extensively employed in the research community: 

 

2.5.1. Gray wolf optimization 

GWO is a metaheuristic approach influenced by the social organization and hunting behavior of gray 

wolves. The algorithm operates by emulating the hunting strategies of gray wolves, in which the pack members 

collaborate to track and capture prey. Initially, the locations of the alpha, beta, delta, and omega wolves are 

randomly initialized within the exploration space. Then, the algorithm continually modifies the locations of the 

wolves depending on predefined equations, incorporating the alpha, beta, delta, and omega wolves' positions 
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to guide the search toward optimal solutions. GWO is advantageous because it requires fewer control 

parameters, is easy to implement, and exhibits fast convergence [29], [30]. 

 

2.5.2. Genetic algorithm 

GA is a metaheuristic algorithm inspired by natural selection and evolution, employing principles 

such as selection, crossover, and mutation to seek optimal solutions within a defined problem space. Starting 

with an initial population of potential solutions, represented as chromosomes, the algorithm selects individuals 

with higher fitness scores for reproduction. Through crossover, selected pairs exchange genetic information to 

generate offspring, while mutation introduces small changes to maintain population diversity. This iterative 

process continues until convergence to an ideal or quasi-optimal solution [29], [30]. 

 

2.5.3. Particle swarm optimization 

PSO is a metaheuristic algorithm guided by social bird flocking or fish schooling behavior. In PSO, a 

population of possible solutions, represented as particles, moves across the search space to find optimal 

solutions. Each particle adapts its location using its individual history and the collective actions of nearby 

particles. The algorithm iteratively adjusts the velocity and position of particles based on the most optimal 

positions found by individual particles and the entire swarm. This cooperative behavior allows PSO to 

efficiently navigate through the search space and converge towards the best solutions [29], [30]. 

 

2.5.4. Artificial bee colony 

ABC is a metaheuristic optimization algorithm inspired by the hunting activity of honeybees. It 

involves three primary elements: working bees, observer bees, and scout bees. Working bees seek out food 

sources and communicate their findings to observer bees, who then select food sources based on this 

information, while scout bees explore new food sources. The algorithm emulates the cooperative attitude of 

bees in locating and exploiting food sources, facilitating efficient exploration and exploitation of the solution 

space. ABC is known for its simplicity, few control parameters, and effectiveness in exploring search spaces, 

making it a commonly chosen option in various optimization problems [29], [30]. 

 

 

3. RESULTS AND DISCUSSION 

In this section, we delve into the outcomes and discussions stemming from our investigation into brain 

stroke prediction. The experiments were conducted on a computing system powered by an AMD Ryzen 7 

5700G processor with Radeon graphics. Our software environment was configured with the Python language 

operating within Jupyter Notebook, supplemented by essential libraries like Pandas, Scikit-learn, and 

HypONIC. 

To evaluate the efficiency of our machine learning models, we utilized a variety of assessment metrics, 

including accuracy, recall, precision, F1-score, and area under the receiver operating characteristic curve 

(AUC-ROC). These measures serve as essential indicators of our models' predictive prowess and their capacity 

to generalize to new data. We selected these evaluation metrics due to their ability to offer a thorough insight 

into our models' performance [31], [32]. The results across different stages of the study are outlined in  

Tables 2–7. These results offer valuable insights into the comparative effectiveness of the algorithms in 

predicting brain strokes, considering both the data balancing and the hyperparameter optimization strategies 

employed. 

In Table 2, the performance of the models on the original dataset, which is highly imbalanced, is 

presented. Although some models achieved high overall accuracy, with the best value reaching up to 95.79% 

for the SVM model, it is crucial to mention that these models are not considered effective due to their poor 

performance on other metrics such as precision, recall, and AUC-ROC, which do not exceed 28%, 15%, and 

55%, respectively. These results indicate that these models are not suitable for the task of stroke prediction due 

to their inability to generalize well and effectively capture positive instances. After balancing with 

KMeansSMOTE, the model performances are significantly improved, as shown in Table 3. There is a 

significant increase in all evaluation metrics compared to the highly imbalanced original dataset. Particularly, 

GB stands out by achieving the highest values of accuracy (95.56%), precision (94.30%), F1-score (95.56%), 

and AUC-ROC (95.58%). Additionally, KNN and RF perform well, with the highest recall of 97.29%. After 

applying GWO to the dataset balanced by KMeansSMOTE, Table 4 highlights a clear performance 

improvement. Once again, GB stands out by achieving the highest values of accuracy (97.32%), precision 

(97.49%), F1-score (97.28%), and AUC-ROC (97.32%). Meanwhile, SVM achieves the highest recall of 

97.29%. 

After applying GA to the dataset balanced by KMeansSMOTE, Table 5 demonstrates a notable 

performance improvement. This time, RF stands out by achieving the highest values of accuracy (97.39%), 

precision (97.63%), F1-score (97.35%), and AUC-ROC (97.39%). Additionally, SVM achieves the highest 
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recall of 97.21%. After applying PSO to the dataset balanced by KMeansSMOTE, Table 6 reveals a significant 

performance improvement. In this case, GB stands out by achieving the highest values of accuracy (97.22%), 

precision (97.35%), F1-score (97.17%), and AUC-ROC (97.22%). Additionally, SVM achieves the highest 

recall of 97.29%. After applying ABC to the dataset balanced by KMeansSMOTE, Table 7 illustrates a 

significant performance improvement. This time, GB stands out by achieving the highest values of accuracy 

(97.32%), precision (97.29%), recall (97.29%), F1-score (97.29%), and AUC-ROC (97.32%). Additionally, 

SVM also achieves the highest recall of 97.29%. 

 

 

Table 2. Original dataset  
Accuracy (%) Precision (%) Recall (%) F1-Score (%) AUC-ROC (%) 

DT 91.04 10.99 15.87 12.99 55.11 

KNN 95.38 25.00 4.76 8.00 52.07 

SVM 95.79 0.00 0.00 0.00 50.00 
RF 95.59 20.00 1.59 2.94 50.65 

GB 95.59 28.57 3.17 5.71 51.41 

 

 

Table 3. Balanced KMeansSMOTE dataset  
Accuracy (%) Precision (%) Recall (%) F1-Score (%) AUC-ROC (%) 

DT 94.15 92.79 95.57 94.16 94.17 

KNN 94.15 91.41 97.29 94.26 94.20 
SVM 95.04 92.97 97.29 95.08 95.07 

RF 94.82 92.82 97.00 94.87 94.85 

GB 95.56 94.30 96.86 95.56 95.58 

 

 

Table 4. Balanced dataset + GWO Optimization  
Accuracy (%) Precision (%) Recall (%) F1-Score (%) AUC-ROC (%) 

DT 94.40 93.67 95.07 94.36 94.41 

KNN 94.26 91.65 97.21 94.35 94.30 
SVM 97.11 96.87 97.29 97.08 97.12 

RF 95.04 93.56 96.57 95.04 95.06 

GB 97.32 97.49 97.07 97.28 97.32 

 

 

Table 5. Balanced dataset + GA Optimization  
Accuracy (%) Precision (%) Recall (%) F1-Score (%) AUC-ROC (%) 

DT 95.67 94.81 96.50 95.65 95.68 

KNN 94.44 91.96 97.21 94.51 94.48 
SVM 97.25 97.28 97.14 97.21 97.25 

RF 97.39 97.63 97.07 97.35 97.39 

GB 96.69 96.31 97.00 96.65 96.69 

 

 

Table 6. Balanced dataset + PSO Optimization  
Accuracy (%) Precision (%) Recall (%) F1-Score (%) AUC-ROC (%) 

DT 94.72 94.01 95.36 94.68 94.73 

KNN 94.72 92.46 97.21 94.78 94.75 
SVM 97.11 96.87 97.29 97.08 97.12 

RF 95.21 93.83 96.64 95.21 95.23 

GB 97.22 97.35 97.00 97.17 97.22 

 

 

Table 7. Balanced dataset + ABC Optimization  
Accuracy (%) Precision (%) Recall (%) F1-Score (%) AUC-ROC (%) 

DT 94.44 93.79 95.00 94.39 94.44 

KNN 94.65 92.33 97.21 94.71 94.68 
SVM 97.11 96.87 97.29 97.08 97.12 

RF 94.96 93.37 96.64 94.98 94.99 

GB 97.32 97.29 97.29 97.29 97.32 

 

 

The results highlight the benefits of data balancing and hyperparameter optimization in stroke 

prediction. By combining the KMeansSMOTE method with the GA and the RF model, we reached the highest 
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performance, with an accuracy rate of 97.39% and an F1-score of 97.35%. The measurements for the different 

models of the best combination are illustrated in Figure 2. This approach proved to be effective in enhancing 

the overall predictive capability of the models. The GB and RF models exhibited optimal performance in 

accuracy, precision, F1-score, and AUC-ROC due to their intrinsic ability to capture complex relationships 

between variables and provide accurate predictions. Their capability to train weak models and aggregate them 

significantly improved the overall model performance. Conversely, the SVM stood out for recall due to its 

utilization of decision hyperplanes that maximize the margin between different classes, enabling it to more 

easily identify positive examples. The GA outperformed other metaheuristics because of its ability to efficiently 

explore solution spaces and identify sets of optimal parameters for the models. By employing concepts of 

natural selection and crossover, the GA could avoid local minima and converge towards more performant 

solutions within reasonable timeframes. 

 

 

 
 

Figure 2. Metrics of the best combination 

 

 

Comparing our results to previous studies, we observe that methods such as GB and RF consistently 

perform well, aligning with findings from other research. Our study extends these findings by specifically 

highlighting the impact of different hyperparameter optimization techniques on model performance. Unlike 

previous work, we employed KMeansSMOTE for data balancing in conjunction with various optimization 

algorithms, including GWO, PSO, and GA. Notably, the combination of KMeansSMOTE with the GA and RF 

yielded the highest accuracy and F1-score, significantly outperforming previous models. This underscores the 

critical role of data balancing and hyperparameter optimization in enhancing prediction accuracy and 

robustness. Our findings demonstrate that these techniques can significantly improve model performance 

compared to prior studies that did not utilize such comprehensive optimization strategies. By systematically 

addressing the challenges of data imbalance and optimizing hyperparameters, our approach provides a more 

robust framework for stroke prediction, offering improved accuracy and reliability. Despite these encouraging 

findings, it is important to acknowledge certain restrictions of our study. Our dataset may be limited in terms 

of representativeness, potentially restricting the generalizability of our findings to other populations. 

Additionally, some important variables may not have been accounted for in our analysis, which could affect 

the validity of our results. For future research, it would be advantageous to further examine the use of these 

techniques in other areas of predictive medicine, as well as their integration into real clinical settings. 

Additional studies could also delve into the impact of these techniques on treatment decisions and patient 

outcomes to better understand their potential in a clinical context. 

 

 

4. CONCLUSION 

In conclusion, this study sheds light on the significance of data balancing and hyperparameter 

optimization techniques in stroke prediction. The findings demonstrate that the integration of KMeansSMOTE 

with the GA and the RF model yielded the highest predictive performance, showcasing an accuracy rate of 
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97.39% and an F1-score of 97.35%. These results underscore the capability of advanced machine learning 

methods to improve stroke prediction accuracy. Moving forward, the successful application of these techniques 

opens avenues for enhanced stroke risk assessment and early intervention strategies in clinical settings. 

Moreover, the robust performance of the GB and RF models suggests their suitability for real-world 

deployment in healthcare systems, where accurate stroke prediction can significantly impact patient outcomes. 

Furthermore, this study prompts further exploration into the integration of advanced machine learning 

algorithms with domain-specific knowledge and additional patient data sources, such as genetic markers or 

lifestyle factors. Such interdisciplinary approaches hold promise for refining stroke prediction models and 

tailoring interventions to individual patient profiles. Ultimately, the findings presented in this study contribute 

to the ongoing research efforts aimed at leveraging machine learning for proactive healthcare management. By 

elucidating the effectiveness of data balancing and hyperparameter optimization techniques, this research 

advances our understanding of stroke prediction and paves the way for future innovations in clinical practice. 
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