TAES International Journal of Artificial Intelligence (IJ-AI)
Vol. 14, No. 1, February 2025, pp. 44~53
ISSN: 2252-8938, DOI: 10.11591/ijai.v14.i1.pp44-53 a 44

DriveNet: A deep learning framework with attention
mechanism for early driving maneuver prediction

Mohamed M’haouach!, Abdellatif Sassioui?, Afaf Bouhoute!, Khalid Fardousse!
ILPAIS Laboratory, Department of Computer Science, Sidi Mohammed Ben Abdellah University, Fez, Morocco

2¢38 Laboratory, Hassan II University, Casablanca, Morocco

Article Info

ABSTRACT

Atrticle history:

Received Mar 20, 2024
Revised Jul 18, 2024
Accepted Jul 26, 2024

Keywords:

Attention mechanism
Convolutional neural network
Long short-term memory
Maneuvers prediction

Inappropriate driving maneuvers are the leading cause of many car accidents.
These accidents can be prevented if they are identified in advance and the driver
is given the necessary assistance. Anticipating maneuvers is crucial for driv-
ing assistance systems in order to alert drivers and take appropriate measures to
avoid or mitigate danger. In this paper, we introduce DriveNet a new approach
that combines information about the driver’s behavior as well as the driving en-
vironment to predict the driving maneuvers. DriveNet utilizes a combination of
convolutional neural network (CNN) and long short-term memory (LSTM) with
attention mechanism to extract spatial information and capture long temporal de-
pendencies. We evaluate DriveNet by performing a series of experiments using
the publicly available Brain4Cars dataset. The findings show that the proposed
approach achieves state-of-the-art performance and outperforms most previous
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methods. DriveNet has achieved an accuracy of 91.24%, a precision of 90.13%,
and a recall of 91.44% for anticipation 4 seconds before the maneuvers occur.
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1. INTRODUCTION

Road safety has always been a major concern for governments all over the world. Statistical data
illustrates a direct correlation between the surge in vehicle numbers and the subsequent increase in accidents.
The World Health Organization (WHO) [[1]] reports a staggering annual death toll of approximately 1.35 mil-
lion individuals resulting from road accidents. The primary cause of these accidents is attributed to improper
driving behaviors. In 2022, the British Department for Transport (DfT) conducted a survey [2]], revealing that
29,795 individuals were either killed or seriously injured in reported accidents within Britain. Furthermore,
the National Highway Traffic Safety Administration [3] indicates that 33% of accidents were caused by illegal
maneuvers. To increase road safety and decrease the number of accidents, advanced driver assistance system
(ADAS) [4]-[9] that can understand the driver’s intention before performing any dangerous maneuver have
been considered among the most significant advancement in this field of research. Through the assistance of
driver intention prediction, it becomes simpler to ascertain the driver’s readiness for a safe reaction, based on
the relevance of the driver’s maneuver intentions in line with the current driving scenario.

Early prediction of driving maneuvers is a fundamental task for numerous ADAS. For example, an
ADAS equipped with a driving maneuver prediction feature can proactively notify the driver before executing
a dangerous maneuver. This advanced warning grants the driver a slightly extended timeframe to respond to
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road situations and potentially prevent accidents. Predicting driving maneuvers entails forecasting future driver
actions based on a limited temporal context, presenting a formidable challenge due to the unobservable nature
of driver intentions and the intricacies of their interactions with the road environment [[10]. In fact, the behavior
of drivers is greatly influenced by external factors, including traffic, road conditions, and weather conditions.
These factors exert a substantial impact on how drivers respond and behave on the road. Moreover, when
preparing for any maneuver, drivers usually follow some common behaviors including hand motion, head ro-
tation, and eye gaze. Several studies show that data from multiple sensors (e.g. cameras capturing the driver’s
face, the road ahead, in-vehicle sensors, and global positioning coordinates (GPS) can provide contextual infor-
mation for driver maneuver prediction. Several works [11]-[16] have attempted to predict driving maneuvers
based on multimodal sensor data. However, existing research often neglects the time gap between maneuver
prediction and maneuver execution. That is, most of studies don’t shed light into the important time interval
that drivers have to respond to predictions. Motivated by the need to address this issue, this paper introduces a
system designed to improve prediction accuracy and developing strategies that take into account the exact time
drivers have to react. Tackling this issue, as a result, will lead to the innovation of more effective predictive
systems more effective and overall driver safety enhancement.

This paper tackles the challenge of predicting driver maneuvers by introducing and designing an end-
to-end deep learning architecture called DriveNet. DriveNet addresses the existing issues and challenges in
maneuver prediction by integrating driver information from videos captured by a driver-facing camera with en-
vironmental information, such as details about empty lanes, road artifacts, and speed limits. The main objective
of this comprehensive approach is to develop a highly accurate system for predicting driver intentions. This
innovative architecture leverages a combination of advanced techniques to achieve significant performance in
maneuver prediction. Specifically, it integrates i) the VGG19 model for extracting rich spatial information
from the different frames of videos, ii) the OpenFace framework [17] to extract a comprehensive face-based
features, and iii) a bidirectional long short-term memory (BiLSTM) network enhanced with an attention mech-
anism to extract temporal dependencies of the different inputs. DriveNet was validated on the publicly available
Brain4Cars dataset. The findings reveal that DriveNet shows superior performance compared to most of the
previous methods. It achieved an accuracy of 91.24%, precision of 90.13%, and recall of 91.44% for predicting
maneuvers 4 seconds before they occur. The contributions proposed in this paper are summarized as:

— We propose DriveNet as a new approach for early driving maneuvers’ prediction. this approach con-
sists of a VGG19 model for extracting spatial features, OpenFace framework for extracting face-based
features, and a BILSTM with an attention mechanism to extract temporal features.

— We conduct exhaustive experiments of the proposed architecture using the aforementioned datasets with
different configurations and times to maneuvers (1s to 4s before the maneuver). Evaluation outcomes on
the publicly available dataset Brain4Cars demonstrate that DriveNet outperforms other common models
for driving maneuvers’ prediction.

The remainder of this paper is divided into the following sections. Section 2 discusses related work on
prediction of driving maneuvers. The section 3 introduces and details the DriveNet architecture. A presentation
of the experimental results is given in section 4. Section 5 presents some open challenges with regard to data
and user privacy. Finally, section 6 concludes the paper by summarizing our contributions and draws future
research directions.

2. RELATED WORK

Over the past decade, there has been a growing interest among researchers in the field of driving
maneuver prediction. This section is devoted to investigating and discussing some existing approaches for
driving maneuver prediction using deep learning. The Brain4Cars team was among the first teams that worked
on driving maneuvers anticipation [10]. Among its main contributions, the team released the first dataset of
natural driving collected using a driver-facing camera to track the driver’s head movements, a camera for the
outside view, and some information about the environment such as road artifacts, empty lanes, and speed. To
model the driving maneuvers, the authors use a Hidden Markov Model variant called AIO-HMM to jointly
model the contextual information along with the maneuvers. The proposed AIO-HMM consists of three layers
(input, hidden, and output). The input layer represents the outside vehicle features, the hidden layer represents
the driver’s intention, and the output layer represents features of the vehicle’s inside. This system uses models,
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which are trained for different types of maneuvers, to anticipate the probability of each maneuver. This method
can anticipate maneuvers within 3.5 seconds before they occur with a precision of 77.5% and a recall of 71.4%.

An improved prediction approach is proposed by the Brain4Cars team in their second work [18]].
In this latter, the team develops a deep learning sensory-fusion approach for maneuver anticipation. Instead
of simple sensor fusion such as feature vector concatenation, their approach uses recurrent neural networks
(RNNs) with long short-term memory (LSTM) units to jointly learn to anticipate maneuvers. This is done by
using separate RNNs to learn high-level representations from the sensor streams. These representations are
then fused via a fully connected layer. Using a deep sensory fusion learning technique, maneuvers could be
predicted on average 3.5 seconds in advance, with 84.5% precision and 77.1% recall. By including additional
data, like merging the driver’s head orientation in 3D, accuracy and recall were able to rise to 90.5% and 87.4%,
respectively.

A deep learning framework, which combines the information from the driver’s monitoring videos with
the outside view was proposed by [19]]. This framework consists of two branches as inputs and a classifier that
takes the output of the two branches. A ConvLSTM-based [20] encoder is utilized in the first branch to extract
motion data, which is then interpreted into optical flow images. The second branch, a 3D ResNet-50 [21]
network, uses the driver’s face video to extract features. The classifier is composed of a motion decoder for
outside motion and fully connected layers to predict the maneuver. This framework achieved an accuracy and
fl-score respectively of 83.98% and 84.3% on the Brain4Cars dataset.

More recently, a model was proposed in [22] that utilizes both inside and outside videos as data
sources. This model consists of four input sources, with the first two sources containing the main frames and
the last two sources representing the optical flow [23]], [24] of frames from inside and outside the cabin. To
ensure a representative sample, frames were selected at a rate of 10, resulting in 15 frames for each 5-second
video. The authors also incorporated four different data augmentation methods, namely translation, flip-left-
to-right (FlipLR), cutout, and Augmix. Spatial feature extraction was performed using Densenet121 in the
first two branches, while LSTM was employed to extract temporal features from all inputs. Remarkably, this
architecture achieved exceptional performance metrics, with an accuracy of 98.90%, precision of 98.96%, and
recall of 98.88% in accurately predicting maneuvers within the specified time to maneuver of 0.

A novel method of prediction that uses the SHRP2 Naturalistic Driving Study and roadway infor-
mation dataset to train several models aimed at predicting driving maneuvers was proposed [25]]. To select the
most relevant features, the Boruta algorithm was employed. Among the various models examined, the XGBoost
model emerged as the top performer, achieving an impressive prediction accuracy of 97% and an F1-score of
95.5% when considering all features. Notably, when focusing solely on vehicle kinematics features, the XG-
Boost model exhibited even higher accuracy, reaching 97.3%, with an Fl-score of 95.9%. The researchers
also developed simplified versions of the XGBoost model for practical implementation. This prediction model
exhibits promising potential for trajectory planning in autonomous vehicles and can enhance ADAS within a
connected and automated vehicle environment.

Mersch et al. [26] introduced a lane change prediction method that utilizes a data representation based
on the surrounding to capture interactions between vehicles in highway driving scenarios. By integrating con-
volutional neural networks (CNNSs), this system leverages spatial and temporal correlations, enabling accurate
prediction of vehicle trajectories up to a five-second horizon. Notably, the model takes into consideration vari-
ous potential maneuver intentions and their corresponding motions. The efficacy of this approach was evaluated
using the HighD dataset [27]] and NGISM dataset [28]]. The results demonstrated a mean squared error (MSE)
of 1.34 on the HighD dataset and 4.05 on the NGISM dataset in time to maneuver of 5 seconds.

3.  PROPOSED APPROACH

In this section, we introduce DriveNet, a new approach for driving maneuver anticipation. The work-
flow of DriveNet is illustrated in Figure [I] As the figure shows, DriveNet consists of several steps, starting
from data acquisition to maneuver classification. These steps are detailed in the following subsections.

3.1. Data acquisition

Nowadays, cars are equipped with different types of sensors that can be used to collect information
about the driver, the vehicle, as well as the driving environment. In the context of driving maneuver prediction,
relying on a single source of information (i.e. a single sensor) is not sufficiently rich. For instance, predicting
maneuvers using only a camera capturing the driver’s face may be challenging. Combining data from multiple
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sensors (e.g., face camera, road camera, and GPS) is very helpful as it enables information about the whole
driving situation to be used for prediction. DriveNet is designed to incorporate two distinct streams of data

— Face camera stream: this stream comprises data captured by the driver’s facial camera, providing insights
into the driver’s facial expressions and movements.

— Environment information stream: this stream encompasses data related to the driving environment com-
ing from vehicle sensors, such as speed, empty lanes, GPS coordinates, and potential road artifacts.

3.2. Preprocessing

The goal of data preprocessing is to transform raw stream data coming from the sensors and the cam-
era videos into a format that is suitable for building a predictive model. In the preprocessing phase, DriveNet
applies histogram equalization to the video frame images. This technique, which emphasizes contrast and
intensity adjustments, is pivotal in enhancing the quality of input data for the following stages. Histogram
equalization guarantees a more balanced spread of pixel intensities throughout images, thus improving their
sharpness and the visibility of features. Figure[I] step 2 demonstrates the effect of this preprocessing step by
comparing an image before and after histogram equalization. Furthermore, DriveNet incorporated normaliza-
tion on environment features specifically for the speed variable. This normalization scales the speed values to
arange between 0 and 1, ensuring consistency in the magnitude of this feature.
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Figure 1. The overview of DriveNet

3.3. Feature extraction

The effectiveness of machine learning techniques is largely affected by how the input data is repre-
sented, or the features are chosen. The goal of feature extraction is to extract useful features from the input
data that can improve the performance of the prediction model. DriveNet extracts three types of features from
the raw data stream:

— Face-based features: Leveraging the face tracking framework OpenFace [17], DriveNet extracts 54 fea-
tures from the face camera stream encompassing facial landmarks, eye gaze, and head pose. Figure [T}
step 3 illustrates examples of face-based features.

— Spatial features: DriveNet uses the CNN VGG19 [29] architecture, extracting 256 features from frames
extracted from the face camera stream.

— Environement features: DriveNet extracts from the input stream of sensors three pieces of information
(speed, empty lanes, and artificial existence).

3.4. Temporal modeling

Driving maneuver prediction requires learning the temporal dependencies in data. Temporal depen-
dencies are the relationships between the values of a variable in sequential data. These dependencies can be
characterized by the way that the value of a variable at a given point in time is influenced by its past values.
In the context of predicting driving maneuvers, learning temporal features from raw stream data can allow
the car to anticipate and respond to changes in the driver’s behavior or road conditions. DriveNet employs
two Bi-LSTMs layers and an attention mechanism layer. For each of the three features extracted from the
previous component, choosing Bi-LSTM over standard LSTM enhances DriveNet ability to capture long-term
dependencies and temporal patterns.

3.5. Maneuver classification

The purpose of the final step is to classify the maneuvers. For this purpose, DriveNet aggregates the
three outputs by summing them. Then, a fully connected network is used to classify the input into one of
the targeted maneuvers. To achieve early prediction, classification is performed by time to maneuver, which
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refers to the time before the maneuver happens. Algorithm [I|shows the different steps considered for maneuver
prediction. The algorithm takes, as input, data coming from the face camera as well as from other sensors
capturing the vehicle outside and follows the steps to predict the maneuver. This latter can be sent to ADAS
for further assistance.

Algorithm 1 Maneuver prediction steps

Input: Face camera stream X = X,
Environment features Z = Z
Output: Maneuver

for each second t in time of driving do
X, Z < Preprocessing(Xy, Z;)
X < Extract Features(X;)
R
X1 < Extract Temporal Features(.X)
Zp < Extract Temporal Features(2)
Predict( X, Z7)
Send the results to ADAS

end for

4. EXPERIMENTAL RESULTS
This section provides a comprehensive overview of our experiments, including the datasets utilized,
experimental settings, and evaluation.

4.1. Dataset description

DriveNet was evaluated using the Brain4Cars dataset [10]. This dataset consists of driving data col-
lected from 10 drivers under real-world conditions, without any interference. The data include a variety of
driving maneuvers performed by each driver. Each driver in the study performed at least one maneuver in all
situations. The dataset includes videos taken from different angles: 1) videos of the inside scenes, and ii) videos
of the outside scenes with details of (1088x1920 px, 25 frame per second (fps)) and (480x720 px, 30 fps). It
also contains further information about the outside environment, mainly information about empty lanes, road
artifacts, and vehicle speed. The whole dataset is structured as follows:

a. Inside features contain videos of the vehicle inside taken using a face camera.

b. Outside features contain outside information. It mainly includes the following six features:

— Id video: the identifier of the video (inside features) corresponding to the outside features.

— Lane left: the number of empty lanes on the vehicle’s left side.

— Lane right: the number of empty lanes on the vehicle’s right side.

— Road artifact: a binary feature indicating the presence of road artifacts (such as intersections).

— Speed: the vehicle speed. For each 5-second video, a sequence of 7 speeds (v1,v2,v3,v4,v5,v6,v7)
is provided.

Brain4Cars contains a total of 700 maneuvers, among which only 594 of them were accessible. These
maneuvers belong to 5 classes, namely [left lane change (L change), right lane change (R change), left turn (L
turn), right turn (R turn), straight driving]. In this study, We applied data augmentation using sliding window
technique with a window duration of 1 second and stride of 0.6 seconds to increase the size of the dataset and
improve the prediction performance. This step was driven by the very limited dataset, which includes only 594
maneuvers.

4.2. Experimental settings
4.2.1. Data spliting and evaluation

To evaluate DriveNet, we adopted a k-fold cross-validation with 5 as the number of folds. This method
gives better results compared to the standard train test split. The performance was evaluated using three popular
performance metrics, namely accuracy, precision, and recall.
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4.2.2. Implementation details

The baseline models were implemented using Tensorflow and Keras libraries with Python 3.7.12 on
a Kaggle environment. With the specifications of Intel(R) Xeon(R) CPU @ 2.30 GHz, 16 CPU cores, 12 GB
RAM, and NVIDIA TESLA P100 GPU. The hyper-parameters used to train are presented in Table[I]

Table 1. Hyper-parameters for training the model

Hyper-parameter Value
Epochs 100
Optimizer RMSprop
Learning rate 0.001
Batch size 32
Loss function Categorical entropy

4.2.3. Evaluation setup

According to some researchers [30], [31], the drivers’ reaction time varies from person to person. In
our evaluation, we assess the performance of DriveNet across the five different time to maneuvers intervals
measured in second ¢t € {4,3,2,1,0}. We employ two methods for maneuver prediction:

— The first one is based on the current sequence only. That is, to predict the driver’s intention with a time to
maneuver t, we should classify the sequence 5 — ¢. The final prediction is the result of the classification
of this sequence.

— The second one is based on the current and the previous sequences. The driver’s intention prediction
with a time to maneuver t requires a classification of the sequence 5 — ¢ (i.e. the third sequence in time to
maneuver 2) and the previous sequences. Then, we aggregated the results using soft voting. This means
that the final prediction is the class with the highest average probability.

4.3. Performance evaluation

In this section, the performance of DriveNet is studied. Various experiments were conducted studying
the model performance in predicting different types of maneuvers, with varying time to maneuver values. The
following paragraphs present and discuss the results of the sets of experiments performed. First, we study
the model performance considering all types of maneuvers followed by a study focusing only on lane change
and turn maneuvers, separately. A last experiment comparing the obtained results with existing approaches is
presented.

4.3.1. Model Performance on all maneuver types

In this first scenario, we studied the performance of the DriveNet in predicting all maneuver classes.
As described in subsection #.2.3] we evaluated the prediction performance using two prediction methods:
based on the current driving sequence only and based on the current and previous sequence. A summary of the
5-fold mean and standard deviation based on the model’s findings is shown in Table 2| The obtained scores,
for precision, recall, and accuracy, range between 90.23% and 92.34% which reflect the good performance of
DriveNet. The results are presented at different times to maneuvers.

Table 2. Results on all maneuvers without aggregating the results of the current and the previous sequences

All maneuvers
Precision (%)  Recall (%)  Accuracy (%)
4 90.23 +2 90.91 +2 91.24 +3
92.01 £2 92.13+2 91.66 +2
92.11+2 91.81 +2 91.57+2
91.57+2 91.67+2 91.67+2
91.34+2 91.41+2 9234 +2

Time to maneuver (sec)

(=R )

The results obtained with our second prediction method, i.e. prediction based on current and previous
sequences, are presented in Table 3] The table shows the precision, recall, and accuracy scores obtained for
different times to maneuvers. The obtained scores show that the model performance improves when the time to
maneuver decreases. This improvement is explained by the fact that the predictions, for each time to maneuver,
take also into consideration the predictions made at the preceding instants.
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Table 3. Results on all maneuvers aggregating the current and the previous sequences
All maneuvers
Precision (%)  Recall (%)  Accuracy (%)

Time to maneuver (sec)

4 90.63+£3 90.32+£2 91.24+3
3 9221 %2 9244 £2 9251+2
2 93.18£2 93.01£2 9433 +2
1 9427 +3 94.01 £2 96.23 £2
0 9534 +£2 9541 +£2 96.23 £2

4.3.2. Model performance on lane change and turn maneuvers

In the second scenario, the performance of the model is studied separately for each type of maneuver.
We distinguish the two types of maneuvers presented in the following:

— Lane changes: we evaluate the model performance in anticipating left lane changes and right lane
changes. This prediction is of relevance in the case of freeway driving.
— Turns: we evaluate the model performance in anticipating right and left turn maneuvers.

Similar to the previous subsection, the results are discussed when considering prediction based on the current
sequence only, and on the current and previous sequences.

Table [ shows the results of the model’s performance in predicting lane changes and turn maneuvers,
based only on the current sequence. By comparing the scores of the two types of maneuvers, we can see that
DriveNet achieves high performance in anticipating right and left turns compared to the left and right lane
changes. This means that the model can find more prominent features that differentiate turns and lane changes.

Table 4. Results on lanes change and turns based on the results of the current sequence

Time to maneuver (sec) Lane change Turns
Precision (%)  Recall (%)  Accuracy (%) Precision (%) Recall (%) Accuracy (%)
4 89.82+7 89.82+5 86.67 7 96.19 +2 96.45 + 4 96.46 + 3
3 90.13+7 90.13£5 86.69 + 8 97.21£2 9734+ 4 96.46 +3
2 9142+5 9142+6 87.67+5 97.21+2 97.31+4 96.46 + 3
1 90.51 £ 6 90.51 £7 87.10+6 96.85+7 96.55+5 92.85+7
0 89.42 +7 89.42 +8 89.67 £ 8 97.33+4 97.21+2 96.42 +3

Table[5|shows the results of the model’s performance in predicting lane changes and cornering maneu-
vers based on current and previous sequences. By comparing Tables 4] and[5] we can see that, even though the
performance of lane change maneuvers has been slightly improved, it remains far from that of turn maneuvers.
We notice that the results remain consistent with those is Table (]

Table 5. Results obtained on lanes change and turns based on aggregating the results of the current and
previous sequences

Time to maneuver (sec) Lane change Turns
Precision (%)  Recall (%)  Accuracy (%) Precision (%) Recall (%)  Accuracy (%)
4 89.82 +4 89.83+3 88.42+4 96.19 £ 2 96.45 £ 2 96.44 +2
3 90.13+7 89.98 +5 88.23+5 97.21+£2 97.34+2 97.24 +2
2 91.20+5 90.31+6 8942 +5 97.21£2 97.31+£2 97.21+£2
1 91.65+6 90.68 £7 89.51+6 96.85 +2 96.55 +2 96.85+2
0 91.12+6 90.55+6 89.42+5 97.33+4 97.21£2 97323

4.3.3. Comparison with the state of the art

Table[6]shows the performance of DriveNet method compared to other related approaches. The results
show the precision, recall, and accuracy scores under three settings: lane change, turns, and all maneuvers.
With respect to performance scores, we found that DriveNet performs better in most maneuvers compared to
other approaches. It is over 88% accurate in predicting left and right lane change. In the case of anticipating
turns, the accuracy of DriveNet is higher than 97%, indicating its efficacy in predicting this particular maneuver
type. Moreover, when considering all maneuvers collectively, DriveNet’s algorithm exhibits a comprehensive
predictive capacity, achieving an accuracy of 91,24% with 4 seconds before the maneuver occurs.
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Table 6. Comparison of DriveNet with presented state-of-the-art methods

Approaches Time to maneuver (sec) ‘Lane change . Turns . All maneuvers
Precision Recall Precision Recall Precision Recall
(%) (%) (%) (%) (%) (%)
Olabiyi et al. [9] 3.5 - - - - 77.4 71.2
Zhou et al. [32] 3.30 87.3 93.8 86.0 81.4 91.7 90.7
Jain et al. [18] 3.5 83.8 86.0 83.8 79.9 84.5 77.1
STA-Net [33] 0 - - - - 90.8 91.1
DriveNet (Ours) 4 89.82 89.83 96.19 96.45 90.63 90.32

Comparing our results with other approaches, Olabiyi et al. [9] introduced a technique called deep
bidirectional recurrent neural network (DBRNN), which attained a precision rate of 77.4% and a recall rate
of 71.4% when forecasting turns and lane changes. Although their suggested method allows for flexibility
in maneuvering time by framing it as an anomaly detection issue, DriveNet outperforms DBRNN, notably
achieving a precision of 90.63% and a recall of 90.32% specifically in predicting lane changes. On the other
hand, Zhou et al. [32] introduced CF-RNN, achieving an F1-score of 91.2%, a precision of 91.7%, and a recall
of 90.7% on the Brain4Cars dataset. Despite similarities in outcomes, DriveNet demonstrates comparable
performance while extending the predictive time to maneuver 4 seconds, surpassing CF-RNN’s capability,
which is limited to 3.30 seconds.

In their study, Jain et al. [18] put forward a sensory-fusion technique based on deep learning, employ-
ing RNNs with LSTM units. Their method successfully predicted maneuvers with an average lead time of 3.5
seconds, demonstrating a precision rate of 84.5% and a recall rate of 77.1%. By contrast, DriveNet exhibits
competitive performance by attaining a prediction accuracy of 91.24% when anticipating maneuvers four sec-
onds ahead. More recently, STA-Net [33]], a novel approach utilizing a spatial-temporal joint attention network,
achieved a precision of 90.8% and a recall of 91.1%. While STA-Net slightly surpasses our method in terms of
these scores, it achieves these results with a time to maneuver of 0 seconds. In contrast, our method achieves a
precision of 90.63% and a recall of 90.32% with a time to maneuver of 4 seconds, providing sufficient time for
the driver to react.

5.  DISCUSSION AND PERSPECTIVES
In this section, we present some perspectives that we believe will help improve research on the pre-
diction of driving maneuvers. We mainly focus on two challenging issues: data availability and data privacy.

5.1. Dataset

The Brain4Cars dataset used in this work contains two major challenges. First, the data contains
only 594 samples. Though this number is largely considered to other publicly available datasets, it is still not
enough to train and evaluate models. Second, the maneuver class distributions are unbalanced. To address this
challenge, we are looking forward to building a new dataset in the same context by recording the natural long
driving distances of different drivers.

5.2. Federated learning

In this work, we used the Brain4Cars dataset, which contains drivers’ faces, to anticipate maneuvers.
This means that we don’t respect users’ privacy by taking images of drivers to train the model in order to
predict maneuvers. To avoid this problem, federated learning can be used to protect the data generated for
each device by sharing model updates, e.g. gradient information, instead of raw data. The predictive model of
intelligent vehicle behavior must respond quickly to predict driver behavior in complex real-world situations in
order to avoid accidents. Thus, federated learning approach can be used to train machine-learning models for
the prediction of driving behaviors.

6. CONCLUSION

In this study, the focus lies in anticipating driving maneuvers a few seconds before they are performed
by the driver. The outcome of our research empowers ADAS to forewarn drivers prior to executing risky
maneuvers, consequently providing drivers with additional response time. We propose an innovative approach
that combines deep learning and the attention mechanism to effectively capture long temporal dependencies
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and extract spatial information. DriveNet utilizes the CNN, LSTM, and attention mechanism models, which
are specifically designed for sequential data handling and image processing. By employing this configuration,
we achieved an impressive accuracy score of 91.24% with a 4-second lead time before the maneuver, allowing
ample decision-making time for the driver. Moving forward, our future research endeavors will focus on
enhancing the results by exploring alternative models that are more adaptable to this problem. Specifically,
we plan to incorporate an optical flow model to analyze motion in videos and a vision transformer capable of
interpreting movement over extended periods.
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