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 The evolution of modern databases has led to a variety of not only structured 

query language (NoSQL) models, particularly graph-oriented-databases. This 

growth has encouraged businesses to explore graph-based business 

intelligence (BI) solutions. This paper explores three essential aspects in the 

domain of graph warehouse: the establishment of efficient graph warehouses, 

the significance of data historization, and the development of effective 

strategies for graph partitioning. It starts by building a BI system within a 

graph database. Subsequently, the paper emphasizes the pivotal role of data 

historization, highlighting the slowly graph changing dimension (SGCD) 

approach as a versatile framework for accommodating varied dimensional 

changes, additionally; the paper introduces a novel partitioning strategy 

utilizing association rules algorithms, for optimized and scalable graph 

warehouse management. 
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1. INTRODUCTION 

Expanding data sets have significantly altered the landscape of modern databases, particularly the 

emergence and expansion of various not only structured query language (NoSQL) models like document, 

column, key-value, and graph databases [1], [2]. Among these, graph-oriented databases have garnered 

substantial attention, they offer a unique abstraction to handle densely connected data, allowing for complex 

domain modeling and execution of intricate queries [3], [4]. The increased attention has led to a number of 

businesses starting projects to develop business intelligence (BI) solutions with graphs [5], [6]. 

However, data historization-the process of conserving data across time-is becoming more and more 

necessary due to the increasing complexity of data. For the purpose of monitoring changes over time, 

examining past trends, adhering to legal obligations, and making wise decisions [7]. In graph-based data 

warehouses, where dimensions are frequently used to describe entities within the graph, this becomes very 

important, understanding the evolution of the graph and its components becomes difficult in the absence of 

data historization [8]. 

In addition to historization, this paper addresses another critical challenge: data partitioning within 

these graph-based data warehouses. Graphs, as complex structures, require a nuanced approach to effectively 

manage partitions [9]. Well-managed partitions are essential for optimizing queries, ensuring efficient storage, 

and enabling quick access to relevant data [10], [11]. Therefore, this paper aims to concurrently address three 

crucial aspects: the creation of efficient data warehouses under graph database systems, the importance of data 

historization, and the effective management of data partitions. 

https://creativecommons.org/licenses/by-sa/4.0/
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First, we construct a BI system within a graph database. We then examine the importance of data 

historization, focusing on the slowly graph changing dimension (SGCD) approach, which is adaptable to 

different types of dimensional changes over time. This focus on historization addresses the gap in previous 

research by detailing strategies for tracking and managing changes over time in graph data warehouses. Finally, 

we explore strategies and algorithms based on association rules for effectively managing partitions in the 

context of graph-based data warehouses. 

The rest of this document is structured as outlined below: section 2 explores the existing literature on 

graph data warehousing. In section 3, we provide the necessary background of the approach. Section 4 delves 

into the implementation of the strategy. Section 5 discusses the principal results of the study. Finally, this work 

is concluded in section 6, which also suggests options for future research. 

 

 

2. RELATED WORKS 

In the literature, discussions about data partitioning and historization have predominantly focused on 

relational data warehouses, with a limited exploration into graph warehouse. However, recent years have 

witnessed a growing interest in integrating BI technology with graph databases, resulting in various proposed 

methodologies documented in the literature. Zhao et al. [12] have presented a brand-new idea known as the 

graph cube, that is a new data warehouse paradigm intended to handle multidimensional queries inside  

large-scale multidimensional networks. This approach organizes dimensions based on node attributes while 

employing computed measures to aggregate these node attributes, authors did not address the partitioning and 

historization aspect within the graph warehouse. Castelltort and Laurent [13] introduced a methodology 

suggesting the use of graph structure for online analytical processing (OLAP) queries, leveraging the 

performance of the graph database for storage and query time processing. This approach involves converting 

measures and dimensions into nodes within the graph, using arcs to establish relationships between dimensions 

and measurements. Hierarchical interactions among nodes retain hierarchical dimensions. However, this 

strategy is confined solely to the snowflake model, potentially limiting its applicability to other data models. 

Muttipati and Padmaja [14] offer a comprehensive overview of existing tools and approaches for 

graph partitioning and frequent sub-graph extraction. It explores a wide array of topics, encompassing  

graph-partitioning techniques, frequent sub-graph mining algorithms, parallel processing frameworks, and 

managing substantial volumes of graph data. However, it is worth noting that the study might lack in-depth 

experience and empirical results to substantiate its findings fully. While its broad scope provides a wealth of 

information, it might fall short in thoroughly examining specific aspects or offering detailed insights into 

certain algorithms or parallel frameworks. Additionally, it does not delve into partitioning of the graph 

warehouse, limiting its exploration to certain areas within the realm of graph databases. Dai et al. [15] 

introduced the incremental online graph partitioning (IOGP) algorithm, aimed at addressing performance needs 

in distributed graph databases. IOGP dynamically adjusts through three operational stages, efficiently 

accommodating continuous graph changes. It swiftly produces optimized partitioned graphs, proficiently 

serving complex traversals. Implementation details, including in-memory data structures like edge counters, 

facilitate rapid online graph partitioning. Extensive evaluations across diverse graphs affirm IOGP's 

advantages, aiding in establishing key parameter selection guidelines. Akid et al. [16] suggest guidelines for 

transforming a multidimensional data model into a graph data model (MDM2G) and compare the performance 

of snowflake model and star designs in both graph databases and relational, focusing on size and 

dimensionality. Their comparison suggests that employing a graph-based implementation for a multi-table data 

warehouse has greater efficiency than a relational approach. Moreover, within graph databases, a star model 

demonstrates similar performance to a snowflake model. 

Andriamampianina et al. [17] suggested a conceptual framework for temporal graphs depicting 

evolving graph data. It captures how data changes over time without sacrificing information or introducing 

redundancy, which differs from how snapshot-based models handle this evolution. Firstly, it is tailored towards 

business needs, offering non-expert users a complete understanding of data and its evolving elements. 

Secondly, it is versatile, capable of representing various types of changes in graph data; including topology 

shifts and alterations in attribute sets and values. Lastly, it accurately captures the temporal evolution of data, 

preserving information and avoiding redundancy, unlike snapshot-based models. However, when applied to 

large datasets, temporal context analysis and manipulation can occasionally result in slower processing times 

and reduced performance. Moreover, temporal graphs can quickly grow in size with added data over time. 

Managing these large datasets can be costly in terms of storage and processing, requiring additional resources. 

Zhou et al. [18] describe a novel method for representing data and queries using graph topologies, providing a 

distinctive way to visualize column correlations. It chooses partitioning keys by utilizing graph embedding’s, 

which may increase the effectiveness of data partitioning. It also suggests a learning assessment model that 

estimates the performance of partitioning strategies without physically dividing data, potentially conserving 

computing power. Benhissen et al. [19] suggest a method centered around a progressive schema model 
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featuring multiple versions, where a graph data warehouse accommodates data instances aligned with distinct 

schema versions. The handling of these versions is made easier using a dedicated meta-model for warehouse 

schema versions, along with the integration of evolutionary functions introduced at the schema level. 

Nevertheless, the research does not delve into the aspect of OLAP cube partitioning within graphs. 

It is clear from the previous overview that the majority of these papers primarily concentrate on 

transforming classical data warehouse into graphs. This emphasis could potentially restrict the thorough 

exploration and utilization of the complete benefits provided by graph databases. Additionally, these studies 

overlook the aspect of historical data and partitioning graph warehouses, creating another significant gap in 

their coverage. In contrast, our suggested method makes advantage of graph features to build graph warehouses, 

adresses also the aspect of data historization, and uses association rules for partitioning graph warehouses. 

 

 

3. OUR APPROACH 

Our method entails first building a graph warehouse, with a particular emphasis on the SGCD method 

for data historization. This method is specifically designed to manage changes in graph dimensions over time, 

ensuring that the historical evolution of data is accurately captured. The SGCD enables the warehouse to 

maintain a comprehensive historical record of the dimensions, which is crucial for analyzing trends and 

performing time-based queries [20]. Subsequently, we use user OLAP queries as input for two crucial 

algorithms: The Apriori algorithm [21], which identifies frequently occurring itemsets in the graph cube, and 

a rule-based association algorithm is employed to detect the most used partitions [22]. The primary objective 

of this technique is to optimize our OLAP cube for maximum performance, ensuring efficient handling of user 

queries and data analysis. There are four steps in this approach: 

‒ Building a graph warehouse. 

‒ Integrate a data historization component into the process, emphasizing the SGCD method, this step 

ensures a comprehensive view of data changes over time, highlighting adaptability to various dimensional 

modifications. 

‒ Utilizing user queries as input for the Apriori algorithm to identify frequently occurring itemsets within 

the graph cube. 

‒ Using a rule-based association algorithm to identify the most frequently used partitions. 

 

3.1.  Graph warehouse 

Our method builds the graph warehouse by combining the inherent flexibility of graph structures with 

the concepts of multidimensional modeling. In this context, dimensions are modeled as nodes, and facts, which 

contain measurements, are represented as nodes, creating a clear and navigable structure for querying and 

analyzing data [23]. The edges in this graph model are crucial as they define the relationships between facts 

and dimensions, capturing both the structure of the data and the links between different entities. 

Dimension DS the node identification in this architecture is used to represent nodes (LN, PN) [24] where: 

‒ LN indicates the node's name. 

‒ PN indicates dimensions’ attributes. 

Fact: The fact node is represented as a node connected by edges to dimension nodes [25]. Furthermore, 

properties related to the measurements, such as applied aggregate functions or actual values, may be present in 

the fact node [26]. The fact node is determined by (MF, NF) where: 

‒ NF: the name of the fact. 

‒ MF: it consists of multiple measurements functioning as attributes for nodes, with each one linked to an 

aggregation function. 

The link between a fact node and its associated dimensions: Edges in the model represent the relationship 

between a fact and its associated dimensions; this relationship is defined by (LE, NF, ND, PE) [27], where: 

‒ LE is the relationship's label. 

‒ N F is the fact node. 

‒ N D the node representing the associated dimension. 

‒ P E define the characteristics of the connection. The attributes include key-value pairs used to store 

relationship-related data [28]. 

 

3.2.  Data historization in the graph warehouse 

Upon the establishment of our graph warehouse, our next strategic step involves the implementation 

of the SGCD methodology. This approach aims to enhance our data warehousing capabilities by enabling the 

systematic tracking and management of changing dimensions within the graph structure [29]. By adopting 

SGCD, we plan to meticulously capture and preserve historical data changes, ensuring a comprehensive record 

of evolving information [30]. This implementation will enable us to efficiently handle variations in data 
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dimensions over time, ensuring accuracy and precision in analyzing historical trends and patterns [31]. With 

SGCD in place, our graph warehouse will possess a robust foundation for maintaining data integrity and 

facilitating in-depth historical analyses crucial for informed decision-making. 

In our approach, we will implement SGCD by utilizing Algorithm 1: Managing historization 

dimensions in graph warehouses. This algorithm is designed to effectively manage changes in dimension data 

by creating new versions when necessary and updating current versions. Additionally, it maintains proper 

relationships within the graph-based data warehouse, ensuring data integrity and consistency. 

 

Algorithm 1: Managing historization dimension in graph warehouse 

1. Require: New dimension data: NewData 

2. Ensure: Successful operation: Success 

3. Function ManageSGCDForDimension(NewData): 

4. ExistingRecord ←SearchDimensionRecordByKey (NewData.Key) 

5. If ExistingRecord is not empty : 

6. If ExistingRecord.Value ≠ NewData.Value: 

7. UpdateCurrentVersion(ExistingRecord) 

8. Else DoNothing() 

9. EndIf 

10. Else CreateNewVersion(NewData) 

11. EndIf 

12. Return Success 

13. End Function 

14. FunctionSearchDimensionRecordByKey(Key): 
15. Return DimensionRecord 

16. End Function 

17. Function UpdateCurrentVersion(Record): 

18. Record.ValidTo ← CurrentTimestamp() 

19. NewVersion ← CreateNewVersion(Record) 

20. Record.CurrentVersion ← NewVersion 

21. End Function 

22. Function CreateNewVersion(Data): 

23. NewNode ← CreateNewNode(Data) 

24. NewNode.ValidFrom ← CurrentTimestamp() 

25. Return NewNode 

26. End Function 

27. FunctionVersioningRelationship (DimensionRecord, Version): 

28. CreateRelationship (DimensionRecord, Version) 

29. End Function 

30. Function DoNothing (): 

31. // This function does nothing, used when the record has not changed 

32. End Function 

 

3.3.  Generate frequently used itemsets 

The next stage in this process entails retrieving user queries from the OLAP system logs subsequent 

to the construction of our graph warehouse. This retrieval is essential as it allows us to analyze user behavior 

and tailor the system to better meet their needs. Next, we use the Apriori technique to find common itemsets 

of predicates [32]. 

The Algorithm 2: Generate frequently used itemset has a significant impact in our graph cube model 

for determining frequent itemsets within OLAP queries. Its primary objective is to generate these frequent 

itemsets from transactional data by evaluating item occurrence frequency and filtering those surpassing a 

minimum support threshold (min-sup). The process comprises two main steps: 

‒ Initial generation of unique itemset: The algorithm traverses transactions to establish the occurrence 

frequency of each item. It then forms a set of frequent itemsets based on the minimal support threshold. 

‒ Extension of itemsets: Starting from frequent itemsets of size 1, the algorithm progressively generates 

larger itemsets. It creates potential candidates by combining previously identified frequent itemsets. These 

new sets are assessed within transactions to determine their frequency and are retained only if they surpass 

the minimal support threshold. 
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Algorithm 2: Generate frequently used itemset 

1. frequentItemsets ← {} 

2.  previousFrequentItemsets ← GenerateInitialFrequentItemsets 

3. while previousFrequentItemsets is not empty do 

4. CurrentFrequentItemsets←generateCandidates(previousFrequentItemsets) 

5.     for each partition in graph cube partitions do 

6.          for each candidate in currentFrequentItemsets do 

7.             if candidate is employed in partition then 

8.                 candidate.frequency ← candidate.frequency +1 

9.              end if 

10.          end for 

11.      end for 

12. previousFrequentItemsets ← currentFrequentItemsets 

13. currentFrequentItemsets ← filterCandidates (currentFrequentItemsets, minSup) 

14. frequentItemsets ← frequentItemsets ∪ currentFrequentItemsets 

15.  end while 
 

16.  function GenerateInitialFrequentItemsets () 

17.   initialFrequentItemsets ← {} 

18.   for each item in all items do 

19.       if item.frequency ≥ minSup then 

20.           initialFrequentItemsets ← initialFrequentItemsets ∪ {item} 

21.      end if 

22.  end for 

23.  return initialFrequentItemsets 

24.  end function 
 

25. function GenerateCandidates (itemsets) 

26. candidates ← {}  

27. i ← 0 

28. while i < size (itemsets) do 

29.            itemset ← itemsets[i] 

30.             j ← 0 

31.              while j < size(itemset) do 

32.                        element ← itemset[j] 

33.                        candidate ← itemset without element 

34.                 if candidate is not already included among the candidates then 

35.                 Add candidate to the set of candidates 

36.                end if 

37.                j ← j + 1 

38.             end while 

39.             i ← i + 1 

40. end while 

41. return candidates  

42. end function 
 

43. function FilterCandidates (candidates, minSup) 

44.     frequentCandidates ← {}  

45.     i ← 0 

46.     while i < size (candidates) do 

47.         candidate ← candidates[i] 

48.         if candidate.frequency ≥ minSup then 

49.             Add candidate to frequentCandidates 

50.         end if 

51.         i ← i + 1 

52.     end while 

53.     return frequentCandidates  

54. end function 
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3.4.  Generate partitions using association rules 

The next algorithm in our approach utilizes the attributes and relationships identified within the 

frequent itemsets to establish association rules. These rules serve as the basis for partitioning a graph based on 

these attributes and relationships. This partitioning allows for more efficient data retrieval and analysis, 

ultimately enhancing the performance of our graph-based system. 

The Algorithm 3: Generate partitions using association rules begins by iterating through each frequent 

itemset. For each itemset, it generates all possible subsets. Subsequently, for each subset, it constructs an 

association rule, where the antecedent comprises the subset, and the consequent consists of the complement of 

the subset within the frequent itemset. This systematic process allows for the creation of association rules that 

capture the inherent patterns and correlations within the data. 

 

Algorithm 3: Generate partitions using association rules 

1. // Initialization 

2. minSup: the minimum support threshold 

3. PredicatesItemsets: list of frequent predicate itemsets 

4. associationRules: list of rules 

5. // Iterate through each frequent itemset 

6.     for all frequentItemset In PredicatesItemsets do 

7.        subsets ← GENERATESUBSETS(frequentItemset) 

8.       rules ← [] 

9. // Create rules based on confidence 

10.            for all subset In subsets do 

11.            antecedent ← subset 

12.            consequent ← frequentItemset - subset 

13. confidence ← CALCULATECONFIDENCE(antecedent, frequentItemset) 

14.           if confidence ≥ minSup then 

15.                   rule ← { antecedent: antecedent, consequent: consequent                confidence: 

confidence } 

16. rules.add(rule) 

17.           end if 

18.      end for 

19.           // Generate association rules for this frequent itemset 

20.       associationRules ← associationRules ∪ rules 

21.   end for 

 

22. // Partition graph based on association rules 

23. function PartitionGraphBasedOnRules(graph, associationRules) 

24. partitions ← {} 

25.          for all associationRule IN associationRules do 

26.           antecedentNodes ← FINDNODESWITHPROPERTIES(graph,     

associationRule.antecedent) 

27.         consequentNodes ← FINDNODESWITHPROPERTIES(graph, 

associationRule.consequent) 

28.            partition ← CREATEPARTITION(antecedentNodes,    consequentNodes) 

29.            partitions.add(partition) 

30.             end for 

                                       return partitions 

31.             end function 

 

 

4. METHODOLOGY IMPLEMENTATION 

4.1.  Implementation of the graph warehouse 

Neo4j (version 5.1.0) is the database that we used to create our graph warehouse. Neo4j is a graph 

database management system that efficiently stores and querying complex, interconnected data by representing 

and storing data in graph structures containing nodes, relationships, and characteristics [33]. Neo4j offers a 

configurable data format, enables ACID-compliant transactions and utilizes a query language known as Cypher 

specifically designed for handling graph data [34]. Additionally, we employed a comma-separated values 

(CSV) file including data from a flat meta-model and the transaction processing performance council - H  

(TPC-H) database as our source file [35]. The following are the model's dimensions: 

‒ Product dimension with the Types of Products level. 
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‒ Customer dimension with the two levels RegionCustomer and cityCustomer. 

‒ Dimension of the Supplier using the two levels citySupplier and RegionSupplier. 

‒ Dimension time with the levels Year and Month. 

Listing 1's script imports and manages supplier data from a CSV file into a Neo4j graph database. It 

effectively handles SGCD data by maintaining historical versions and ensuring data integrity. 

‒ Data loading: The LOAD CSV WITH HEADERS clause loads the CSV data from the specified file into 

a temporary variable named row. 

‒ Node merging: The MERGE clause creates or updates nodes in the graph database. 

‒ Node creation: If a node with the specified SUPPLIER-ID does not exist, the MERGE clause creates a 

new SUPPLIER node with the provided properties. 

 

Listing 1. The Supplier Dimension  

LOAD CSV WITH HEADERS FROM "file:///scd.csv" AS row FIELDTERMINATOR ";" 

MERGE (S: SUPPLIER {SUPPLIER_ID: row. SUPPLIER_ID}) 

ON   CREATE SET 

         S. SUPPLIER_NAME = row.SUPPLIER_NAME, 

         S. SUPPLIER_CITY = row.SUPPLIER_CITY, 

         S. SUPPLIER_REGION = row.SUPPLIER_REGION, 

         S. SUPPLIER_CODE = row.SUPPLIER_CODE, 

         S. START_DATE = row.START_DATE, 

         S. END_DATE = (CASE WHEN row.IS_CURRENT = '1' THEN date ('9999-12-31')  

ELSE date (row. START_DATE) END), 

         S. IS_CURRENT = row.IS_CURRENT, 

         S. VERSION = 1; 

 

We use a similar methodology to generate the dimensions "CUSTOMER" "Time" and "PRODUCT" 

just as we did for the "SUPPLIER" dimension. The fact node, which stores the measures, must be created after 

all the dimension nodes. Listing 2 has the script that shows how to create a fact node in Neo4j and how to link 

a fact node to a dimension node. The script creates a node named "FACT" with the attributes "ID," 

"QUANTITY," and "Price" that are obtained from the appropriate columns in the CSV file using the MERGE 

clause. The "SUPPLIER" node with the matching "SUPPLIER-ID" and the "FACT" node with the matching 

"ID" property are located for each row by the script using the MATCH clauses. The "FACT-SUPPLIER" 

relationship is established by the MERGE clause between the matched "FACT" and "SUPPLIER" nodes. 

 

Listing 2. The Fact Node 

LOAD CSV WITH HEADERS FROM "file:///scd.csv" AS row FIELDTERMINATOR ";" 

MERGE (meas:Measure {mid: row.INTEGRATION_ID}) 

ON   CREATE SET 

          meas.Price = toFloat(row.O_TOTALPRICE), 

          meas.QUANTITY = toInteger(row.L_QUANTITY); 

              // Relationship FACT/SUPPLIER  

LOAD CSV WITH HEADERS FROM "file:///scd.csv" AS row  

FIELDTERMINATOR ";" 

WITH row 

MATCH (S: SUPPLIER {SUPPLIER_ID: row.SUPPLIERID}) 

MATCH (meas:Measure {mid: row.INTEGRATION_ID}) 

MERGE (meas)-[:FACT_SUPPLIER {   START_DATE:row.START_DATE, 

       END_DATE: (CASE WHEN row.IS_CURRENT = '1' THEN date ('9999-12-31') ELSE date 

(row.START_DATE) END), 

  ACTIVE: (CASE WHEN row.END_DATE = date ('9999-12-31') THEN 1 ELSE row.IS_CURRENT 

END)}] ->(S); 

 

We establish connections between the fact and the dimensions (TIME, CUSTOMER, and PRODUCT) 

with a similar method. To effectively import data from a CSV file and construct the associations between the 

"FACT" nodes and its associated nodes in the "PRODUCT," "TIME," and "COSTUMER" dimensions in the 

Neo4j database. Figure 1 stands for the realization of graph warehouse using Neo4j. 
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Figure 1. Our model presented in the sample study 

 

 

4.2.  Implementing historical dimension management with cypher queries 

To implement the SGCD concept in Neo4j, we employ a cypher query-based approach to effectively 

manage changing dimensions. One common scenario in data management is the need to track changes in entity 

attributes over time. In the context of a graph database, these entities can be represented by nodes with changing 

properties, such as customers or products. For illustration, consider the case of a SUPPLIER dimension in a 

graph data warehouse. When a SUPPLIER changes their name or other information, it is essential to track these 

changes while maintaining a history of previous versions. The following cypher query demonstrates how this 

task can be accomplished: 

 

Listing 3. Historical Dimension Management 

LOAD CSV WITH HEADERS FROM "file:///scd.csv" AS row FIELDTERMINATOR ";" 

WITH row 

MATCH (S: SUPPLIER {SUPPLIER _ID: row. SUPPLIER _ID}) 

WHERE S. SUPPLIER _NAME <> row. SUPPLIER _NAME 

and S. SUPPLIER _CITY <> row. SUPPLIER _CITY 

and S. SUPPLIER _REGION <> row. SUPPLIER _REGION 

SET S.IS_CURRENT = 0, S.END_DATE = datetime() 

CREATE (newS: SUPPLIER { 

    SUPPLIER _ID: row. SUPPLIER _ID, 

    SUPPLIER _NAME: row. SUPPLIER _NAME, 

    SUPPLIER _CODE: row. SUPPLIER _CODE, 

    START_DATE: datetime(), 

    END_DATE: date ('9999-12-31'), 

    IS_CURRENT: 1 

}) 

CREATE (S)- [: VERSION_1]->(newS); 

 

This cypher query manages changing dimensions in our data graph. It handles supplier updates by 

marking the current version as obsolete, creating a new version with the updated data, and establishing a 

relationship between the old and new versions to enable historical tracking. This approach ensures that changes 

in dimensions are appropriately accounted for, which is crucial for maintaining data consistency and enabling 

historical analysis in our graph data warehouse. 
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4.3.  Partitioning graph warehouse 

Once the frequently used queries were generated, the algorithm based on Apriori was employed to 

identify the most used itemsets. Subsequently, the second algorithm was executed to generate prevalent 

combinations for partition creation. Our parameter settings included a support threshold of 0.3 and a confidence 

level of 0.4. These combinations of the most commonly utilized partitions are illustrated in Figure 2. 

 

 

 
 

Figure 2. The combinations frequently utilized for partitioning 

 

 

The partitions are sorted in decreasing order of support. Support is a measure of the frequency of 

occurrence of a partition in the dataset. The most commonly used partitions are as follows: 

‒ P1: (PRODUCT {Brand#22}, CUSTOMER). 

‒ P2: (YEAR {2015}, CUSTOMER).  

‒ P3 :( PRODUCT {Brand#22}, SUPPLIER-REGION {AFRICA}). 

‒ P4: (PRODUCT {Brand#22}, YEAR {2015}).  

‒ P5 :( PRODUCT {Brand#22}, YEAR {2015}, CUSTOMER). 

The number of partitions defined depends on the minimum support and minimum confidence specified by the 

user. A higher minimum support means that partitions must be more frequent in the dataset to be included in 

the results. By adjusting the values of the minimum support and minimum confidence, the user can control the 

number of partitions defined and the quality of the results. 

 

 

5. DISCUSSION 

We performed a sequence of experiments to validate our strategy and assess the impact of partitioning 

OLAP cube within the graph. These experiments involved evaluating performance levels before and after 

implementing our partitioned method. We measured query execution times for both the original cube and the 

partitioned cube. We performed our testing on a machine equipped with an i7 processor, 16 GB random access 

memory (RAM), and 1 TB storage capacity. Alongside, we utilized the TPC-H database at a scale factor of 

SF1, SF5 and SF10 which which correspond to sizes of 1 GB, 5 GB, and 10 GB. In Table 1, we use the queries 

from the 5 derived partitions to subsequently compare the execution time. 

The Figure 3 illustrates the query execution time comparison, displaying the times before partitioning 

the graph warehouse and after implementing the partitioning approach using a scale of 1 GB. The findings 

reveal a decrease in query execution times following the optimization and utilization of partitions. As an 

illustration, in the initial query, the execution time was around 3 ms milliseconds in the initial cube OLAP, and 

the same query it dropped to 2 ms when using partition cube. This signifies a notable percentage enhancement 

of about 33%. Similarly, in the query 5, significant improvements were realized as the execution time decreased 

from 14 to 12 ms. These substantial performance gains clearly highlight the efficacy of our approach, rendering 

the system nearly 16 times faster than its previous state. The Figure 4 illustrates the comparison of query 

execution times for the same query, displaying the times before partitioning the graph warehouse and after 

implementing the partitioning approach using scales of 5 GB and 10 GB respectively. 
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Table 1. Query used in our case study 
Query Dimension Measure 

Q1 ‒ PRODUCT {Brand#22} 
‒ CUSTOMER  

Sum(Price) 

Q2 ‒ PRODUCT{Brand#22} 

‒ SUPPLIER 
‒ REGION{AFRICA}  

Sum(Price)  

Q3 ‒ PRODUCT{Brand#22} 

‒ SUPPLIER 
‒ REGION{AFRICA} 

Sum(Price) 

Q4 ‒ PRODUCT{Brand#22}   

‒ YEAR {2015} 

Sum(Price) 

Q5 ‒ PRODUCT {Brand#22} 

‒ YEAR {2015} 

‒ CUSTOMER 

Sum(Price) 

 

 

 
 

Figure 3. Query execution time for 1 GB 

 

 

 
 

Figure 4. Query execution time for 5 GB and 10 GB dataset 

 

 

When using a scale of 5 GB for the same query 1, there is a notable percentage enhancement of about 

46%. Similarly, when using a scale of 10 GB, the execution time for the initial query was around 30 ms in the 

original OLAP cube. However, with the same query, it dropped to 14 ms when using the partitioned cube. This 

signifies a notable percentage enhancement of about 53%. The considerable decrease in execution time 

demonstrates the ability of this approach to substantially improve the system's speed compared to its previous 

state. This enhancement contributes to more efficient data analysis within the graph warehouse. Furthermore, 

the adoption of partitioning in the graph proves to be a crucial factor in achieving these significant 

improvements. By strategically organizing and managing data through partitions, the system not only 

experiences a substantial boost in speed but also lays the groundwork for streamlined and optimized data 

processing. 
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6. CONCLUSION 

In our paper, we present our contribution to constructing a data warehouse within a graph database. 

We discuss the significance of data historization and introduce a novel method for partitioning our graph 

warehouse, utilizing the association rules algorithm. In a series of studies, we compared the performance before 

and after partition implementation in order to confirm our methodology and assess the benefits of using 

partitions in the graph warehouse. The experiment's outcomes show the advantages of partitioning graph 

warehouse systems, particularly when handling big data sets. In our upcoming research projects, we will focus 

on developing novel techniques for partitioning data warehouses in various NoSQL databases, like document 

and column databases. 
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