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 Optimizing hyperparameters is crucial for enhancing the performance of 

deep learning (DL) models. The process of configuring optimal 

hyperparameters, known as hyperparameter tuning, can be performed using 

various methods. Traditional approaches like grid search and random search 

have significant limitations. In contrast, Bayesian optimization (BO) utilizes 

a surrogate model and an acquisition function to intelligently navigate the 

hyperparameter space, aiming to provide deeper insights into performance 
disparities between naïve and advanced methods. This study evaluates BO's 

efficacy compared to baseline methods such as random search, manual 

search, and grid search across multiple DL architectures, including multi-

layer perceptron (MLP), convolutional neural network (CNN), and LeNet, 
applied to the Modified National Institute of Standards and Technology 

(MNIST) and CIFAR-10 datasets. The findings indicate that BO, employing 

the tree-structured parzen estimator (TPE) search method and expected 

improvement (EI) acquisition function, surpasses alternative methods in 
intricate DL architectures such as LeNet and CNN. However, grid search 

shows superior performance in smaller DL architectures like MLP. This 

study also adopts a multi-objective (MO) perspective, balancing conflicting 

performance objectives such as accuracy, F1 score, and model size 
(parameter count). This MO assessment offers a comprehensive 

understanding of how these performance metrics interact and influence each 

other, leading to more informed hyperparameter tuning decisions. 
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1. INTRODUCTION 

The performance of deep learning (DL) relies heavily on the hyperparameters [1], reinforcing the 

necessity for hyperparameter optimization. The process of finding optimal hyperparameters configuration for 

the DL models is referred to as hyperparameter tuning  [1]. In the context of hyperparameter tuning, there are 

various widely known techniques such as manual search [2], grid search and random search [3]. In manual 

search, the process of finding optimal hyperparameter configuration is intervened by a human directly where 

individuals rely on intuition, and experiences [4]. Due to that, it is laborious, time consuming and prone to 

errors [5]. In contrast to manual search, grid search automates the exploration process, systematically 

traversing the hyperparameter space in sequential order. Yet, this approach's brute-force methodology incurs 

significant computational overhead, particularly as the dimensionality of the search space escalates 

exponentially [6]. 

https://creativecommons.org/licenses/by-sa/4.0/
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Random search is an alternative to grid search, which adopts a random approach, sampling 

hyperparameters configuration in random order within the designated search space [7]. Compared to grid 

search, the implementation of random search evidently proven to be more effective especially in  

high-dimensional space [8]. Even with the randomness nature, the results obtained by random search is 

purely by ‘luck’ as it samples the hyperparameter search space without any guidance. It is evident that the 

implementation of grid search and random search exhibits a lack of sophistication, resulting in a naïve 

approach to hyperparameter tuning [8]. This method often leads to substantial computational resource 

consumption due to the exponential increase in search space [6]. Due to that, a modern approach which 

utilizes the data and finds optimal hyperparameter configuration intelligently is needed. Within the context of 

this study, Bayesian optimization (BO) is an alternative choice for the naïve methods. The utilization of BO 

leverages statistical model, employing surrogate model and acquisition function to guide BO for finding 

optimal hyperparameter configuration. BO known for its capabilities to optimize expensive function by 

iteratively constructing a probabilistic surrogate model of the underlying target function [9]. 

According to Nasayreh et al. [10], the implementation of BO, grid search and random search were 

tested on different machine learning (ML) models. Support vector machine (SVM), logistic regression (LR), 

random forest (RF), and naïve Bayes (NB) showed grid search and random search provided superior results 

in most tested models except LR. Based on the study conducted in [11], the implementation of BO was done 

by using Gaussian process (GP) as the surrogate model. Unfortunately, the process of hyperparameter tuning 

with large dimension space and small fitness evaluation budget showed that an alternative to GP is necessary 

[12]. In this study, the implementation of hyperparameter tuning was done using BO, an alternative to the 

brute-force methodology inherent in grid search and the stochastic nature of random search. BO offers a 

sophisticated approach to identifying optimal solutions. BO leverages prior data to intelligently navigate the 

search space by employing a probabilistic model, notably the tree-structured parzen estimator (TPE), which 

encapsulates the underlying objective function. 

Within the context of hyperparameter tuning, previous studies have predominantly focused on the 

single objective optimization (SSO) as in [10]. SSO provides advantages such as reduced runtime and 

improved convergence; however, it limits performance evaluation to a single objective, precluding the 

consideration of conflicting objectives. The implementation of a single objective typically fails to meet the 

scenario of the real-world, where it involves many conflicting objectives. The occurrence of clashes between 

multiple conflicting objectives happens most of the time in the real-world scenario. 

This study proposes multi-objective hyperparameter tuning by using BO on the different 

architectures of the DL models. The primary objective of this paper is to show that the implementation of BO 

for the hyperparameter tuning from multi-objective perspective provides a better performance compared to 

baseline methods on the different DL architectures, particularly when the search space grows exponentially 

when the new hyperparameters are added. In addition to that, this study offers a comprehensive exploration 

of the performance using different hyperparameter tuning methods within the context of multi-objective 

optimization. 

 

 

2. METHODS 

2.1.  Multi-objective hyperparameter tuning 

The effectiveness of the learning algorithm is heavily dependent on the configuration of 

hyperparameters, λ. The performance of a DL model can directly be impacted by the right hyperparameter 

configurations [1], [13]. Mathematically, the efficacy of a learning algorithm with designated hyperparameter 

is denoted as 𝒜λ, and f =  𝒜λ (X(train)) for a training set X(train). As instance, in a convolutional neural 

network (CNN) model where the batch size is bs and learning rate denoted as l, the equation for λ will be 

written as λ = (𝑏𝑠, l). In the context of hyperparameter configuration, the search space can be measured as 

stated in (1).  

 

N =  ∏ mi
n
i=1  (1) 

 

As referring to (1), hyperparameters are represented in n m whereas the possible values of each 

hyperparameters are represented in mi. Within the context of this study, the n (hyperparameters) is learning 

rate, epochs, batch size, kernel size, and neuron layers, depending on different architecture of multi-layer 

perceptron (MLP), LeNet, or CNN. Theoretically, based on the (1), the dimension of the search space 

increases exponentially when the new hyperparameters is added into the equation [14]. As the dimension of 

the search space grows bigger, the traditional approach of hyperparameter tuning is proven to be tedious, 

laborious, prone to errors, and consumes a lot of computing power [2]. 
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Other than that, within the context of hyperparameter tuning, the conflicting objectives often arises 

when optimizing for multiple performance metrics. Theoretically, multi-objective optimization problem can 

be defined as in (2) [15]. 

 

min 𝑜𝑟 𝑚𝑎𝑥 : 𝑓1(𝑥), 𝑓2(𝑥), … 𝑓𝑛(𝑥)    

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝑥 ∈ 𝑈 (2) 

 

Where x representing variables, n representing number of objective functions, and U is the feasible set, and 

min-max are objective functions. Now, within the context of DL, based on the previous studies, the 

conflicting arises between accuracy vs model size [16], specificity vs accuracy vs sensitivity [17], latency 

and accuracy [18]. In the context of this study, the conflicting objectives are not limit to bi-objective, but 

extended to tri-objectives which are accuracy, F1-score and weight of the model. 

 

2.2.  Bayesian optimization 

In BO, there are two crucial components involved, which are the probabilistic surrogate model and 

the acquisition function [19]. BO leverages prior data to intelligently navigate the search space by 

constructing a probabilistic model (also known as a surrogate model) [20], notably the TPE, which 

encapsulates the underlying objective function. This model not only provides estimations of the objective 

function but also quantifies the uncertainty surrounding these estimations. Consequently, BO continually 

refines its understanding of the objective landscape, iteratively adapting its search strategy to converge 

towards optimal solutions with enhanced precision and efficiency. 

In the context of hyperparameter tuning with large dimension space and small fitness evaluation 

budget, an alternative to typical GP is necessary [12]. In this experiment, the surrogate model will be used is 

TPE, which was introduced in [21]. The implementation of GP directly models P (y|x) as stated in (3) [12]. 

 

𝑃 (𝑦|𝑥) =  
𝑃(𝑥|𝑦)𝑥 𝑃(𝑦)

𝑃(𝑥)
 (3) 

 

Contradicts to GP, TPE concentrating on the approximation of the conditional probability P(x|y), 

rather than directly modelling P(y|x). This conditional probability, P(x∣y), is estimated using two distinct 

functions: l(x) for cases where the performance is below a certain threshold, and g(x) for cases where the 

performance surpasses the specified threshold are as stated in (4) [21]. In the context of this study, the 

threshold is adaptively adjusted and configured by using Optuna depending on the problems given.  

 

𝑃 (𝑥|𝑦) =  {
 𝑙(𝑥) 𝑖𝑓 𝑦 <  𝑦∗

 𝑔(𝑥) 𝑖𝑓 𝑦 ≥  𝑦∗ (4) 

 

These two density functions, l(x) and g(x), are subsequently employed in the expected improvement 

(EI) function. The EI, as represented by this equation, guides the decision of where to sample the next set of 

hyperparameters. In essence, this rephrasing aims to convey the key concepts of TPE's approach in 

approximating the conditional probability of hyperparameters given a score, with a specific focus on the 

functions l(x) and g(x) and their utilization in the EI function for determining optimal hyperparameter 

sampling points.  

As mentioned previously, the acquisition function used in this experiment is EI. Alternatively, the 

other widely used acquisition function in BO is called probability of improvement (PI). The implementation 

of PI only considers the probability of improving our current best estimate, but it does not factor in the 

magnitude of the improvement. Contrary to that, the implementation of EI in BO is widely used as it 

considered both the probability and increasement of a point. In addition to that, EI is able to solve the 

problem of falling into the local optimum solution. In the scope of this study, the acquisition function that 

will be using in this study is EI. The mathematical notation for EI is as stated in (5) [2]. 

 

max 𝐸𝐼(𝑥) =  {
(𝜇 (𝑥) − 𝑓(𝑥+) −  𝜉)Φ(𝑍) +  𝜎(𝑥)𝜙(𝑍), 𝜎(𝑥) > 0,

𝜎 (𝑥) = 0
 (5) 

 

Φ(.) and 𝜙(.) denote the cumulative distribution function and the probability density function of the standard 

normal distribution, respectively. Maximizing EI is corresponds to maximizing the ratio 
𝑙(𝑥)

𝑔(𝑥)
 in TPE, as 

shown in (6), where 𝑦∗ is some quantile of the observed y.  
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2.3.  Workflow of the research 

The workflow of the research will be discussed in more details. Starting from data acquisition and 

preparation, configuration of hyperparameter search space, the implementation of hyperparameter tuning on 

different datasets, different DL architectures, and performance evaluation. Figure 1 demonstrated the 

workflow of the research.  

 

 

 
 

Figure 1. The workflow of the research 

 

 

2.3.1. Data acquisition and preparation 

This study utilized two benchmark datasets that are well-known in the DL field. One of the datasets 

that will be employed in this study is Modified National Institute of Standards and Technology (MNIST) 

dataset, which comprises of 70,000 28×28 grayscale images of handwritten digits. 60,000 of the images 

allocated for training, and another 10,000 for testing purposes [22]. Another benchmark dataset is CIFAR-10, 

which comprises of 60,000 colour images evenly distributed across ten different classes of vehicles, and 

animals [23]. Similar to MNIST, CIFAR-10 is also a tiny image which sized at 32×32 pixels adding extra 

layer of complexity to the classification task. Both datasets have played a crucial role in the development of 

DL techniques. 

 

2.3.2. Configuration of hyperparameter search space 

The configuration of the hyperparameter search space varies based on the specific DL architecture 

and the hyperparameters under consideration. In this study, the hyperparameter search space for a MLP 

includes combinations of the following hyperparameters: optimizer, learning rate, number of epochs, and 

batch size. For the LeNet architecture, the hyperparameter search space extends beyond those of the MLP to 

include additional parameters: kernel size for the first convolutional layer (kernel_size_1), kernel size for the 

second convolutional layer (kernel_size_2), filter size for the first convolutional layer (filter_size_1), and 

filter size for the second convolutional layer (filter_size_2). In the case of a CNN, the hyperparameter search 

space encompasses all the hyperparameters of both MLP and LeNet architectures, with further extensions to 

include the kernel size for the third convolutional layer (kernel_size_3) and the filter size for the third 

convolutional layer (filter_size_3). 
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2.3.3. Hyperparameter tuning using Bayesian optimization 

As mentioned previously, there are two crucial components involved in BO, which are surrogate 

model and acquisition function [24]. The purpose of surrogate model acting as a probabilistic model, which 

encapsulates the underlying objective function, and the purpose of acquisition function is to dictates the next 

point for evaluation by balancing exploration (sampling uncertain regions) and exploitation (sampling 

regions with high EI) [20]. The implementation of surrogate model in the context of this study will be using 

TPE approach, whereas the implementation of acquisition function will be employed by using EI.  

The workflow of BO begins with the initial sampling which randomly set the initial guess points 

within the hyperparameter search space. Next, the surrogate model, the surrogate mode (TPE) is applied to 

the initial data points. TPE divides the data into two subsets: one for exploration, and one for exploitation. 

The exploration subset consists of data points with low objective function values, while the exploitation 

subset contains data points with high objective function values. TPE then fits separate models to these 

subsets, estimating the probability density functions (PDFs) of the hyperparameters given their corresponding 

objective function values. These models provide predictions and uncertainty estimates for unexplored regions 

of the search space. 

This model captures the underlying behaviour of the objective function and provides predictions 

along with uncertainty estimates for unexplored region of the search space. With the surrogate model 

established, the next challenge is to determine on how to identify the next points that yield the maximum of 

the objective function. In the context of BO, the acquisition function can be employed to guide the search for 

the optimal hyperparameters. 

The point suggested by the acquisition function is evaluated by computing the true objective 

function. This evaluation provides new data points that are used to update the surrogate model. After 

evaluating the objective function at the suggested point, the surrogate model is updated to incorporate the 

new data. This update refines the model's understanding of the objective landscape, improving its predictive 

capability. The process will be repeated until the termination criteria is met. At every iteration, the surrogate 

model is refined, and the acquisition function guides the search towards regions of the search space likely to 

contain optimal solutions. 

 

2.3.4. Performance assessment 

In this study, the assessment of performance will be assessed from multi-objective perspective 

trading off between accuracy, F1-score and the weight of the model. Classification metrics, particularly 

accuracy, will be evaluated through the application of confusion matrix. Table 1 presents a confusion matrix 

from which we will derive two metrics: accuracy (6) and F1-score (7). 

 

 

Table 1. The confusion matrix for accuracy and F1-score calculation 
 Positive Negative 

Positive True positive (TP) False negative (FN) 

Negative False positive (FP) True negative (TN) 

 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑁 + 𝑇𝑃/(𝑇𝑁 + 𝐹𝑁 + 𝑇𝑃 + 𝐹𝑃) (6) 

 

In addition to accuracy, the F1-score will also be evaluated as a classification parameter in this 

study. Defined as the harmonic mean of precision and recall [25], the F1-score offers a balanced assessment 

of model efficacy. F1-score can be calculated by utilizing precision and recall as mentioned in (7). Precision 

and recall are integral components of the F1-score. Precision quantifies the accuracy of positive predictions, 

representing the ratio of correctly identified positive instances to all instances predicted as positive. Recall, 

conversely, measures the model's ability to detect positive instances, defined as the proportion of correctly 

identified positive cases among all actual positive instances in the dataset. The formula for measuring the  

F1 score is presented in (7). 

 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁)  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃)  

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∗ (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙)/(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙) (7) 

 

In addition to classification metrics, the model's efficiency will be assessed by examining its 

computational complexity. This evaluation will be conducted by calculating the model's weight, which is 

determined by the total number of parameters it contains. Similar approach of measuring efficiency of the 
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model was seen in [26]. The performance of the model will be evaluated from the multi-objective point of 

view, using scalarization approach. In order to do that, a weighted sum will be implemented to measure the 

performance from multi-objective perspective. In (8) shows the formula for weighted sum to calculate three 

conflicting objectives in a scalarization equation.  

 

𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑_𝑠𝑢𝑚 = (𝐹1_𝑠𝑐𝑜𝑟𝑒 ∗ 𝑤1) + (𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ∗ 𝑤2) + (𝑖𝑛𝑣𝑒𝑟𝑠𝑒𝑑_𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑_𝑝𝑎𝑟𝑎𝑚𝑠 ∗ 𝑤3) (8) 

 

As seen in the (8), w refers to the weight of performance metrics. In the context of this study, the weightage 

(w1, w2, w3) are equivalent as there is no prioritize between one and another conflicting objective. Hence,  

all weightages are set to 1.  

 

 

3. RESULTS AND DISCUSSION 

This section discusses the evaluation of a proposed method which is hyperparameter tuning via BO 

on different DL architectures from multi-objective perspective. Based on the experiment conducted, is 

proven that the performance of hyperparameter tuning by using BO to be more cost effective from the 

perspective of computing power, convergence time, and the performance of the DL model. Subsections 3.1 

and 3.2 discusses the performance of the DL architecture on MNIST and CIFAR-10 datasets. 

 

3.1.  MNIST dataset 

In this subsection, the result of the hyperparameter tuning by using BO on different DL architectures 

namely MLP, LeNet, and CNN, are recorded. Tables 2 to 4 shows the top-5 optimal hyperparameter 

configurations on MLP, LeNet, and CNN on MNIST dataset. As according to Table 2, the identified 

configuration for MLP architecture on MNIST dataset consists of Adamax optimizer, a learning rate of 

0.0001, batch size of 64, and 50 epochs. This configuration yielded impressive performance metrics: 

accuracy of 0.9823 and F1 score of 0.9822. The resulting model comprises 101,770 parameters, which 

corresponds to 1.0 normalized parameters. The cumulative values for normalized params, accuracy and  

F1 score added up to 2.9645. In the different architecture of LeNet, as referring to Table 3, the process of 

hyperparameter tuning produced a notable outcome of an accuracy of 0.9932, F1 score of 0.9931, 115,902 

number of parameters, which equivalent to 1.0 after normalized summing up to 2.9863. The hyperparameter 

combination for above result is (kernel size 1=4, kernel size 2=4, filters 1=16, filters 2=48, 

optimizer=RMSprop, learning rate=0.1, batch size=128, epochs=50, activation = relu). 

 

 

Table 2. Hyperparameter tuning results for MLP on MNIST dataset using BO 
OPT LR EP BS Accuracy F1 score Params Normalized params Weighted sum 

Adamax 0.0001 50 64 0.9823 0.9822 101770.0 1 2.9645 

Adamax 0.0001 50 64 0.9818 0.9817 101770.0 1 2.9635 

RMSprop 0.0001 40 64 0.9818 0.9816 101770.0 1 2.9634 

Adamax 0.01 50 64 0.9816 0.9814 101770.0 1 2.963 

Adadelta 0.001 50 64 0.9815 0.9813 101770.0 1 2.9628 

 

 

Table 3. Hyperparameter tuning results for LeNet on MNIST dataset using BO 
OPT LR F1 K1 ACT F2 K2 EP BS Accuracy F1 score Params Normalized 

params 

Weighted 

sum 

RMSprop 0.1 16 4 relu 48 4 50 128 0.9932 0.9931 115902.0 1.0 2.9863 

RMSprop 0.1 16 4 relu 48 4 50 128 0.9932 0.9931 115902.0 1.0 2.9863 

Adagrad 0.1 16 4 relu 48 4 50 128 0.9928 0.9927 115902.0 1.0 2.9855 

RMSprop 0.1 16 4 relu 48 4 50 128 0.9927 0.9926 115902.0 1.0 2.9853 

Adagrad 0.1 16 4 relu 48 4 50 128 0.9926 0.9925 115902.0 1.0 2.9851 

 

 

Table 4. Hyperparameter tuning results for CNN on MNIST dataset using BO 

OPT LR F1 K1 ACT F2 K2 F3 K3 EP BS Accuracy 
F1 

score 
Params 

Normalized 

params 

Weighted 

sum 

RMSprop 0.0001 16 4 elu 48 3 64 3 50 256 0.9932 0.9931 40714.0 0.9997 2.9861 

Adadelta 0.01 16 4 elu 48 3 64 3 50 256 0.993 0.9929 40714.0 0.9997 2.9857 

RMSprop 0.01 16 4 elu 48 3 64 3 50 256 0.9929 0.9928 40714.0 0.9997 2.9855 

Adadelta 0.01 16 4 elu 48 3 64 3 50 256 0.9926 0.9925 40714.0 0.9997 2.9848 

Adadelta 0.01 16 4 elu 48 3 64 3 50 256 0.9925 0.9924 40714.0 0.9997 2.9847 
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Similarly in the CNN architecture, the most effective combination of hyperparameter found by BO 

is articulated as (kernel size 1=4, kernel size 2=3, kernel size 3=3, filters 1=16, filters 2=48, filters 3=64, 

optimizer=RMSprop, learning rate=0.0001, batch size=256, epochs=50, activation = elu), yielding an 

accuracy of 0.9932, an F1 score of 0.9931, and 40,714 number of parameters equivalent to normalized 

parameters of 0.9997. The combined value of these three metrics is 2.9861. The results underscore the 

effectiveness of BO in navigating the complex hyperparameter landscape to identify optimal configurations. 

Across all architectures, the optimized configurations achieved high accuracy and F1 scores, demonstrating 

their effectiveness in accurately classifying digits in the MNIST dataset. 

 

3.2.  CIFAR-10 dataset 

In this subsection, the result of the hyperparameter tuning by using BO on different DL architectures 

namely MLP, LeNet, and CNN are recorded. Tables 5 to 7 shows the top-5 optimal hyperparameter 

configurations on MLP, LeNet, and CNN on CIFAR-10 dataset. Tables 5 to 7 present the top five outcomes 

of hyperparameter tuning on the CIFAR-10 dataset across different architectures, including MLP, LeNet, and 

CNN. As according to Table 5, the optimal hyperparameter configuration for MLP dataset obtained by using 

BO is identified as (optimizer=Adamax, learning rate=0.001, batch size=256, epochs=50), yielding an 

accuracy of 0.4851, F1 score of 0.4789, number of params of 394,634 which equivalent to 1.0 normalized 

params. The cumulative values for normalized params, accuracy and F1 score added up to 1.964.  
 

 

Table 5. Hyperparameter tuning results for MLP on CIFAR-10 dataset using BO 
OPT LR EP BS Accuracy F1 score Params Normalized params Weighted sum 

Adamax 0.001 50 256 0.4851 0.4789 394634.0 1 1.964 

SGD 0.001 50 256 0.4851 0.4788 394634.0 1 1.9639 

Adamax 0.001 50 512 0.4826 0.4786 394634.0 1 1.9612 

RMSprop 0.001 50 256 0.483 0.4778 394634.0 1 1.9608 

RMSprop 0.1 50 512 0.4819 0.4787 394634.0 1 1.9606 

 

 

Table 6. Hyperparameter tuning results for LeNet on CIFAR-10 dataset using BO 
OPT LR F1 K1 ACT F2 K2 EP BS Accuracy F1 score Params Normalized params Weighted sum 

Nadam 0.1 16 4 relu 48 4 10 64 0.6787 0.6739 168254.0 0.8902 2.2428 

Adadelta 0.1 16 4 relu 48 4 10 64 0.6663 0.6663 168254.0 0.8902 2.2228 

Adadelta 0.1 16 4 relu 48 4 10 64 0.6671 0.6626 168254.0 0.8902 2.2199 

Nadam 0.1 16 4 relu 48 4 10 64 0.6642 0.6652 168254.0 0.8902 2.2196 

Adadelta 0.1 16 4 relu 48 4 10 64 0.6625 0.6626 168254.0 0.8902 2.2153 

 

 

Table 7. Hyperparameter tuning results for CNN on CIFAR-10 dataset using BO 

OPT LR F1 K1 ACT F2 K2 F3 K3 EP BS Accuracy F1 score Params 
Normalized 

params 

Weighted 

sum 

Adagrad 0.0001 16 4 elu 48 3 64 3 30 256 0.6984 0.6968 45706.0 0.9898 2.385 

Adadelta 0.0001 32 3 elu 48 3 64 3 30 256 0.704 0.7027 52730.0 0.9758 2.3825 

Adadelta 0.0001 32 3 elu 48 3 64 3 30 256 0.7024 0.7009 52730.0 0. 9758 2.3791 

SGD 0.0001 16 4 elu 48 3 64 3 30 256 0.6936 0.6922 45706.0 0.9898 2.3756 

Adadelta 0.1 16 3 relu 48 4 64 3 50 512 0.6978 0.6964 50746.0 0.9798 2.374 

 

 

In the different architecture of LeNet, as referring to Table 6, the process of hyperparameter tuning 

produced a notable outcome of an accuracy of 0.6787, F1 score of 0.6739, 168,254 number of parameters, 

which equivalent to 0.8902 after normalized summing up to 2.2428. The hyperparameter combination for 

above result is (kernel size 1=4, kernel size 2=4, filters 1=16, filters 2=48, optimizer=Nadam, learning 

rate=0.1, batch size=64, epochs=10, activation = relu). On the other hand, in LeNet architecture, the best 

hyperparameter produced an accuracy of 0.6822, F1-score of 0.6827, 18,1093,54 number of parameters 

which equivalent to 0.8864 after normalized the parameters summing up to 2.2513. The hyperparameter 

combination contributing to this outcome is specified as (kernel size 1=4, kernel size 2=4, kernel size 3=4, 

kernel size 4=2, kernel size 5=2, filters 1=96, filters 2=64, filters 3=64, filters 4=128, filters 5=64, 

optimizer=Adadelta, learning rate=0.1, batch size=256, epochs=30, activation = relu). 

Similarly in the CNN architecture, the most effective combination of hyperparameter found by BO 

is articulated as (kernel size 1=4, kernel size 2=3, kernel size 3=3, filters 1=16, filters 2=48, filters 3=64, 

optimizer=RMSprop, learning rate=0.0001, batch size=256, epochs=30, activation = elu), yielding an 

accuracy of 0.6984, an F1 score of 0.0.6968, and 45,706 number of parameters equivalent to normalized 

parameters of 0.9898. The combined value of these three metrics is 2.385. Comparing these results to the 

MNIST dataset, the CIFAR-10 dataset presents greater challenges, as evidenced by the lower average 
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accuracy of approximately 61%. Nonetheless, the hyperparameter tuning process successfully identified 

configurations that significantly improved model performance across all architectures, demonstrating the 

effectiveness of BO in optimizing DL models for image classification tasks.  

 

3.3.  Bayesian optimization and baseline methods 

This subsection will be discussing on the performance of BO with the other baseline methods in 

different DL architectures on MNIST and CIFAR-10 datasets. Tables 8 to 10 shows the performance of the 

hyperparameter tuning by using BO and other baseline methods namely manual search, grid search, random 

search and BO. As referred to Table 8, the outcomes of hyperparameter tuning on the MLP architecture 

evidently shows the outstanding performance compared to other alternative methods. Grid search 

demonstrates its superiority by exhaustively sampling every hyperparameter configuration within the defined 

search space. In contrast, manual search relies on trial-and-error, while random search employs stochastic 

sampling techniques. BO utilizes probabilistic models. However, in theory, none of these methods can 

surpass grid search, as it ensures that no hyperparameter configuration is left unexplored. This advantage is 

particularly notable due to the relatively constrained hyperparameter search space inherent in MLP 

architecture. However, the results reveal a slight variation in performance, with grid search achieving a 

cumulative weighted sum of 2.966, followed closely by random search with 2.965 and BO with 2.964 on the 

MNIST dataset. On the CIFAR-10 dataset, hyperparameter tuning through grid search resulted in a weighted 

sum of 2.048, followed by manual search with 2.014, random search with 2.005, and BO with 1.964. 

Following to that, the performance of LeNet architecture as recorded in Table 9 shows that the 

performance of BO outperforms other baselined methods on both MNIST and CIFAR-10 dataset. Within the 

context of MNIST dataset, BO yielded the weighted sum of 2.9863 follows by random search with 2.9845, 

grid search of 2.9169 and manual search with 2.8917. On CIFAR-10 dataset, BO yielded the weighted sum 

of 2.2428 follows by random search with 2.1424, manual search of 2.0483, and lastly grid search of 2.0466. 
 

 

Table 8. MLP architecture performance: outcomes of hyperparameter tuning 
MLP 

Dataset Hyperparameter tuning technique Accuracy F1 score Number of params Inversed normalized 

params 

Weighted sum 

MNIST 

Manual search 0.9813 0.9812 101,770 1.0 2.962 

Grid search 0.9833 0.9832 101,770 1.0 2.966 

Random search 0.9826 0.9829 101,770 1.0 2.965 

Bayesian optimization 0.9823 0.9822 101,770 1.0 2.964 

CIFAR-10 

Manual search 0.5084 0.5058 394,634 1.0 2.014 

Grid search 0.5260 0.5223 394,634 1.0 2.048 

Random search 0.5051 0.5005 394,634 1.0 2.005 

Bayesian optimization 0.4851 0.4789 394,634 1.0 1.964 

 

 

Table 9. LeNet architecture performance: outcomes of hyperparameter tuning 
LeNet 

Dataset Hyperparameter tuning technique Accuracy F1 score Number of params Inversed normalized 

params 

Weighted sum 

MNIST Manual search 0.9824 0.9823 150,374 0.927 2.8917 

Grid search 0.9661 0.9658 122,702 0.985 2.9169 

Random search 0.9923 0.9922 115,902 1.0 2.9845 

Bayesian optimization 0.9932 0.9931 115,902 1.0 2.9863 

CIFAR-10 Manual search 0.6523 0.653 238,398 0.743 2.0483 

Grid search 0.6847 0.6839 269,486 0.677 2.0466 

Random search 0.6935 0.6984 235,118 0.750 2.1424 

Bayesian optimization 0.6787 0.6739 168,254 0.890 2.2428 

 

 

Table 10. CNN architecture performance: outcomes of hyperparameter tuning 
CNN 

Dataset Hyperparameter tuning technique Accuracy F1 score Number of params Inversed normalized 

params 

Weighted sum 

MNIST Manual search 0.977 0.9769 82,970 0.916 2.8699 

Grid search 0.9907 0.9906 92,698 0.896 2.8773 

Random search 0.9923 0.9923 40,602 1.0 2.9846 

Bayesian optimization 0.9932 0.9931 40,714 0.999 2.9861 

CIFAR-10 Manual search 0.6631 0.6604 133,450 0.815 2.1385 

Grid search 0.6579 0.6578 133,466 0.815 2.1307 

Random search 0.7082 0.7087 94,202 0.893 2.3109 

Bayesian optimization 0.6984 0.6968 45,706 0.9898 2.3842 
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Similarly on CNN architecture, the performance of BO once again stands out comparing to other 

baselined methods on both datasets. On MNIST dataset, BO achieves a weighted sum of 2.9861, follows by 

random search with 2.9846, grid search with 2.8773, and manual search with 2.8699. On the CIFAR-10 

dataset. BO obtained 2.3842 of weighted sum comparing to other baselined methods which achieved 2.3109 

(random search), 2.1385 (manual search) and 2.1307 (grid search). 

 

 

4. CONCLUSION 

BO stands out from manual search, grid search, and random search by leveraging past data to guide 

the next iteration, aiming for an optimal solution. Unlike grid search, where the hyperparameter search space 

exponentially increases with the addition of new hyperparameters, BO offers a more efficient approach, 

reducing computing costs. Additionally, random search's inconsistency due to its random nature contrasts 

with BO's fability to provide more consistent results. However, it's important to acknowledge that BO is not 

without its weaknesses. One limitation is its reliance on probabilistic models, which may not always 

accurately capture the underlying complexities of the hyperparameter space. Furthermore, BO's performance 

heavily depends on the configuration of its hyperparameters, and the quality of the surrogate model used. 

Future studies could focus on addressing these limitations and further refining the BO approach. Research 

avenues might include exploring more advanced surrogate models, enhancing the acquisition function to 

better balance exploration and exploitation, and investigating strategies to handle noisy or uncertain 

evaluations. Other than that, future studies could focus more on other modern optimization techniques, such 

as heuristic or swarm intelligence approach, which could be beneficial within the field of hyperparameter 

tuning from the perspective of multi-objective. In addition to that, comparative studies could delve deeper 

into understanding the trade-offs between BO and other hyperparameter tuning techniques across a wider 

range of DL architectures and datasets. 
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