
IAES International Journal of Artificial Intelligence (IJ-AI)

Vol. 14, No. 1, February 2025, pp. 810~821

ISSN: 2252-8938, DOI: 10.11591/ijai.v14.i1.pp810-821  810

Journal homepage: http://ijai.iaescore.com

Method for developing and partitioning graph-based data

warehouses using association rules

Redouane Labzioui, Khadija Letrache, Mohammed Ramdani
LIM Laboratory, Faculty of Sciences and Techniques of Mohammedia, University Hassan II, Casablanca, Morocco

Article Info ABSTRACT

Article history:

Received Mar 23, 2024

Revised Oct 17, 2024

Accepted Oct 21, 2024

 The evolution of modern databases has led to a variety of not only structured

query language (NoSQL) models, particularly graph-oriented-databases. This

growth has encouraged businesses to explore graph-based business

intelligence (BI) solutions. This paper explores three essential aspects in the

domain of graph warehouse: the establishment of efficient graph warehouses,

the significance of data historization, and the development of effective

strategies for graph partitioning. It starts by building a BI system within a

graph database. Subsequently, the paper emphasizes the pivotal role of data

historization, highlighting the slowly graph changing dimension (SGCD)

approach as a versatile framework for accommodating varied dimensional

changes, additionally; the paper introduces a novel partitioning strategy

utilizing association rules algorithms, for optimized and scalable graph

warehouse management.

Keywords:

Association rules

Business intelligence

Graph warehouse

Graph-oriented-databases

Not only structured query language
This is an open access article under the CC BY-SA license.

Corresponding Author:

Redouane Labzioui

LIM Laboratory, Faculty of Sciences and Techniques of Mohammedia, University Hassan II

Casablanca, Morroco

Email: redouane.labzioui-etu@etu.univh2c.ma

1. INTRODUCTION

Expanding data sets have significantly altered the landscape of modern databases, particularly the

emergence and expansion of various not only structured query language (NoSQL) models like document,

column, key-value, and graph databases [1], [2]. Among these, graph-oriented databases have garnered

substantial attention, they offer a unique abstraction to handle densely connected data, allowing for complex

domain modeling and execution of intricate queries [3], [4]. The increased attention has led to a number of

businesses starting projects to develop business intelligence (BI) solutions with graphs [5], [6].

However, data historization-the process of conserving data across time-is becoming more and more

necessary due to the increasing complexity of data. For the purpose of monitoring changes over time,

examining past trends, adhering to legal obligations, and making wise decisions [7]. In graph-based data

warehouses, where dimensions are frequently used to describe entities within the graph, this becomes very

important, understanding the evolution of the graph and its components becomes difficult in the absence of

data historization [8].

In addition to historization, this paper addresses another critical challenge: data partitioning within

these graph-based data warehouses. Graphs, as complex structures, require a nuanced approach to effectively

manage partitions [9]. Well-managed partitions are essential for optimizing queries, ensuring efficient storage,

and enabling quick access to relevant data [10], [11]. Therefore, this paper aims to concurrently address three

crucial aspects: the creation of efficient data warehouses under graph database systems, the importance of data

historization, and the effective management of data partitions.

https://creativecommons.org/licenses/by-sa/4.0/

Int J Artif Intell ISSN: 2252-8938 

Method for developing and partitioning graph-based data warehouses using … (Redouane Labzioui)

811

First, we construct a BI system within a graph database. We then examine the importance of data

historization, focusing on the slowly graph changing dimension (SGCD) approach, which is adaptable to

different types of dimensional changes over time. This focus on historization addresses the gap in previous

research by detailing strategies for tracking and managing changes over time in graph data warehouses. Finally,

we explore strategies and algorithms based on association rules for effectively managing partitions in the

context of graph-based data warehouses.

The rest of this document is structured as outlined below: section 2 explores the existing literature on

graph data warehousing. In section 3, we provide the necessary background of the approach. Section 4 delves

into the implementation of the strategy. Section 5 discusses the principal results of the study. Finally, this work

is concluded in section 6, which also suggests options for future research.

2. RELATED WORKS

In the literature, discussions about data partitioning and historization have predominantly focused on

relational data warehouses, with a limited exploration into graph warehouse. However, recent years have

witnessed a growing interest in integrating BI technology with graph databases, resulting in various proposed

methodologies documented in the literature. Zhao et al. [12] have presented a brand-new idea known as the

graph cube, that is a new data warehouse paradigm intended to handle multidimensional queries inside

large-scale multidimensional networks. This approach organizes dimensions based on node attributes while

employing computed measures to aggregate these node attributes, authors did not address the partitioning and

historization aspect within the graph warehouse. Castelltort and Laurent [13] introduced a methodology

suggesting the use of graph structure for online analytical processing (OLAP) queries, leveraging the

performance of the graph database for storage and query time processing. This approach involves converting

measures and dimensions into nodes within the graph, using arcs to establish relationships between dimensions

and measurements. Hierarchical interactions among nodes retain hierarchical dimensions. However, this

strategy is confined solely to the snowflake model, potentially limiting its applicability to other data models.

Muttipati and Padmaja [14] offer a comprehensive overview of existing tools and approaches for

graph partitioning and frequent sub-graph extraction. It explores a wide array of topics, encompassing

graph-partitioning techniques, frequent sub-graph mining algorithms, parallel processing frameworks, and

managing substantial volumes of graph data. However, it is worth noting that the study might lack in-depth

experience and empirical results to substantiate its findings fully. While its broad scope provides a wealth of

information, it might fall short in thoroughly examining specific aspects or offering detailed insights into

certain algorithms or parallel frameworks. Additionally, it does not delve into partitioning of the graph

warehouse, limiting its exploration to certain areas within the realm of graph databases. Dai et al. [15]

introduced the incremental online graph partitioning (IOGP) algorithm, aimed at addressing performance needs

in distributed graph databases. IOGP dynamically adjusts through three operational stages, efficiently

accommodating continuous graph changes. It swiftly produces optimized partitioned graphs, proficiently

serving complex traversals. Implementation details, including in-memory data structures like edge counters,

facilitate rapid online graph partitioning. Extensive evaluations across diverse graphs affirm IOGP's

advantages, aiding in establishing key parameter selection guidelines. Akid et al. [16] suggest guidelines for

transforming a multidimensional data model into a graph data model (MDM2G) and compare the performance

of snowflake model and star designs in both graph databases and relational, focusing on size and

dimensionality. Their comparison suggests that employing a graph-based implementation for a multi-table data

warehouse has greater efficiency than a relational approach. Moreover, within graph databases, a star model

demonstrates similar performance to a snowflake model.

Andriamampianina et al. [17] suggested a conceptual framework for temporal graphs depicting

evolving graph data. It captures how data changes over time without sacrificing information or introducing

redundancy, which differs from how snapshot-based models handle this evolution. Firstly, it is tailored towards

business needs, offering non-expert users a complete understanding of data and its evolving elements.

Secondly, it is versatile, capable of representing various types of changes in graph data; including topology

shifts and alterations in attribute sets and values. Lastly, it accurately captures the temporal evolution of data,

preserving information and avoiding redundancy, unlike snapshot-based models. However, when applied to

large datasets, temporal context analysis and manipulation can occasionally result in slower processing times

and reduced performance. Moreover, temporal graphs can quickly grow in size with added data over time.

Managing these large datasets can be costly in terms of storage and processing, requiring additional resources.

Zhou et al. [18] describe a novel method for representing data and queries using graph topologies, providing a

distinctive way to visualize column correlations. It chooses partitioning keys by utilizing graph embedding’s,

which may increase the effectiveness of data partitioning. It also suggests a learning assessment model that

estimates the performance of partitioning strategies without physically dividing data, potentially conserving

computing power. Benhissen et al. [19] suggest a method centered around a progressive schema model

  ISSN: 2252-8938

Int J Artif Intell, Vol. 14, No. 1, February 2025: 810-821

812

featuring multiple versions, where a graph data warehouse accommodates data instances aligned with distinct

schema versions. The handling of these versions is made easier using a dedicated meta-model for warehouse

schema versions, along with the integration of evolutionary functions introduced at the schema level.

Nevertheless, the research does not delve into the aspect of OLAP cube partitioning within graphs.

It is clear from the previous overview that the majority of these papers primarily concentrate on

transforming classical data warehouse into graphs. This emphasis could potentially restrict the thorough

exploration and utilization of the complete benefits provided by graph databases. Additionally, these studies

overlook the aspect of historical data and partitioning graph warehouses, creating another significant gap in

their coverage. In contrast, our suggested method makes advantage of graph features to build graph warehouses,

adresses also the aspect of data historization, and uses association rules for partitioning graph warehouses.

3. OUR APPROACH

Our method entails first building a graph warehouse, with a particular emphasis on the SGCD method

for data historization. This method is specifically designed to manage changes in graph dimensions over time,

ensuring that the historical evolution of data is accurately captured. The SGCD enables the warehouse to

maintain a comprehensive historical record of the dimensions, which is crucial for analyzing trends and

performing time-based queries [20]. Subsequently, we use user OLAP queries as input for two crucial

algorithms: The Apriori algorithm [21], which identifies frequently occurring itemsets in the graph cube, and

a rule-based association algorithm is employed to detect the most used partitions [22]. The primary objective

of this technique is to optimize our OLAP cube for maximum performance, ensuring efficient handling of user

queries and data analysis. There are four steps in this approach:

‒ Building a graph warehouse.

‒ Integrate a data historization component into the process, emphasizing the SGCD method, this step

ensures a comprehensive view of data changes over time, highlighting adaptability to various dimensional

modifications.

‒ Utilizing user queries as input for the Apriori algorithm to identify frequently occurring itemsets within

the graph cube.

‒ Using a rule-based association algorithm to identify the most frequently used partitions.

3.1. Graph warehouse

Our method builds the graph warehouse by combining the inherent flexibility of graph structures with

the concepts of multidimensional modeling. In this context, dimensions are modeled as nodes, and facts, which

contain measurements, are represented as nodes, creating a clear and navigable structure for querying and

analyzing data [23]. The edges in this graph model are crucial as they define the relationships between facts

and dimensions, capturing both the structure of the data and the links between different entities.

Dimension DS the node identification in this architecture is used to represent nodes (LN, PN) [24] where:

‒ LN indicates the node's name.

‒ PN indicates dimensions’ attributes.

Fact: The fact node is represented as a node connected by edges to dimension nodes [25]. Furthermore,

properties related to the measurements, such as applied aggregate functions or actual values, may be present in

the fact node [26]. The fact node is determined by (MF, NF) where:

‒ NF: the name of the fact.

‒ MF: it consists of multiple measurements functioning as attributes for nodes, with each one linked to an

aggregation function.

The link between a fact node and its associated dimensions: Edges in the model represent the relationship

between a fact and its associated dimensions; this relationship is defined by (LE, NF, ND, PE) [27], where:

‒ LE is the relationship's label.

‒ N F is the fact node.

‒ N D the node representing the associated dimension.

‒ P E define the characteristics of the connection. The attributes include key-value pairs used to store

relationship-related data [28].

3.2. Data historization in the graph warehouse

Upon the establishment of our graph warehouse, our next strategic step involves the implementation

of the SGCD methodology. This approach aims to enhance our data warehousing capabilities by enabling the

systematic tracking and management of changing dimensions within the graph structure [29]. By adopting

SGCD, we plan to meticulously capture and preserve historical data changes, ensuring a comprehensive record

of evolving information [30]. This implementation will enable us to efficiently handle variations in data

Int J Artif Intell ISSN: 2252-8938 

Method for developing and partitioning graph-based data warehouses using … (Redouane Labzioui)

813

dimensions over time, ensuring accuracy and precision in analyzing historical trends and patterns [31]. With

SGCD in place, our graph warehouse will possess a robust foundation for maintaining data integrity and

facilitating in-depth historical analyses crucial for informed decision-making.

In our approach, we will implement SGCD by utilizing Algorithm 1: Managing historization

dimensions in graph warehouses. This algorithm is designed to effectively manage changes in dimension data

by creating new versions when necessary and updating current versions. Additionally, it maintains proper

relationships within the graph-based data warehouse, ensuring data integrity and consistency.

Algorithm 1: Managing historization dimension in graph warehouse

1. Require: New dimension data: NewData

2. Ensure: Successful operation: Success

3. Function ManageSGCDForDimension(NewData):

4. ExistingRecord ←SearchDimensionRecordByKey (NewData.Key)

5. If ExistingRecord is not empty :

6. If ExistingRecord.Value ≠ NewData.Value:

7. UpdateCurrentVersion(ExistingRecord)

8. Else DoNothing()

9. EndIf

10. Else CreateNewVersion(NewData)

11. EndIf

12. Return Success

13. End Function

14. FunctionSearchDimensionRecordByKey(Key):
15. Return DimensionRecord

16. End Function

17. Function UpdateCurrentVersion(Record):

18. Record.ValidTo ← CurrentTimestamp()

19. NewVersion ← CreateNewVersion(Record)

20. Record.CurrentVersion ← NewVersion

21. End Function

22. Function CreateNewVersion(Data):

23. NewNode ← CreateNewNode(Data)

24. NewNode.ValidFrom ← CurrentTimestamp()

25. Return NewNode

26. End Function

27. FunctionVersioningRelationship (DimensionRecord, Version):

28. CreateRelationship (DimensionRecord, Version)

29. End Function

30. Function DoNothing ():

31. // This function does nothing, used when the record has not changed

32. End Function

3.3. Generate frequently used itemsets

The next stage in this process entails retrieving user queries from the OLAP system logs subsequent

to the construction of our graph warehouse. This retrieval is essential as it allows us to analyze user behavior

and tailor the system to better meet their needs. Next, we use the Apriori technique to find common itemsets

of predicates [32].

The Algorithm 2: Generate frequently used itemset has a significant impact in our graph cube model

for determining frequent itemsets within OLAP queries. Its primary objective is to generate these frequent

itemsets from transactional data by evaluating item occurrence frequency and filtering those surpassing a

minimum support threshold (min-sup). The process comprises two main steps:

‒ Initial generation of unique itemset: The algorithm traverses transactions to establish the occurrence

frequency of each item. It then forms a set of frequent itemsets based on the minimal support threshold.

‒ Extension of itemsets: Starting from frequent itemsets of size 1, the algorithm progressively generates

larger itemsets. It creates potential candidates by combining previously identified frequent itemsets. These

new sets are assessed within transactions to determine their frequency and are retained only if they surpass

the minimal support threshold.

  ISSN: 2252-8938

Int J Artif Intell, Vol. 14, No. 1, February 2025: 810-821

814

Algorithm 2: Generate frequently used itemset

1. frequentItemsets ← {}

2. previousFrequentItemsets ← GenerateInitialFrequentItemsets

3. while previousFrequentItemsets is not empty do

4. CurrentFrequentItemsets←generateCandidates(previousFrequentItemsets)

5. for each partition in graph cube partitions do

6. for each candidate in currentFrequentItemsets do

7. if candidate is employed in partition then

8. candidate.frequency ← candidate.frequency +1

9. end if

10. end for

11. end for

12. previousFrequentItemsets ← currentFrequentItemsets

13. currentFrequentItemsets ← filterCandidates (currentFrequentItemsets, minSup)

14. frequentItemsets ← frequentItemsets ∪ currentFrequentItemsets

15. end while

16. function GenerateInitialFrequentItemsets ()

17. initialFrequentItemsets ← {}

18. for each item in all items do

19. if item.frequency ≥ minSup then

20. initialFrequentItemsets ← initialFrequentItemsets ∪ {item}

21. end if

22. end for

23. return initialFrequentItemsets

24. end function

25. function GenerateCandidates (itemsets)

26. candidates ← {}

27. i ← 0

28. while i < size (itemsets) do

29. itemset ← itemsets[i]

30. j ← 0

31. while j < size(itemset) do

32. element ← itemset[j]

33. candidate ← itemset without element

34. if candidate is not already included among the candidates then

35. Add candidate to the set of candidates

36. end if

37. j ← j + 1

38. end while

39. i ← i + 1

40. end while

41. return candidates

42. end function

43. function FilterCandidates (candidates, minSup)

44. frequentCandidates ← {}

45. i ← 0

46. while i < size (candidates) do

47. candidate ← candidates[i]

48. if candidate.frequency ≥ minSup then

49. Add candidate to frequentCandidates

50. end if

51. i ← i + 1

52. end while

53. return frequentCandidates

54. end function

Int J Artif Intell ISSN: 2252-8938 

Method for developing and partitioning graph-based data warehouses using … (Redouane Labzioui)

815

3.4. Generate partitions using association rules

The next algorithm in our approach utilizes the attributes and relationships identified within the

frequent itemsets to establish association rules. These rules serve as the basis for partitioning a graph based on

these attributes and relationships. This partitioning allows for more efficient data retrieval and analysis,

ultimately enhancing the performance of our graph-based system.

The Algorithm 3: Generate partitions using association rules begins by iterating through each frequent

itemset. For each itemset, it generates all possible subsets. Subsequently, for each subset, it constructs an

association rule, where the antecedent comprises the subset, and the consequent consists of the complement of

the subset within the frequent itemset. This systematic process allows for the creation of association rules that

capture the inherent patterns and correlations within the data.

Algorithm 3: Generate partitions using association rules

1. // Initialization

2. minSup: the minimum support threshold

3. PredicatesItemsets: list of frequent predicate itemsets

4. associationRules: list of rules

5. // Iterate through each frequent itemset

6. for all frequentItemset In PredicatesItemsets do

7. subsets ← GENERATESUBSETS(frequentItemset)

8. rules ← []

9. // Create rules based on confidence

10. for all subset In subsets do

11. antecedent ← subset

12. consequent ← frequentItemset - subset

13. confidence ← CALCULATECONFIDENCE(antecedent, frequentItemset)

14. if confidence ≥ minSup then

15. rule ← { antecedent: antecedent, consequent: consequent confidence:

confidence }

16. rules.add(rule)

17. end if

18. end for

19. // Generate association rules for this frequent itemset

20. associationRules ← associationRules ∪ rules

21. end for

22. // Partition graph based on association rules

23. function PartitionGraphBasedOnRules(graph, associationRules)

24. partitions ← {}

25. for all associationRule IN associationRules do

26. antecedentNodes ← FINDNODESWITHPROPERTIES(graph,

associationRule.antecedent)

27. consequentNodes ← FINDNODESWITHPROPERTIES(graph,

associationRule.consequent)

28. partition ← CREATEPARTITION(antecedentNodes, consequentNodes)

29. partitions.add(partition)

30. end for

 return partitions

31. end function

4. METHODOLOGY IMPLEMENTATION

4.1. Implementation of the graph warehouse

Neo4j (version 5.1.0) is the database that we used to create our graph warehouse. Neo4j is a graph

database management system that efficiently stores and querying complex, interconnected data by representing

and storing data in graph structures containing nodes, relationships, and characteristics [33]. Neo4j offers a

configurable data format, enables ACID-compliant transactions and utilizes a query language known as Cypher

specifically designed for handling graph data [34]. Additionally, we employed a comma-separated values

(CSV) file including data from a flat meta-model and the transaction processing performance council - H

(TPC-H) database as our source file [35]. The following are the model's dimensions:

‒ Product dimension with the Types of Products level.

  ISSN: 2252-8938

Int J Artif Intell, Vol. 14, No. 1, February 2025: 810-821

816

‒ Customer dimension with the two levels RegionCustomer and cityCustomer.

‒ Dimension of the Supplier using the two levels citySupplier and RegionSupplier.

‒ Dimension time with the levels Year and Month.

Listing 1's script imports and manages supplier data from a CSV file into a Neo4j graph database. It

effectively handles SGCD data by maintaining historical versions and ensuring data integrity.

‒ Data loading: The LOAD CSV WITH HEADERS clause loads the CSV data from the specified file into

a temporary variable named row.

‒ Node merging: The MERGE clause creates or updates nodes in the graph database.

‒ Node creation: If a node with the specified SUPPLIER-ID does not exist, the MERGE clause creates a

new SUPPLIER node with the provided properties.

Listing 1. The Supplier Dimension

LOAD CSV WITH HEADERS FROM "file:///scd.csv" AS row FIELDTERMINATOR ";"

MERGE (S: SUPPLIER {SUPPLIER_ID: row. SUPPLIER_ID})

ON CREATE SET

 S. SUPPLIER_NAME = row.SUPPLIER_NAME,

 S. SUPPLIER_CITY = row.SUPPLIER_CITY,

 S. SUPPLIER_REGION = row.SUPPLIER_REGION,

 S. SUPPLIER_CODE = row.SUPPLIER_CODE,

 S. START_DATE = row.START_DATE,

 S. END_DATE = (CASE WHEN row.IS_CURRENT = '1' THEN date ('9999-12-31')

ELSE date (row. START_DATE) END),

 S. IS_CURRENT = row.IS_CURRENT,

 S. VERSION = 1;

We use a similar methodology to generate the dimensions "CUSTOMER" "Time" and "PRODUCT"

just as we did for the "SUPPLIER" dimension. The fact node, which stores the measures, must be created after

all the dimension nodes. Listing 2 has the script that shows how to create a fact node in Neo4j and how to link

a fact node to a dimension node. The script creates a node named "FACT" with the attributes "ID,"

"QUANTITY," and "Price" that are obtained from the appropriate columns in the CSV file using the MERGE

clause. The "SUPPLIER" node with the matching "SUPPLIER-ID" and the "FACT" node with the matching

"ID" property are located for each row by the script using the MATCH clauses. The "FACT-SUPPLIER"

relationship is established by the MERGE clause between the matched "FACT" and "SUPPLIER" nodes.

Listing 2. The Fact Node

LOAD CSV WITH HEADERS FROM "file:///scd.csv" AS row FIELDTERMINATOR ";"

MERGE (meas:Measure {mid: row.INTEGRATION_ID})

ON CREATE SET

 meas.Price = toFloat(row.O_TOTALPRICE),

 meas.QUANTITY = toInteger(row.L_QUANTITY);

 // Relationship FACT/SUPPLIER

LOAD CSV WITH HEADERS FROM "file:///scd.csv" AS row

FIELDTERMINATOR ";"

WITH row

MATCH (S: SUPPLIER {SUPPLIER_ID: row.SUPPLIERID})

MATCH (meas:Measure {mid: row.INTEGRATION_ID})

MERGE (meas)-[:FACT_SUPPLIER { START_DATE:row.START_DATE,

 END_DATE: (CASE WHEN row.IS_CURRENT = '1' THEN date ('9999-12-31') ELSE date

(row.START_DATE) END),

 ACTIVE: (CASE WHEN row.END_DATE = date ('9999-12-31') THEN 1 ELSE row.IS_CURRENT

END)}] ->(S);

We establish connections between the fact and the dimensions (TIME, CUSTOMER, and PRODUCT)

with a similar method. To effectively import data from a CSV file and construct the associations between the

"FACT" nodes and its associated nodes in the "PRODUCT," "TIME," and "COSTUMER" dimensions in the

Neo4j database. Figure 1 stands for the realization of graph warehouse using Neo4j.

Int J Artif Intell ISSN: 2252-8938 

Method for developing and partitioning graph-based data warehouses using … (Redouane Labzioui)

817

Figure 1. Our model presented in the sample study

4.2. Implementing historical dimension management with cypher queries

To implement the SGCD concept in Neo4j, we employ a cypher query-based approach to effectively

manage changing dimensions. One common scenario in data management is the need to track changes in entity

attributes over time. In the context of a graph database, these entities can be represented by nodes with changing

properties, such as customers or products. For illustration, consider the case of a SUPPLIER dimension in a

graph data warehouse. When a SUPPLIER changes their name or other information, it is essential to track these

changes while maintaining a history of previous versions. The following cypher query demonstrates how this

task can be accomplished:

Listing 3. Historical Dimension Management

LOAD CSV WITH HEADERS FROM "file:///scd.csv" AS row FIELDTERMINATOR ";"

WITH row

MATCH (S: SUPPLIER {SUPPLIER _ID: row. SUPPLIER _ID})

WHERE S. SUPPLIER _NAME <> row. SUPPLIER _NAME

and S. SUPPLIER _CITY <> row. SUPPLIER _CITY

and S. SUPPLIER _REGION <> row. SUPPLIER _REGION

SET S.IS_CURRENT = 0, S.END_DATE = datetime()

CREATE (newS: SUPPLIER {

 SUPPLIER _ID: row. SUPPLIER _ID,

 SUPPLIER _NAME: row. SUPPLIER _NAME,

 SUPPLIER _CODE: row. SUPPLIER _CODE,

 START_DATE: datetime(),

 END_DATE: date ('9999-12-31'),

 IS_CURRENT: 1

})

CREATE (S)- [: VERSION_1]->(newS);

This cypher query manages changing dimensions in our data graph. It handles supplier updates by

marking the current version as obsolete, creating a new version with the updated data, and establishing a

relationship between the old and new versions to enable historical tracking. This approach ensures that changes

in dimensions are appropriately accounted for, which is crucial for maintaining data consistency and enabling

historical analysis in our graph data warehouse.

  ISSN: 2252-8938

Int J Artif Intell, Vol. 14, No. 1, February 2025: 810-821

818

4.3. Partitioning graph warehouse

Once the frequently used queries were generated, the algorithm based on Apriori was employed to

identify the most used itemsets. Subsequently, the second algorithm was executed to generate prevalent

combinations for partition creation. Our parameter settings included a support threshold of 0.3 and a confidence

level of 0.4. These combinations of the most commonly utilized partitions are illustrated in Figure 2.

Figure 2. The combinations frequently utilized for partitioning

The partitions are sorted in decreasing order of support. Support is a measure of the frequency of

occurrence of a partition in the dataset. The most commonly used partitions are as follows:

‒ P1: (PRODUCT {Brand#22}, CUSTOMER).

‒ P2: (YEAR {2015}, CUSTOMER).

‒ P3 :(PRODUCT {Brand#22}, SUPPLIER-REGION {AFRICA}).

‒ P4: (PRODUCT {Brand#22}, YEAR {2015}).

‒ P5 :(PRODUCT {Brand#22}, YEAR {2015}, CUSTOMER).

The number of partitions defined depends on the minimum support and minimum confidence specified by the

user. A higher minimum support means that partitions must be more frequent in the dataset to be included in

the results. By adjusting the values of the minimum support and minimum confidence, the user can control the

number of partitions defined and the quality of the results.

5. DISCUSSION

We performed a sequence of experiments to validate our strategy and assess the impact of partitioning

OLAP cube within the graph. These experiments involved evaluating performance levels before and after

implementing our partitioned method. We measured query execution times for both the original cube and the

partitioned cube. We performed our testing on a machine equipped with an i7 processor, 16 GB random access

memory (RAM), and 1 TB storage capacity. Alongside, we utilized the TPC-H database at a scale factor of

SF1, SF5 and SF10 which which correspond to sizes of 1 GB, 5 GB, and 10 GB. In Table 1, we use the queries

from the 5 derived partitions to subsequently compare the execution time.

The Figure 3 illustrates the query execution time comparison, displaying the times before partitioning

the graph warehouse and after implementing the partitioning approach using a scale of 1 GB. The findings

reveal a decrease in query execution times following the optimization and utilization of partitions. As an

illustration, in the initial query, the execution time was around 3 ms milliseconds in the initial cube OLAP, and

the same query it dropped to 2 ms when using partition cube. This signifies a notable percentage enhancement

of about 33%. Similarly, in the query 5, significant improvements were realized as the execution time decreased

from 14 to 12 ms. These substantial performance gains clearly highlight the efficacy of our approach, rendering

the system nearly 16 times faster than its previous state. The Figure 4 illustrates the comparison of query

execution times for the same query, displaying the times before partitioning the graph warehouse and after

implementing the partitioning approach using scales of 5 GB and 10 GB respectively.

Int J Artif Intell ISSN: 2252-8938 

Method for developing and partitioning graph-based data warehouses using … (Redouane Labzioui)

819

Table 1. Query used in our case study
Query Dimension Measure

Q1 ‒ PRODUCT {Brand#22}
‒ CUSTOMER

Sum(Price)

Q2 ‒ PRODUCT{Brand#22}

‒ SUPPLIER
‒ REGION{AFRICA}

Sum(Price)

Q3 ‒ PRODUCT{Brand#22}

‒ SUPPLIER
‒ REGION{AFRICA}

Sum(Price)

Q4 ‒ PRODUCT{Brand#22}

‒ YEAR {2015}

Sum(Price)

Q5 ‒ PRODUCT {Brand#22}

‒ YEAR {2015}

‒ CUSTOMER

Sum(Price)

Figure 3. Query execution time for 1 GB

Figure 4. Query execution time for 5 GB and 10 GB dataset

When using a scale of 5 GB for the same query 1, there is a notable percentage enhancement of about

46%. Similarly, when using a scale of 10 GB, the execution time for the initial query was around 30 ms in the

original OLAP cube. However, with the same query, it dropped to 14 ms when using the partitioned cube. This

signifies a notable percentage enhancement of about 53%. The considerable decrease in execution time

demonstrates the ability of this approach to substantially improve the system's speed compared to its previous

state. This enhancement contributes to more efficient data analysis within the graph warehouse. Furthermore,

the adoption of partitioning in the graph proves to be a crucial factor in achieving these significant

improvements. By strategically organizing and managing data through partitions, the system not only

experiences a substantial boost in speed but also lays the groundwork for streamlined and optimized data

processing.

  ISSN: 2252-8938

Int J Artif Intell, Vol. 14, No. 1, February 2025: 810-821

820

6. CONCLUSION

In our paper, we present our contribution to constructing a data warehouse within a graph database.

We discuss the significance of data historization and introduce a novel method for partitioning our graph

warehouse, utilizing the association rules algorithm. In a series of studies, we compared the performance before

and after partition implementation in order to confirm our methodology and assess the benefits of using

partitions in the graph warehouse. The experiment's outcomes show the advantages of partitioning graph

warehouse systems, particularly when handling big data sets. In our upcoming research projects, we will focus

on developing novel techniques for partitioning data warehouses in various NoSQL databases, like document

and column databases.

REFERENCES
[1] Z. A. El Mouden and A. Jakimi, “A new algorithm for storing and migrating data modelled by graphs,” International Journal of

Online and Biomedical Engineering (iJOE), vol. 16, no. 11, pp. 137–152, 2020, doi: 10.3991/ijoe.v16i11.15545.
[2] M. El Malki, A. Kopliku, E. Sabir, and O. Teste, “Benchmarking big data olap nosql databases,” in 4th International Symposium

on Ubiquitous Networking (UNet 2018), Hammamet, Tunisia, 2018, pp. 82–94, doi: 10.1007/978-3-030-02849-7_8.

[3] A. Ghrab, O. Romero, S. Skhiri, and E. Zimányi, “TopoGraph: an end-to-end framework to build and analyze graph cubes,”
Information Systems Frontiers, vol. 23, no. 1, pp. 203–226, 2021, doi: 10.1007/s10796-020-10000-z.

[4] M. Kamm, M. Rigger, C. Zhang, and Z. Su, “Testing graph database engines via query partitioning,” in Proceedings of the 32nd

ACM SIGSOFT International Symposium on Software Testing and Analysis, New York, USA: ACM, 2023, pp. 140–149, doi:
10.1145/3597926.3598044.

[5] A. Ghrab, O. Romero, S. Skhiri, A. Vaisman, and E. Zimányi, “A framework for building olap cubes on graphs,” in Advances in
Databases and Information Systems, Poitiers, France, 2015, pp. 92–105, doi: 10.1007/978-3-319-23135-8_7.

[6] S. Ahmadi, “Optimizing data warehousing performance through machine learning algorithms in the cloud,” International Journal

of Science and Research (IJSR), vol. 12, no. 12, pp. 1859–1867, 2023, doi: 10.21275/sr231224074241.
[7] A. Castelltort and A. Laurent, “Representing history in graph-oriented nosql databases: a versioning system,” in 8th International

Conference on Digital Information Management, ICDIM 2013, 2013, pp. 228–234, doi: 10.1109/ICDIM.2013.6694022.

[8] A. Castelltort and A. Laurent, “Fuzzy historical graph pattern matching a nosql graph database approach for fraud ring resolution,”
IFIP Advances in Information and Communication Technology, vol. 458, pp. 151–167, 2015, doi: 10.1007/978-3-319-23868-5_11.

[9] Z. Abbas, V. Kalavri, P. Carbone, and V. Vlassov, “Streaming graph partitioning: an experimental study,” Proceedings of the VLDB

Endowment, vol. 11, no. 11, pp. 1590–1603, 2018, doi: 10.14778/3236187.3236208.
[10] M. H. Mofrad, R. Melhem, and M. Hammoud, “Partitioning graphs for the cloud using reinforcement learning,” arXiv-Computer

Science, pp. 1–9, 2019.

[11] T. A. Ayall et al., “Graph computing systems and partitioning techniques: a survey,” IEEE Access, vol. 10, pp. 118523–118550,
2022, doi: 10.1109/ACCESS.2022.3219422.

[12] P. Zhao, X. Li, D. Xin, and J. Han, “Graph cube: on warehousing and olap multidimensional networks,” in Proceedings of the ACM

SIGMOD International Conference on Management of Data, 2011, pp. 853–864. doi: 10.1145/1989323.1989413.
[13] A. Castelltort and A. Laurent, “Fuzzy queries over nosql graph databases: perspectives for extending the cypher language,”

Information Processing and Management of Uncertainty in Knowledge-Based Systems, pp. 384–395, 2014, doi: 10.1007/978-3-

319-08852-5_40.
[14] A. S. Muttipati and P. Padmaja, “Analysis of large graph partitioning and frequent subgraph mining on graph data,” International

Journal of Advanced Research in Computer Science, vol. 6, no. 7, pp. 29–40, 2015.

[15] D. Dai, W. Zhang, and Y. Chen, “IOGP: an incremental online graph partitioning algorithm for distributed graph databases,” in
Proceedings of the 26th International Symposium on High-Performance Parallel and Distributed Computing, New York, USA:

ACM, 2017, pp. 219–230, doi: 10.1145/3078597.3078606.

[16] H. Akid, G. Frey, M. B. Ayed, and N. Lachiche, “Performance of nosql graph implementations of star vs. snowflake schemas,”
IEEE Access, vol. 10, pp. 48603–48614, 2022, doi: 10.1109/ACCESS.2022.3171256.

[17] L. Andriamampianina, F. Ravat, J. Song, and N. Vallès-Parlangeau, “Graph data temporal evolutions: from conceptual modelling

to implementation,” Data and Knowledge Engineering, vol. 139, 2022, doi: 10.1016/j.datak.2022.102017.
[18] X. Zhou, G. Li, J. Feng, L. Liu, and W. Guo, “Grep: a graph learning based database partitioning system,” Proceedings of the ACM

on Management of Data, vol. 1, no. 1, pp. 1–24, 2023, doi: 10.1145/3588948.

[19] R. Benhissen, F. Bentayeb, and O. Boussaid, “GAMM: graph-based agile multidimensional model,” CEUR Workshop Proceedings,
vol. 3369, pp. 23–32, 2023.

[20] A. Y. H. Chou and F. S. C. Tseng, “A theoretical framework for temporal graph warehousing with applications,” International

Journal of Advanced Computer Science and Applications, vol. 15, no. 6, pp. 260–270, 2024, doi: 10.14569/IJACSA.2024.0150628.
[21] R. Agrawal and R. Srikant, “Fast algorithms for mining association rules,” in Proceedings of the 20th International Conference on

Very Large Data Bases, 1994, pp. 487–499.

[22] R. Agrawal, T. Imieliński, and A. Swami, “Mining association rules between sets of items in large databases,” ACM SIGMOD
Record, vol. 22, no. 2, pp. 207–216, 1993, doi: 10.1145/170036.170072.

[23] D. Martinez-Mosquera, R. Navarrete, S. Luján-Mora, L. Recalde, and A. Andrade-Cabrera, “Integrating olap with NoSQL databases

in big data environments: systematic mapping,” Big Data and Cognitive Computing, vol. 8, no. 6, 2024, doi: 10.3390/bdcc8060064.
[24] R. Labzioui, K. Letrache, and M. Ramdani, “New approach based on association rules for building and optimizing olap cubes on

graphs,” International Journal of Advanced Computer Science and Applications, vol. 14, no. 7, pp. 997–1008, 2023, doi:

10.14569/IJACSA.2023.01407108.
[25] A. Sellami, A. Nabli, and F. Gargouri, “Transformation of data warehouse schema to nosql graph data base,” Advances in Intelligent

Systems and Computing, vol. 941, pp. 410–420, 2020, doi: 10.1007/978-3-030-16660-1_41.

[26] R. Labzioui, K. Letrache, and M. Ramdani, “New strategy for developing and enhancing online analytical processing cubes on
graphs,” in 2023 14th International Conference on Intelligent Systems: Theories and Applications (SITA), IEEE, 2023, pp. 1–8, doi:

10.1109/SITA60746.2023.10373687.

[27] A. Khalil and M. Belaissaoui, “A graph-oriented framework for online analytical processing,” International Journal of Advanced
Computer Science and Applications, vol. 13, no. 5, pp. 547–555, 2022, doi: 10.14569/IJACSA.2022.0130564.

Int J Artif Intell ISSN: 2252-8938 

Method for developing and partitioning graph-based data warehouses using … (Redouane Labzioui)

821

[28] A. Sellami, A. Nabli, and F. Gargouri, “Graph nosql data warehouse creation,” in Proceedings of the 22nd International Conference
on Information Integration and Web-based Applications & Services, New York, USA: ACM, 2020, pp. 34–38, doi:

10.1145/3428757.3429141.

[29] M. Goller and S. Berger, “Handling measurement function changes with slowly changing measures,” Information Systems, vol. 53,
pp. 107–123, 2015, doi: 10.1016/j.is.2014.12.009.

[30] T. Phungtua-Eng and S. Chittayasothorn, “Slowly changing dimension handling in data warehouses using temporal database

features,” in Intelligent Information and Database Systems, 2019, pp. 675–687, doi: 10.1007/978-3-030-14799-0_58.
[31] M. Kromer, “Slowly changing dimensions,” in Mapping Data Flows in Azure Data Factory, California, USA: Apress Berkeley,

2022, pp. 79–92, doi: 10.1007/978-1-4842-0082-7_13.

[32] K. Letrache, O. El Beggar, and M. Ramdani, “OLAP cube partitioning based on association rules method,” Applied Intelligence,
vol. 49, no. 2, pp. 420–434, 2019, doi: 10.1007/s10489-018-1275-2.

[33] M. Friedrichs, “BioDWH2: an automated graph-based data warehouse and mapping tool,” Journal of integrative bioinformatics,

vol. 18, no. 2, pp. 167–176, 2021, doi: 10.1515/jib-2020-0033.
[34] A. Vaisman, F. Besteiro, and M. Valverde, “Modelling and querying star and snowflake warehouses using graph databases,”

Communications in Computer and Information Science, vol. 1064, pp. 144–152, 2019, doi: 10.1007/978-3-030-30278-8_18.

[35] T. M. Allam, “Estimate the performance of cloudera decision support queries,” International Journal of Online and Biomedical
Engineering, vol. 18, no. 1, pp. 127–138, 2022, doi: 10.3991/ijoe.v18i01.27877.

BIOGRAPHIES OF AUTHORS

Redouane Labzioui is a Ph.D. student at Faculty of Sciences and Techniques of

Mohammedia (FSTM), University Hassan II, Casablanca, Morocco. He is working on the issue

of the businees intelligence system based on NoSQL. He can be contacted at email:

redouane.labzioui-etu@etu.univh2c.ma.

Dr. Khadija Letrache received her Ph.D. degree in computer science from Faculty

of Sciences and Techniques of Mohammedia (FSTM), University Hassan II, Casablanca,

Morroco in 2019. She is currently a Professor of computer engineering at the Faculty of Sciences

and Techniques of Mohammedia (FSTM), University Hassan II. She is an author of several

papers in international journals and conferences. Her research interests include business

intelligence and MDA architecture. She can be contacted at email:

khadija.letrache@fstm.ac.ma.

Dr. Mohammed Ramdani received his Ph.D. in fuzzy machine learning in 1994,

and his HDR in perceptual computation in 2001, at University Paris VI, France. Since 1996, he

is a full Professor at the FSTM, University Hassan II of Casablanca, Morocco. In the same

faculty, for the periods 1996-1998 and 2003-2005 he held the position of head of Department of

Computer Science. Between 2008 and 2014, he was Pedagogical Director of the Department of

Engineering "Software Engineering and Systems Integration" (ILIS). Since 2006, he is Director

of the Computer Science Lab. His research interests include explanation in machine learning,

perceptual computation with fuzzy logic, and big datamining. He is author of several articles in

many indexed journals. He can be contacted at email: mohammed.ramdani@fstm.ac.ma.

https://orcid.org/0009-0004-3295-5108
https://scholar.google.com/citations?user=6xq3x_oAAAAJ&hl=fr&oi=ao
https://www.scopus.com/authid/detail.uri?authorId=58550082400
https://orcid.org/0000-0002-4975-6154
https://scholar.google.com/citations?user=6L61tTcAAAAJ&hl=fr&oi=ao
https://www.scopus.com/authid/detail.uri?authorId=57193025757
https://orcid.org/0000-0003-2941-4461
https://scholar.google.com/citations?hl=fr&user=QdRAdGIAAAAJ&
https://www.scopus.com/authid/detail.uri?authorId=57193025669

