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 A particular form of road digitalization produces a system that detects road 

damage automatically and in real time, employing the device to detect road 

damage as an edge device. The application of RetinaNet152 and 

MobileNetV2 models for road damage detection on edge devices 

necessitates a trade-off between high system performance and efficiency. 

Currently, edge devices have limited storage. In this paper, we explore how 

tuning hyperparameters with batch size and several optimizers improves 

system performance on RetinaNet152 and MobileNet models, as well as 

how they are implemented on edge devices. After tuning hyperparameters in 

the batch size of the optimizer, the Adam optimizer displayed enhanced 

performance with mean average precision (mAP), average recall (AR), and 

F1-score. This implies a positive impact on overall model performance. The 

MobileNetV2 model's hyperparameter tuning technique significantly 

improves performance, resulting in faster inference times and overall system 

performance. This demonstrates that the MobileNetV2 model could be used 

directly on edge devices to identify road damage. However, the 

RetinaNet152 model has a lower inference time, which cannot be deployed 

directly to edge devices. The RetinaNet152 model can be deployed on edge 

devices; however, a technique for speeding up inference time is essential. 
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1. INTRODUCTION 

A particular form of road digitalization produces a system that detects road damage automatically 

and in real time, employing the device to detect road damage as an edge device. The implementation of 

digitalization on roads through automation, artificial intelligence (AI), and digital information flow results in 

enhanced efficiency, lower operating costs, and improved road services. A particular application of 

digitalization on roads is in road maintenance programs that support smart cities [1]–[3]. Several studies have 

been conducted to decet road damage utilizing AI technologies, camera sensors and various image data 

processing approaches. Some of the research with approach methodologies include image-based image 

processing techniques [4]–[9], machine learning (ML) model [10]–[14], and deep learning method [15]–[27]. 

This investigation employs image processing techniques for a variety of applications, including the 

detection of road defects. Potholes are a type of road defect that can be detected using classic image 

https://creativecommons.org/licenses/by-sa/4.0/
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processing techniques. This technique needs numerous stages to achieve high accuracy, including manually 

extracting image features and tweaking image processing parameters. The speed of image frames varies 

depending on road conditions [4]. The ML model includes a data processing stage that manually pulls 

features to increase accuracy, which requires a significant number of computational resources. Several 

studies have used deep convolutional neural network (CNN) approaches to automate the process of feature 

extraction and categorization at the same time [18], [26]. 

A particular application of the CNN model for road problem identification on edge devices 

necessitates a trade-off between high accuracy and high efficiency [13]. The CNN models are highly accurate 

in terms of system performance recall, precision, high accuracy, and low loss. This necessitates CNN models 

with massive architecture and competitive computing costs that are inefficient. As a result, it requires a 

simpler CNN model configuration setting while maintaining good accuracy. The CNN models are highly 

efficient in that they can detect road faults on edge devices with fast inference times. Because the CNN 

model on the edge device has limited storage, inference time must be taken into consideration. The CNN 

models have fast inference times, perform well on simpler model configurations, but are difficult to obtain 

high accuracy. To achieve excellent system performance, CNN model parameters must be carefully selected. 

When selecting detection models, there is no conclusive answer as to which model has the highest 

performance, but one must make decisions based on demands [13], [14]. 

In order to produce a system that detects road damage automatically and in real time, CNN model 

research must be developed. The development study in road damage detection enhances system performance 

by utilizing one- and two-stage CNN models. Some research on road damage detection using CNN includes 

detection techniques using CNN models with semi-supervised learning using pseudo-labels [15], CNN  

one-stage detector model architecture namely InceptionV2 and MobileNet on personal computer (PC) [16], 

YOLO namely Tiny-YOLOv2, darknet neural networks, YOLOv3, Tiny-YOLOv3 and YOLOv4 [20], [21], 

YOLOv5 on smartphones [22], YOLOv3, YOLOv2 and TinyV3 models [23], YOLOv5, two variations of 

YOLOR, and faster R-CNN with five different backbones namely ResNet50, VGG16, MobileNetV2, 

InceptionV3, and proposed modified VGG16 (MVGG16) [24]. The results of road damage detection research 

implementing the CNN model include system performance features such as accuracy, mean average 

precision (mAP), average recall, and the F1-score. 

One effort to increase accuracy in CNN models is tuning hyperparameters relating to network 

structure and training. The tuning hyperparameters consider network structure, namely kernel size, width, 

and depth. Researchers examined three network designs of a CNN one-stage detector model (small, medium, 

and large), as well as a combination of hyperparameter tuning and activation function adjustments. System 

performance can be improved by implementing a CNN model network architecture and adjusting 

hyperparameters [17], [18], [26], [27]. Several research have achieved high accuracy by employing an 

optimizer to change hyperparameters on CNN models. To obtain good performance, several researchers on 

object identification employ one or two optimizers as tuning hyperparameters on pretrained CNN models 

[28]–[31]. However, none of the CNN model research has been deployed on edge devices for detecting road 

damage. 

Several road defect investigations were conducted utilizing CNN models on edge devices, resulting 

in systems that detect road faults automatically and in real time. Maeda et al. [16] employed MobileNet on a 

smartphone, achieving a system performance of 71% and an inference time of 1.5 seconds. Other research 

applies the single shot multi-box detector (SSD)-MobileNet model with a batch size of 64 to NVIDIA Jetson 

Nano devices with accelerators [32] and unmanned aerial vehicles (UAV) using Raspberry Pi [33]. Other 

researchers created MobileNetV2 with hyperparameter learning rate and batch size settings using NVIDIA 

Jetson Nano, which has a higher mAP of 0.0869 and a lower total loss training of 0.6028 compared to SSD 

Resnet50V1 [34], [35]. Based on the results of that investigation, the CNN model is merged into hardware 

devices that have been developed but still require additional research to increase system performance and 

accelerate inference time, as shown in Table 1. 

The challenge of detecting road damage on edge devices is to do it automatically and in real time as 

the edge device moves at a specific speed. This necessitates the deployment of a CNN mode on an edge 

device capable of overcoming this limitation. The RetinaNet152 model detects objects in images by 

combining anchor boxes with feature pyramid networks. RetinaNet152 refers to the number of layers in the 

backbone network, which in this case is ResNet-152. ResNet-152 is well-suited for road damage detection 

since it can recognize and categorize objects with high accuracy and speed, which is critical for real-time 

applications. Based on the advantages of RetinaNet's research on road damage by modifying the backbone 

[36], it employs RetinaNet152 with hyperparameter optimizer adjustment [37]. The RetinaNet152 model has 

advantages; however, it has not been deployed on edge devices for road damage detection equipment. 

According to Table 1, the MobileNetV2 model [34] must increase system performance by modifying 

hyperparameters using an optimizer. 
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Table 1. The CNN models on road damage 
Previous studies Model CNN Object detection Performance system Edge device 

[16] MobileNet Eight types of road damage Recall, precision, inference time Smartphone 
[32] MobileNetV2 Potholes, longitudinal cracks, 

alligator cracks 

mAP NVIDIA Jetson Nano 

[33] MobileNet V1 Pavement Accuracy, FPS Raspberry Pi 
[34] MobileNetV2 Potholes, longitudinal cracks, 

alligator cracks 

mAP, AR NVIDIA Jetson Nano 

Proposed 
system 

RetinaNet152 
MobileNetV2 

Potholes, longitudinal cracks, 
alligator cracks 

mAP, AR, F1-score, size model, 
inference time, FPS 

NVIDIA Jetson Nano 

 

 

To address a research gap in this study, we present a system that improves the system performance 

of the RetinaNet152 and MobilenetV2 models in a road damage detection system on edge devices, thereby 

improving system performance and inference time. The research results with optimization produced good 

system performance. Road damage detection systems for edge devices with limited memory and mobile data 

retrieval use the RetinaNet152 and MobilenetV2 models. Larger batch sizes can help speed up the training 

process by allowing the model to process more data concurrently. This can lead to faster convergence and 

improved performance. A larger batch size can help reduce gradient variance, hence improving model 

stability and accuracy [37]. However, it is particularly important to note that raising the batch size and 

optimizer can result in higher memory needs and the need for more processing resources. To increase system 

performance and implementation on edge devices with environmental variations, the road damage detection 

system needs to simulate batch sizes and optimizer parameters on RetinaNet152 and MobileNet models. 

The primary contributions of this research to the development of road defect detection systems are 

described as follows:  

‒ The development of RetinaNet152 [38] and MobileNetV2 [34] models for road damage is based on tuning 

hyperparameters: batch size and optimizers to improve performance system mAP, AR, and F1-score. 

‒ Edge-device deployment of the RetinaNet152 and MobileNetV2 models for real-time road damage 

detection. This research uses a road damage system and a road damage detection system. 

‒ Comparing the analysis systems performance of the Retinanet152 and MobileNetV2 models, inference 

times, frames per second, and size model when deployed on edge devices. 

The paper has four parts. Section 1 introduction focuses on the topic and research goal.  

Section 2 covers methods. Section 3 contains results and discussions: i) the system's performance  

tuning hyperparameter, ii) deploying the RetinaNet152 and MobileNetV2 models on edge device, and  

iii) comparation system performance model CNN. Finally, section 4 presents ideas for future research. 

 

 

2. METHOD  

Several issues arise when gathering and identifying road defects when moving with edge devices. 

Potholes, alligator cracks, and longitudinal fractures are produced by capturing road damage statistics on 

edge devices in real time and while in motion. Under certain conditions, the recoverable cracks are very 

small and unclear. This is due to the tiny size of the cracks and the fluctuation of road damage object 

detection in the surrounding environment, which makes it difficult to discern road damage in the form of 

cracks. Furthermore, road damage datasets in the form of fractures result in nearly identical color shifts 

between the detected items and the surrounding surroundings. This is the challenge of gathering moving data 

on road damage on an edge device. A CNN model is required for good performance and can be deployed on 

edge devices. 

The problem concerning road damage detection devices in the form of mobile edge devices exists 

because they have limited computation and storage capabilities. Thus, the CNN model deployed on edge 

devices must be considered. Some studies employ the CNN one-stage detector MobileNetV2 [16], [32], [34] 

and RetinaNet152 [38] models installed on edge devices. The RetinaNet152 model has been selected for 

current research to provide real-time detection and classification with hyperparameter tuning to increase 

system performance, which includes mAP, recall, and F1-score. This research employs the RetinaNet152 

model, with further advancements in road damage identification systems through batch size and real-time 

video testing. 

The RetinaNet152 and MobileNetV2 models are employed in a variety of steps, including dataset 

retrieval, pre-processing, annotation, batch size and optimizer modeling, and system performance evaluation. 

The data analysis parameters are mAP, AR, and F1-score. The RetinaNet152 and MobileNetV2 models were 

converted to TFlite and deployed on an edge device using the NVIDIA Jetson Nano, allowing the inference 

time to be measured. Validation testing of the RetinaNet152 and MobileNetV2 road damage categorization 
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models involved validating video and then evaluating system performance. Figure 1 shows the modeling 

procedure for RetinaNet152 and MobileNetV2 models, including hyperparameter tuning, performance 

analysis, and deployment on edge devices. 

This dataset retrieval combines a collection of road damage images from the East Java Public Works 

Office's Directorate of Highways survey findings with data obtained directly. Datasets were collected on 

provincial highways in East Java utilizing the road damage tool system [15]. The dataset retrieval images 

returned 11,176 images. 

Pre-processing the dataset is required to equalize the image's size and format, allowing for faster 

performance and improved model performance. The Windows utility converts image data into 640×640-pixel 

images. The dataset is annotated to identify and describe characteristics based on item classification. The 

labelImg tool annotates the entire dataset. This annotation process selects the type of road damage 

classification. The current research utilizes four labeling datasets for road damage classification: potholes 

(L00), longitudinal cracks (R02), alligator cracks (R03), and shadows (00). The dataset labeling method 

addresses the demand for road damage data based on the asphalt road condition survey form provided by the 

Department of Public Works, Directorate General of Highways in Indonesia. 

 

 

 
 

Figure 1. The RetinaNet152 and MobileNetV2 models use hyperparameter tuning 

 

 

The road damage detection procedure makes use of deep learning technology, specifically the 

RetinaNet152 and MobileNetV2 models, which have already been trained. This decision is taken to obtain 

peak performance while drastically reducing training time compared to starting from scratch.  

The RetinaNet152 and MobileNetV2 models are developed using the TensorFlow object detection API, an 

open-source framework based on TensorFlow. This API simplifies the development, training, and 

deployment of object detection models. The TensorFlow object detection API includes the model Zoo, a 

collection of pre-trained models with various architectures. These models were trained on many datasets, 

including COCO, KITTI, and Open Image. Using these pre-trained models promotes transfer learning and 

allows customization to meet a variety of operational objectives. This approach provides a solid foundation 

for the road damage classification system. 



      ISSN: 2252-8938 

Int J Artif Intell, Vol. 14, No. 2, April 2025: 1430-1440 

1434 

This research analyzes the use of optimizers like momentum, RMSprop, and Adam on the 

RetinaNet152 and MobileNetV2 models. The momentum optimizer can help to overcome the issue of 

delayed convergence and accelerate model training. The momentum optimizer assists in filling local gaps and 

enhances converge in the right direction. momentum optimizer parameter equations as in (1) and (2) [38]. 

 

𝑣(𝑡) = 𝛽. 𝑣(𝑡−1) + (1 − 𝛽) ⋅ 𝛻𝐹. (𝑊𝑡) (1) 

 

𝑊(𝑡−1) = 𝑊𝑡 − 𝛼 ⋅ 𝑣(𝑡) (2) 

 

Where t is the parameter at the t-iteration, α is the learning rate, ∇F(Wt) is the gradient of the cost function 

with respect to the parameter at iteration t. RMSprop is one of the optimization algorithms that maintains the 

squared gradient average for each weight. The equation RMSprop is shown in (3) [38]. 

 

𝑀𝑒𝑎𝑛𝑆𝑞𝑢𝑎𝑟𝑒(𝑤,𝑡)  =  ρ x  𝑀𝑒𝑎𝑛𝑆𝑞𝑢𝑎𝑟𝑒(𝑤,𝑡−1) +  0.1( ∂E ∂w(𝑡) )2 (3) 

 

Adam optimizer in (4) [38]. 

 

𝑊𝑡  =  𝑊𝑡−1 − α(
𝑚𝑡

√𝑣𝑡
+ ε))  (4) 

 

Where g is gradient, m is first moment, v is second moment, 𝛽1, 𝛽2 are exponential decay rates, 𝛼 is learning 

rate, W the parameter is the weight. During the optimization phase for the RetinaNet152 and MobileNetV2 

models, trials are carried out with various learning rates and optimizer settings. To determine the test 

outcomes, use the evaluation matrix defined by the two variables in (5) and (6) [19], [38]. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (5) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (6) 

 

The total loss is the result of an incorrect forecast, while the loss is a numerical value that measures 

the degree of inaccuracy in the model's prediction. Precision is defined as the ratio of correct positive 

predictions to the total number of positive instances predicted; it is simply the true positives (TP) divided by 

total detections that are true positives (TP) and false positives (FP). Recall quantifies the ratio of successfully 

predicted actual positives, specifically the true positives (TP), to all ground truth values that are true positives 

(TP) and false negative (FN). The F1-score is an evaluation metric that determines the accuracy of the 

RetinaNet152 and MobileNetV2 models. It brings together a model's precision and recall scores as shown in 

(7) [19]. The accuracy statistic calculates the number of times the RetinaNet152 and MobileNetV2 models 

predicted correctly over the full dataset.  

 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 𝑥 
(𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (7) 

 

Validation testing of the road damage classification model was performed using video samples 

lasting around 40 seconds. Real-time video capture, which is based on the road damage detection system, 

records the road segment in motion using a camera. During video capture, the camera is designed to be 

mounted on the car's front bonnet at an angle of around 28 degrees to the road. The weather conditions 

during data collection were described as partially cloudy. Video validation testing of the RetinaNet152 and 

MobileNetV2 models was carried out on the Jupyter Notebook server. 

 

 

3. RESULTS AND DISCUSSION 

This section presents the research achievements of the proposed system from the RetinaNet152 and 

MobileNetV2 models. The system performance analysis results of RetinaNet152 and MobileNetV2 models 

include hyperparameter tuning system performance analysis, video validation, and deployment results on 

edge devices, specifically NVIDIA Jetson 4 GB. In addition, comparative analysis of mAP, AR, and F1-score 

system performance, inference time, and previous work and the proposed system. Specifically, the stages are 

stated as follows. 
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3.1.  The system's performance tuning hyperparameter 

The influence of batch size and optimizer could affect total loss and system performance. Table 2 

shows the relationship between batch size and optimizer for the proposed RetinaNet152 and MobileNetV2 

models. The simulation results of the RetinaNet152 model show that increasing the batch size could develop 

a more stable gradient estimate, allowing the momentum optimizer to produce a more consistent gradient 

descent direction, resulting in less loss. The RetinaNet152 model uses the momentum optimizer, and batch 

size 4 loses 0.573, whereas batch size 8 loses 0.225. The RMSProp optimizer adjusts the learning rate for 

each parameter based on the most recent observation and the average gradient. However, the RMSProp 

optimizer has a method for managing important gradient variance, resulting in a loss of 0.802 for batch size 4 

to 1.088 for batch size 8, as compared to momentum. 

 

 

Table 2. The system performance of RetinaNet152 and MobileNetV2 models 
Proposed 

Sytem 
Parameter 

(Optimizer, Batch size) 
Loss 

mAP  
(@IoU 0.5-0.95) 

mAP 
(@IoU 0.5) 

(AR) 
F1-score  

(@IoU 0.5-0.95) 
F1-score 

(@IoU 0.5) 

RetinaNe
t152 

Model 

Momentum, 4 0.573 0.277 0.406 0.449 0.343 0.426  

RMSprop, 4 0.802 0.235 0.454 0.457 0.310 0.455  

Adam, 4 0.264 0.351 0.457 0.499 0.412 0.477  

Momentum, 8 0.225 0.334 0.455 0.423 0.373 0.438 

RMSprop, 8 1.088 0.256 0.477 0.446 0.325 0.461 

Adam, 8 0.220 0.349 0.469 0.410 0.377 0.438 

MobileN

etV2 

Model 

Momentum, 4 0.326 0.292 0.563 0.467 0.349 0.451 

RMSprop, 4 1.970 0 0 0 0 0 

Adam, 4 0.656 0.208 0.578 0.408 0.338 0.462 

Momentum, 8 0.668 0.201 0.561 0.368 0.342 0.450 

RMSprop, 8 2.010 0 0 0 0 0 

Adam, 8 0.320 0.298 0.606 0.476 0.322 0.481 

 

 

Based on the second estimate of the gradient moments, Adam's optimizer adjusts the learning rate 

adaptively to modify the batch size. Simulation results for the RetinaNet152 model show that a very small 

batch size of 4 could produce an unstable estimate of the gradient moment, resulting in a loss of 0.264, but a 

batch size of 8 makes the Adam optimizer more stable, resulting in a loss of just 0.220. The batch size 8 and 

Adam optimizer scenario had a higher performance system with mAP 0.469 and AR 0.410, resulting in the 

highest F1-score value of 0.438. The scenario had a less overall loss than the other possibilities, which is 

advantageous. 

Simulation results for the MobileNetV2 model demonstrate that raising the batch size can lead to 

more stable gradient estimation, allowing the momentum optimizer to lower the loss of 0.326 at batch size 4 

and 0.668 at batch size 8. However, the RMSProp optimizer adapts the learning rate to the average gradient. 

However, the RMSProp optimizer generates a loss higher than one; therefore, it cannot attain system 

performance. Adam's optimizer with adaptive produces a more constant gradient descent direction, which 

leads to less loss. Adam's optimizer has a lower loss of 0.656 at batch size 4 and 0.320 at batch size 8 than 

momentum and RMSprop. The results of system performance according to the MobileNetV2 model, batch 

size 8, and Adam optimizer scenario produced a higher performance system with mAP 0.606 and AR 0.476, 

resulting in the highest F1-score value of 0.481. 

The batch size indicates the number of samples utilized in a single training iteration before the 

Retinanet152 and MobileNetV2 model weights are adjusted. The RetinaNet152 model illustrates that raising 

the batch size reduces loss in the momentum and Adam optimizers since the resulting gradient is an average 

of more data, except in RMSprop, where increasing the batch size increases loss. The MobileNetV2 model 

reveals that increasing the batch size on the momentum optimizer and RMSprop increases the loss. The 

MobileNetV2 model minimizes loss on the Adam optimizer while maintaining acceptable system 

performance (mAP, AR, and F1-score). Overall, the RetinaNet152 and MobileNetV2 models have the lowest 

loss and the best system performance (mAP, AR, and F1-score) in batch size 8 and Adam optimizer. 

When implementing the Retinanet152 and MobileNetV2 models on edge devices with limited 

memory, it is important to keep in mind that if the batch size exceeds the available memory capacity, 

memory overflow and performance challenges may occur. In road defect detection systems, the Retinanet152 

and MobileNetV2 models are used on edge devices with limited memory. This is an important issue to 

consider while selecting the RetinaNet152 and MobileNetV2 models on settings such as batch size and 

optimizer. It is critical to undertake procedures and cross-validation to determine the best combination of the 

RetinaNet152 and MobileNetV2 models based on parameters such as batch size and optimizer. 

Our findings suggest that the proposed systems use RetinaNet152 and MobileNetV2, and that 

adding an adaptive optimizer, specifically Adam, can result in improved system performance. Some of the 
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issues faced by this system are road damage datasets with almost equal variance between detection objects 

and the surrounding environment, small road damage detection objects, and object retrieval while in motion. 

This results in inadequate system performance, enhancing this issue of real-time road damage detection 

research using the device. As a result, more investigation is required to increase the performance of a more 

optimal system by including many approaches into the one-stage CNN model used on edge devices. 

 

3.2.  Video validation and deploying RetinaNet152 and MobileNetV2 models on edge device 

The evaluation of the RetinaNet152 and MobileNetV2 models is based on classification results, 

which have a considerable impact on road damage calculations. The test seeks to differentiate the model's 

predictions when running on video samples to see if they match the intended objects. Confusion evaluators 

use metrics such as TP, FP, and FN. TP indicates that objects within the bounding box were accurately 

identified based on their anticipated label. FP implies that objects were mistakenly identified within the 

bounding box, whereas FN shows that things should have been discovered but were not. Precision, recall, and 

F1-score are among the measures obtained from confusion metrics. 

Precision assesses the ability to make accurate positive predictions. Recall (sensitivity or true 

positive rate) measures the model's ability to detect all cases that should be positive. The F1-score illustrates 

the trade-off between precision and recall, demonstrating the balance of these two criteria. Table 3 shows the 

results of the validation testing of the RetinaNet152 and MobileNetV2 model's detection with video samples. 

Table 3 presents the detection results for the RetinaNet152 and MobileNetV2 models based on 

video samples. The average values for the system performance parameters precision, recall, and F1 score are 

the same for the RetinaNet152 and MobileNetV2 models. Based on the video validation results, Figures 2 

exhibit the classification and detection capabilities of the RetinaNet152 and MobileNetV2 models to detect 

road damage systems. 

 

 

Table 3. The performance of video validation 
Proposed sytem Type TP FP FN Ground truth Precision Recall F1-score 

RetinaNet152 model L00 29 14 1 30 0.67 0.97 0.79 

R02 3 2 1 4 0.60 0.75 0.67 

R03 12 7 1 13 0.63 0.92 0.75 

00 3 1 4 7 0.75 0.43 0.55 

     Average  0.66 0.77 0.67 

MobileNetV2 model L00 32 10 2 28 0.76 0.94 0.84 
R02 5 2 1 3 0.71 0.83 0.76 

R03 13 5 2 12 0.72 0.86 78 

00 2 2 4 7 0.5 0.33 0.4 
     Average 0.67 0.74 0.69 

 

 

  
 

Figure 2. Prediction results RetinaNet152 and MobileNetV2 models, parameter batch size 8, and  

Adam optimizer 

 

 

The implementation testing of the road fault detection system focuses on analyzing the CNN 

model's performance on NVIDIA Jetson Nano 4 GB used as an edge device [32]. In this research, utilizing 

the RetinaNet152 [38] and MobileNetV2 models, adjusting hyperparameters such as batch size and an 

optimizer are built to increase system performance. Performance parameters include average frame per 

second (FPS) and average inference time. Table 4 shows the results of deploying the RetinaNet-152 and 

MobileNetV2 models on the edge device with modifications in hyperparameter tuning parameters such as 

batch size and optimizer. 
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Table 4. Comparison of inference time RetinaNet152 and MobileNetV2 models 
Model FPS Inference Time (s) Model (Mb) 

RetinaNet152 0.05 19.48 70 
MobileNetV2 3.50 0.28 3.7 

 

 

Table 4 shows that the performance of the RetinaNet-152 model on the NVIDIA Jetson Nano 4 GB 

has direct field-testing results with a very low FPS of 0.05. This demonstrates that adjusting the batch size 

and optimizer hyperparameters can increase system performance (mAP, recall, and F1-score) but also speed 

up inference time. Inference time with smaller values and model sizes demonstrates that the RetinaNet 152 

model performs better at detecting road damage. However, deployment findings on the edge device model 

RetinaNet152 showed a lower FPS on the Adam optimizer with a batch size of 8 versus 4. Larger batch sizes 

have the potential to accelerate the training process, resulting in faster inference time. However, big batches 

require resources, particularly when implemented on edge devices with limited memory. Among  

the cases, Adam optimizer with batch size 8 produced better parameter values: FPS 0.05, inference time  

19.4780 seconds, model size 70 MB. 

Based on research conducted with the MobileNetV2 model [34], this research developed the 

MobileNetV2 model, which was deployed utilizing an NVIDIA Jetson 4 GB. The MobileNetV2 model has 

an inference time 0.28 seconds faster than RetinaNet152 and an FPS of 3.5, giving it better performance than 

RetinaNet152. Table 4 demonstrates how the MobileNetV2 model, which has faster inference, may be 

utilized to detect road damage on edge devices. 

The general RetinaNet152 model cannot be employed directly on edge devices; however, methods 

are required to reduce inference time. This is due to the RetinaNet152 model's far more sophisticated 

architecture than MobileNetV2. RetinaNet152 contains more layers and parameters to accommodate the need 

for high precision in object detection tasks involving multiple objects at varying scales and features.  

This means that RetinaNet152 needs more processing resources to perform this inference. If the 

RetinaNet152 model is used in research on edge devices, methods such as quantization, prunning, and 

knowledge distillation must be used to reduce inference time. 

 

3.3.  Comparation system performance model CNN 

Table 2 shows the system performance results of the RetinaNet152 and MobileNetV2 models with 

respect to all the minimum loss parameters. The results of mAP of 0.469; AR of 0.410 and F1-score of 0.377 

for the RetinaNet152 model parameters batch size 8 and Adam optimizer are obtained. Table 4 shows the 

efficiency of the RetinaNet152 model with batch size 8 and Adam optimizer in terms of inference time of 

19.48 seconds, FPS of 0.05, and model size of 70 MB. The MobileNetV2 model parameters batch size 8 and 

Adam optimizer yielded the highest F1-score value of 0.481, with mAP 0.606 and AR 0.476, respectively. 

The MobileNetV2 model with batch size 8 and Adam optimizer is efficient in terms of inference time of 0.28 

seconds, FPS of 3.50, and model size of 3.7 MB. The RetinaNet152 and MobileNetV2 models with test 

results have the best system performance when compared to the findings of another investigation, as shown 

in Table 5. 

 

 

Table 5. The system performance on edge device 
Previous studies Model CNN System performance  Edge device 

[16] MobileNet Recall 0.71; precision 0.77; inference time 1.5 s. Smartphone 

[32] MobileNetV2 mAP 0.22 NVIDIA Jetson Nano 

[33] MobileNet V1 Accuracy 0.60; frames per second 1.2 s Raspberry Pi 
[34] MobileNetV2 mAP 0.086; AR 0.241 NVIDIA Jetson Nano 

Proposed system RetinaNet152 mAP 0.469; AR 0.410; F1-score 0.377; size model 70 MB; 

inference time 19,4780 second; FPS 0.05 

NVIDIA Jetson Nano 

Proposed system MobileNetV2 mAP 0.606; AR 0.476; F1-score 0.481; size model 3.7 MB; 

inference time 0.28 second; FPS 3.5 

NVIDIA Jetson Nano 

 

 

This study investigates the effects of batch size and the optimizer on CNN models, specifically the 

RetinaNet152 and MobileNetV2 models, which are deployed on edge devices to detect road defects. 

Although earlier research investigated the influence of hyperparameter CNN models on system performance, 

little has been performed to specifically examine the effect of batch size and the optimizer. This result study 

is compared to the MobileNetV2 model [32], [34] research using learning rate and batchsize hyperparameter 

tuning. In this study, based on Table 5, the RetinaNet152 model using batchsize and optimizer 

hyperparameter tuning methods proposed in this study show a proportional improvement in system 

performance results for mAP and AR. Based on the system performance comparison in Table 5, the 
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hyperparameter tuning strategy in the MobileNetV2 model improves performance significantly, resulting in 

good system performance and rapid inference time. This demonstrates that the MobileNetV2 model could 

potentially be implemented directly on edge devices for road damage detection. The RetinaNet152 model, 

which employs the batchsize hyperparameter tuning method and the optimizer developed in this paper, 

achieves a proportional improvement in system performance results for mAP and AR. However, the 

RetinaNet152 model cannot be implemented directly on edge devices; it requires post-training procedures 

like quantization and prunning, among others. 

However, according to the results of this study, RetinaNet152 models need to improve system 

performance in several respects when compared to the MobileNetV2 model [16]. The first method is to 

improve system performance by expanding the dataset by boosting image capture resolution with a  

high-resolution camera. There is no comparable dataset for road damage research [16]; hence, it presents 

unique issues. Furthermore, adding many augmenting scenarios will increase system performance on the 

RetinaNet152 and MobileNetV2 models. In addition, to improve system performance, the RetinaNet152 and 

MobileNetV2 models should be optimized for hyperparameter selection utilizing grid search, random search, 

bayesian optimization, and so on. Further research into the deployment of CNN models on edge devices should 

focus on the structure and size of the models. This is a crucial issue to consider because CNN models with large 

model structures and sizes demand more processing resources during the inference phase to detect objects.  

To reduce inference time, a CNN model with a large model structure and size should be employed in edge 

device research, along with methods such as quantization, prunning, and knowledge distillation [39], [40]. 

 

 

4. CONCLUSION 

There is a need for a device as an edge device that recognizes road damage using technology and 

AI, as a sort of road digitalization creates a system to identify road damage automatically, efficiently, and in 

real time. The use of CNN models for road damage detection on edge devices requires a trade-off between 

high accuracy and high efficiency. Currently, edge devices have limited storage. Results comparing the 

effects of increasing batch size and different optimizers on RetinaNet152 and MobileNetV2 models: i) the 

Adam optimizer performed better, with a mAP, AR, and F1-score for batch size 8. This means that tweaking 

the optimizer improves overall model performance; ii) the MobileNetV2 model's hyperparameter tuning 

technique considerably enhances performance, resulting in fast inference time and good system performance 

overall. This shows that the MobileNetV2 model might be deployed directly on edge devices to detect road 

damage; and iii) the RetinaNet152 model, which uses the batchsize hyperparameter tuning approach and the 

optimizer described in this research, achieves a proportionate gain in system performance for mAP and AR. 

However, the RetinaNet152 model cannot be deployed directly to edge devices using the Jetson Nano 4 GB. 

The RetinaNet152 model can be deployed on edge devices; however, a technique for speeding up inference 

time is essential, as are post-training procedures such as quantization and prunning. Several 

recommendations are made for further research or implementation. First, consider augmenting and improving 

the dataset's quality to attain better CNN model training outcomes. Second, system implementation testing 

should be carried out on a high-end computer server, such as a NVIDIA RTX 3080 with 32 GB of RAM. In 

addition, consider using the RetinaNet50 model, which has a lighter design and model size than the 

RetinaNet152. Finally, investigate speeding up the inference time exploring methods like post-training 

quantization and converting Tensorflow Lite models to TensorRT to improve implementation efficiency. 
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