
IAES International Journal of Artificial Intelligence (IJ-AI)

Vol. 14, No. 2, April 2025, pp. 1430~1440

ISSN: 2252-8938, DOI: 10.11591/ijai.v14.i2.pp1430-1440  1430

Journal homepage: http://ijai.iaescore.com

Detecting road damage utilizing retinanet and mobilenet models

on edge devices

Haniah Mahmudah1,2, Aulia Siti Aisjah2, Syamsul Arifin1, Catur Arif Prastyanto3
1Department of Electrical Engineering, Politeknik Elektronika Negeri Surabaya, Surabaya, Indonesia

2Department of Physics Engineering, Faculty of Industrial and Systems Engineering, Institut Teknologi Sepuluh Nopember,

Surabaya, Indonesia
3Department of Civil Engineering, Faculty of Civil, Planning, and Geo Engineering, Institut Teknologi Sepuluh Nopember,

Surabaya, Indonesia

Article Info ABSTRACT

Article history:

Received Mar 26, 2024

Revised Oct 25, 2024

Accepted Nov 14, 2024

 A particular form of road digitalization produces a system that detects road

damage automatically and in real time, employing the device to detect road

damage as an edge device. The application of RetinaNet152 and

MobileNetV2 models for road damage detection on edge devices

necessitates a trade-off between high system performance and efficiency.

Currently, edge devices have limited storage. In this paper, we explore how

tuning hyperparameters with batch size and several optimizers improves

system performance on RetinaNet152 and MobileNet models, as well as

how they are implemented on edge devices. After tuning hyperparameters in

the batch size of the optimizer, the Adam optimizer displayed enhanced

performance with mean average precision (mAP), average recall (AR), and

F1-score. This implies a positive impact on overall model performance. The

MobileNetV2 model's hyperparameter tuning technique significantly

improves performance, resulting in faster inference times and overall system

performance. This demonstrates that the MobileNetV2 model could be used

directly on edge devices to identify road damage. However, the

RetinaNet152 model has a lower inference time, which cannot be deployed

directly to edge devices. The RetinaNet152 model can be deployed on edge

devices; however, a technique for speeding up inference time is essential.

Keywords:

Edge device

Inference time

MobileNet model

RetinaNet model

Tuning hyperparameters

This is an open access article under the CC BY-SA license.

Corresponding Author:

Aulia Siti Aisjah

Department of Physics Engineering, Faculty of Industrial and Systems Engineering

Institut Teknologi Sepuluh Nopember

ITS Campus, Sukolilo, Surabaya, 60111, Indonesia

Email: auliasa@its.ac.id

1. INTRODUCTION

A particular form of road digitalization produces a system that detects road damage automatically

and in real time, employing the device to detect road damage as an edge device. The implementation of

digitalization on roads through automation, artificial intelligence (AI), and digital information flow results in

enhanced efficiency, lower operating costs, and improved road services. A particular application of

digitalization on roads is in road maintenance programs that support smart cities [1]–[3]. Several studies have

been conducted to decet road damage utilizing AI technologies, camera sensors and various image data

processing approaches. Some of the research with approach methodologies include image-based image

processing techniques [4]–[9], machine learning (ML) model [10]–[14], and deep learning method [15]–[27].

This investigation employs image processing techniques for a variety of applications, including the

detection of road defects. Potholes are a type of road defect that can be detected using classic image

https://creativecommons.org/licenses/by-sa/4.0/

Int J Artif Intell ISSN: 2252-8938 

Detecting road damage utilizing retinanet and mobilenet models on edge devices (Haniah Mahmudah)

1431

processing techniques. This technique needs numerous stages to achieve high accuracy, including manually

extracting image features and tweaking image processing parameters. The speed of image frames varies

depending on road conditions [4]. The ML model includes a data processing stage that manually pulls

features to increase accuracy, which requires a significant number of computational resources. Several

studies have used deep convolutional neural network (CNN) approaches to automate the process of feature

extraction and categorization at the same time [18], [26].

A particular application of the CNN model for road problem identification on edge devices

necessitates a trade-off between high accuracy and high efficiency [13]. The CNN models are highly accurate

in terms of system performance recall, precision, high accuracy, and low loss. This necessitates CNN models

with massive architecture and competitive computing costs that are inefficient. As a result, it requires a

simpler CNN model configuration setting while maintaining good accuracy. The CNN models are highly

efficient in that they can detect road faults on edge devices with fast inference times. Because the CNN

model on the edge device has limited storage, inference time must be taken into consideration. The CNN

models have fast inference times, perform well on simpler model configurations, but are difficult to obtain

high accuracy. To achieve excellent system performance, CNN model parameters must be carefully selected.

When selecting detection models, there is no conclusive answer as to which model has the highest

performance, but one must make decisions based on demands [13], [14].

In order to produce a system that detects road damage automatically and in real time, CNN model

research must be developed. The development study in road damage detection enhances system performance

by utilizing one- and two-stage CNN models. Some research on road damage detection using CNN includes

detection techniques using CNN models with semi-supervised learning using pseudo-labels [15], CNN

one-stage detector model architecture namely InceptionV2 and MobileNet on personal computer (PC) [16],

YOLO namely Tiny-YOLOv2, darknet neural networks, YOLOv3, Tiny-YOLOv3 and YOLOv4 [20], [21],

YOLOv5 on smartphones [22], YOLOv3, YOLOv2 and TinyV3 models [23], YOLOv5, two variations of

YOLOR, and faster R-CNN with five different backbones namely ResNet50, VGG16, MobileNetV2,

InceptionV3, and proposed modified VGG16 (MVGG16) [24]. The results of road damage detection research

implementing the CNN model include system performance features such as accuracy, mean average

precision (mAP), average recall, and the F1-score.

One effort to increase accuracy in CNN models is tuning hyperparameters relating to network

structure and training. The tuning hyperparameters consider network structure, namely kernel size, width,

and depth. Researchers examined three network designs of a CNN one-stage detector model (small, medium,

and large), as well as a combination of hyperparameter tuning and activation function adjustments. System

performance can be improved by implementing a CNN model network architecture and adjusting

hyperparameters [17], [18], [26], [27]. Several research have achieved high accuracy by employing an

optimizer to change hyperparameters on CNN models. To obtain good performance, several researchers on

object identification employ one or two optimizers as tuning hyperparameters on pretrained CNN models

[28]–[31]. However, none of the CNN model research has been deployed on edge devices for detecting road

damage.

Several road defect investigations were conducted utilizing CNN models on edge devices, resulting

in systems that detect road faults automatically and in real time. Maeda et al. [16] employed MobileNet on a

smartphone, achieving a system performance of 71% and an inference time of 1.5 seconds. Other research

applies the single shot multi-box detector (SSD)-MobileNet model with a batch size of 64 to NVIDIA Jetson

Nano devices with accelerators [32] and unmanned aerial vehicles (UAV) using Raspberry Pi [33]. Other

researchers created MobileNetV2 with hyperparameter learning rate and batch size settings using NVIDIA

Jetson Nano, which has a higher mAP of 0.0869 and a lower total loss training of 0.6028 compared to SSD

Resnet50V1 [34], [35]. Based on the results of that investigation, the CNN model is merged into hardware

devices that have been developed but still require additional research to increase system performance and

accelerate inference time, as shown in Table 1.

The challenge of detecting road damage on edge devices is to do it automatically and in real time as

the edge device moves at a specific speed. This necessitates the deployment of a CNN mode on an edge

device capable of overcoming this limitation. The RetinaNet152 model detects objects in images by

combining anchor boxes with feature pyramid networks. RetinaNet152 refers to the number of layers in the

backbone network, which in this case is ResNet-152. ResNet-152 is well-suited for road damage detection

since it can recognize and categorize objects with high accuracy and speed, which is critical for real-time

applications. Based on the advantages of RetinaNet's research on road damage by modifying the backbone

[36], it employs RetinaNet152 with hyperparameter optimizer adjustment [37]. The RetinaNet152 model has

advantages; however, it has not been deployed on edge devices for road damage detection equipment.

According to Table 1, the MobileNetV2 model [34] must increase system performance by modifying

hyperparameters using an optimizer.

  ISSN: 2252-8938

Int J Artif Intell, Vol. 14, No. 2, April 2025: 1430-1440

1432

Table 1. The CNN models on road damage
Previous studies Model CNN Object detection Performance system Edge device

[16] MobileNet Eight types of road damage Recall, precision, inference time Smartphone
[32] MobileNetV2 Potholes, longitudinal cracks,

alligator cracks

mAP NVIDIA Jetson Nano

[33] MobileNet V1 Pavement Accuracy, FPS Raspberry Pi
[34] MobileNetV2 Potholes, longitudinal cracks,

alligator cracks

mAP, AR NVIDIA Jetson Nano

Proposed
system

RetinaNet152
MobileNetV2

Potholes, longitudinal cracks,
alligator cracks

mAP, AR, F1-score, size model,
inference time, FPS

NVIDIA Jetson Nano

To address a research gap in this study, we present a system that improves the system performance

of the RetinaNet152 and MobilenetV2 models in a road damage detection system on edge devices, thereby

improving system performance and inference time. The research results with optimization produced good

system performance. Road damage detection systems for edge devices with limited memory and mobile data

retrieval use the RetinaNet152 and MobilenetV2 models. Larger batch sizes can help speed up the training

process by allowing the model to process more data concurrently. This can lead to faster convergence and

improved performance. A larger batch size can help reduce gradient variance, hence improving model

stability and accuracy [37]. However, it is particularly important to note that raising the batch size and

optimizer can result in higher memory needs and the need for more processing resources. To increase system

performance and implementation on edge devices with environmental variations, the road damage detection

system needs to simulate batch sizes and optimizer parameters on RetinaNet152 and MobileNet models.

The primary contributions of this research to the development of road defect detection systems are

described as follows:

‒ The development of RetinaNet152 [38] and MobileNetV2 [34] models for road damage is based on tuning

hyperparameters: batch size and optimizers to improve performance system mAP, AR, and F1-score.

‒ Edge-device deployment of the RetinaNet152 and MobileNetV2 models for real-time road damage

detection. This research uses a road damage system and a road damage detection system.

‒ Comparing the analysis systems performance of the Retinanet152 and MobileNetV2 models, inference

times, frames per second, and size model when deployed on edge devices.

The paper has four parts. Section 1 introduction focuses on the topic and research goal.

Section 2 covers methods. Section 3 contains results and discussions: i) the system's performance

tuning hyperparameter, ii) deploying the RetinaNet152 and MobileNetV2 models on edge device, and

iii) comparation system performance model CNN. Finally, section 4 presents ideas for future research.

2. METHOD

Several issues arise when gathering and identifying road defects when moving with edge devices.

Potholes, alligator cracks, and longitudinal fractures are produced by capturing road damage statistics on

edge devices in real time and while in motion. Under certain conditions, the recoverable cracks are very

small and unclear. This is due to the tiny size of the cracks and the fluctuation of road damage object

detection in the surrounding environment, which makes it difficult to discern road damage in the form of

cracks. Furthermore, road damage datasets in the form of fractures result in nearly identical color shifts

between the detected items and the surrounding surroundings. This is the challenge of gathering moving data

on road damage on an edge device. A CNN model is required for good performance and can be deployed on

edge devices.

The problem concerning road damage detection devices in the form of mobile edge devices exists

because they have limited computation and storage capabilities. Thus, the CNN model deployed on edge

devices must be considered. Some studies employ the CNN one-stage detector MobileNetV2 [16], [32], [34]

and RetinaNet152 [38] models installed on edge devices. The RetinaNet152 model has been selected for

current research to provide real-time detection and classification with hyperparameter tuning to increase

system performance, which includes mAP, recall, and F1-score. This research employs the RetinaNet152

model, with further advancements in road damage identification systems through batch size and real-time

video testing.

The RetinaNet152 and MobileNetV2 models are employed in a variety of steps, including dataset

retrieval, pre-processing, annotation, batch size and optimizer modeling, and system performance evaluation.

The data analysis parameters are mAP, AR, and F1-score. The RetinaNet152 and MobileNetV2 models were

converted to TFlite and deployed on an edge device using the NVIDIA Jetson Nano, allowing the inference

time to be measured. Validation testing of the RetinaNet152 and MobileNetV2 road damage categorization

Int J Artif Intell ISSN: 2252-8938 

Detecting road damage utilizing retinanet and mobilenet models on edge devices (Haniah Mahmudah)

1433

models involved validating video and then evaluating system performance. Figure 1 shows the modeling

procedure for RetinaNet152 and MobileNetV2 models, including hyperparameter tuning, performance

analysis, and deployment on edge devices.

This dataset retrieval combines a collection of road damage images from the East Java Public Works

Office's Directorate of Highways survey findings with data obtained directly. Datasets were collected on

provincial highways in East Java utilizing the road damage tool system [15]. The dataset retrieval images

returned 11,176 images.

Pre-processing the dataset is required to equalize the image's size and format, allowing for faster

performance and improved model performance. The Windows utility converts image data into 640×640-pixel

images. The dataset is annotated to identify and describe characteristics based on item classification. The

labelImg tool annotates the entire dataset. This annotation process selects the type of road damage

classification. The current research utilizes four labeling datasets for road damage classification: potholes

(L00), longitudinal cracks (R02), alligator cracks (R03), and shadows (00). The dataset labeling method

addresses the demand for road damage data based on the asphalt road condition survey form provided by the

Department of Public Works, Directorate General of Highways in Indonesia.

Figure 1. The RetinaNet152 and MobileNetV2 models use hyperparameter tuning

The road damage detection procedure makes use of deep learning technology, specifically the

RetinaNet152 and MobileNetV2 models, which have already been trained. This decision is taken to obtain

peak performance while drastically reducing training time compared to starting from scratch.

The RetinaNet152 and MobileNetV2 models are developed using the TensorFlow object detection API, an

open-source framework based on TensorFlow. This API simplifies the development, training, and

deployment of object detection models. The TensorFlow object detection API includes the model Zoo, a

collection of pre-trained models with various architectures. These models were trained on many datasets,

including COCO, KITTI, and Open Image. Using these pre-trained models promotes transfer learning and

allows customization to meet a variety of operational objectives. This approach provides a solid foundation

for the road damage classification system.

  ISSN: 2252-8938

Int J Artif Intell, Vol. 14, No. 2, April 2025: 1430-1440

1434

This research analyzes the use of optimizers like momentum, RMSprop, and Adam on the

RetinaNet152 and MobileNetV2 models. The momentum optimizer can help to overcome the issue of

delayed convergence and accelerate model training. The momentum optimizer assists in filling local gaps and

enhances converge in the right direction. momentum optimizer parameter equations as in (1) and (2) [38].

𝑣(𝑡) = 𝛽. 𝑣(𝑡−1) + (1 − 𝛽) ⋅ 𝛻𝐹. (𝑊𝑡) (1)

𝑊(𝑡−1) = 𝑊𝑡 − 𝛼 ⋅ 𝑣(𝑡) (2)

Where t is the parameter at the t-iteration, α is the learning rate, ∇F(Wt) is the gradient of the cost function

with respect to the parameter at iteration t. RMSprop is one of the optimization algorithms that maintains the

squared gradient average for each weight. The equation RMSprop is shown in (3) [38].

𝑀𝑒𝑎𝑛𝑆𝑞𝑢𝑎𝑟𝑒(𝑤,𝑡) = ρ x 𝑀𝑒𝑎𝑛𝑆𝑞𝑢𝑎𝑟𝑒(𝑤,𝑡−1) + 0.1(∂E ∂w(𝑡))2 (3)

Adam optimizer in (4) [38].

𝑊𝑡 = 𝑊𝑡−1 − α(
𝑚𝑡

√𝑣𝑡
+ ε)) (4)

Where g is gradient, m is first moment, v is second moment, 𝛽1, 𝛽2 are exponential decay rates, 𝛼 is learning

rate, W the parameter is the weight. During the optimization phase for the RetinaNet152 and MobileNetV2

models, trials are carried out with various learning rates and optimizer settings. To determine the test

outcomes, use the evaluation matrix defined by the two variables in (5) and (6) [19], [38].

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (5)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (6)

The total loss is the result of an incorrect forecast, while the loss is a numerical value that measures

the degree of inaccuracy in the model's prediction. Precision is defined as the ratio of correct positive

predictions to the total number of positive instances predicted; it is simply the true positives (TP) divided by

total detections that are true positives (TP) and false positives (FP). Recall quantifies the ratio of successfully

predicted actual positives, specifically the true positives (TP), to all ground truth values that are true positives

(TP) and false negative (FN). The F1-score is an evaluation metric that determines the accuracy of the

RetinaNet152 and MobileNetV2 models. It brings together a model's precision and recall scores as shown in

(7) [19]. The accuracy statistic calculates the number of times the RetinaNet152 and MobileNetV2 models

predicted correctly over the full dataset.

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 𝑥
(𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (7)

Validation testing of the road damage classification model was performed using video samples

lasting around 40 seconds. Real-time video capture, which is based on the road damage detection system,

records the road segment in motion using a camera. During video capture, the camera is designed to be

mounted on the car's front bonnet at an angle of around 28 degrees to the road. The weather conditions

during data collection were described as partially cloudy. Video validation testing of the RetinaNet152 and

MobileNetV2 models was carried out on the Jupyter Notebook server.

3. RESULTS AND DISCUSSION

This section presents the research achievements of the proposed system from the RetinaNet152 and

MobileNetV2 models. The system performance analysis results of RetinaNet152 and MobileNetV2 models

include hyperparameter tuning system performance analysis, video validation, and deployment results on

edge devices, specifically NVIDIA Jetson 4 GB. In addition, comparative analysis of mAP, AR, and F1-score

system performance, inference time, and previous work and the proposed system. Specifically, the stages are

stated as follows.

Int J Artif Intell ISSN: 2252-8938 

Detecting road damage utilizing retinanet and mobilenet models on edge devices (Haniah Mahmudah)

1435

3.1. The system's performance tuning hyperparameter

The influence of batch size and optimizer could affect total loss and system performance. Table 2

shows the relationship between batch size and optimizer for the proposed RetinaNet152 and MobileNetV2

models. The simulation results of the RetinaNet152 model show that increasing the batch size could develop

a more stable gradient estimate, allowing the momentum optimizer to produce a more consistent gradient

descent direction, resulting in less loss. The RetinaNet152 model uses the momentum optimizer, and batch

size 4 loses 0.573, whereas batch size 8 loses 0.225. The RMSProp optimizer adjusts the learning rate for

each parameter based on the most recent observation and the average gradient. However, the RMSProp

optimizer has a method for managing important gradient variance, resulting in a loss of 0.802 for batch size 4

to 1.088 for batch size 8, as compared to momentum.

Table 2. The system performance of RetinaNet152 and MobileNetV2 models
Proposed

Sytem
Parameter

(Optimizer, Batch size)
Loss

mAP
(@IoU 0.5-0.95)

mAP
(@IoU 0.5)

(AR)
F1-score

(@IoU 0.5-0.95)
F1-score

(@IoU 0.5)

RetinaNe
t152

Model

Momentum, 4 0.573 0.277 0.406 0.449 0.343 0.426

RMSprop, 4 0.802 0.235 0.454 0.457 0.310 0.455

Adam, 4 0.264 0.351 0.457 0.499 0.412 0.477

Momentum, 8 0.225 0.334 0.455 0.423 0.373 0.438

RMSprop, 8 1.088 0.256 0.477 0.446 0.325 0.461

Adam, 8 0.220 0.349 0.469 0.410 0.377 0.438

MobileN

etV2

Model

Momentum, 4 0.326 0.292 0.563 0.467 0.349 0.451

RMSprop, 4 1.970 0 0 0 0 0

Adam, 4 0.656 0.208 0.578 0.408 0.338 0.462

Momentum, 8 0.668 0.201 0.561 0.368 0.342 0.450

RMSprop, 8 2.010 0 0 0 0 0

Adam, 8 0.320 0.298 0.606 0.476 0.322 0.481

Based on the second estimate of the gradient moments, Adam's optimizer adjusts the learning rate

adaptively to modify the batch size. Simulation results for the RetinaNet152 model show that a very small

batch size of 4 could produce an unstable estimate of the gradient moment, resulting in a loss of 0.264, but a

batch size of 8 makes the Adam optimizer more stable, resulting in a loss of just 0.220. The batch size 8 and

Adam optimizer scenario had a higher performance system with mAP 0.469 and AR 0.410, resulting in the

highest F1-score value of 0.438. The scenario had a less overall loss than the other possibilities, which is

advantageous.

Simulation results for the MobileNetV2 model demonstrate that raising the batch size can lead to

more stable gradient estimation, allowing the momentum optimizer to lower the loss of 0.326 at batch size 4

and 0.668 at batch size 8. However, the RMSProp optimizer adapts the learning rate to the average gradient.

However, the RMSProp optimizer generates a loss higher than one; therefore, it cannot attain system

performance. Adam's optimizer with adaptive produces a more constant gradient descent direction, which

leads to less loss. Adam's optimizer has a lower loss of 0.656 at batch size 4 and 0.320 at batch size 8 than

momentum and RMSprop. The results of system performance according to the MobileNetV2 model, batch

size 8, and Adam optimizer scenario produced a higher performance system with mAP 0.606 and AR 0.476,

resulting in the highest F1-score value of 0.481.

The batch size indicates the number of samples utilized in a single training iteration before the

Retinanet152 and MobileNetV2 model weights are adjusted. The RetinaNet152 model illustrates that raising

the batch size reduces loss in the momentum and Adam optimizers since the resulting gradient is an average

of more data, except in RMSprop, where increasing the batch size increases loss. The MobileNetV2 model

reveals that increasing the batch size on the momentum optimizer and RMSprop increases the loss. The

MobileNetV2 model minimizes loss on the Adam optimizer while maintaining acceptable system

performance (mAP, AR, and F1-score). Overall, the RetinaNet152 and MobileNetV2 models have the lowest

loss and the best system performance (mAP, AR, and F1-score) in batch size 8 and Adam optimizer.

When implementing the Retinanet152 and MobileNetV2 models on edge devices with limited

memory, it is important to keep in mind that if the batch size exceeds the available memory capacity,

memory overflow and performance challenges may occur. In road defect detection systems, the Retinanet152

and MobileNetV2 models are used on edge devices with limited memory. This is an important issue to

consider while selecting the RetinaNet152 and MobileNetV2 models on settings such as batch size and

optimizer. It is critical to undertake procedures and cross-validation to determine the best combination of the

RetinaNet152 and MobileNetV2 models based on parameters such as batch size and optimizer.

Our findings suggest that the proposed systems use RetinaNet152 and MobileNetV2, and that

adding an adaptive optimizer, specifically Adam, can result in improved system performance. Some of the

  ISSN: 2252-8938

Int J Artif Intell, Vol. 14, No. 2, April 2025: 1430-1440

1436

issues faced by this system are road damage datasets with almost equal variance between detection objects

and the surrounding environment, small road damage detection objects, and object retrieval while in motion.

This results in inadequate system performance, enhancing this issue of real-time road damage detection

research using the device. As a result, more investigation is required to increase the performance of a more

optimal system by including many approaches into the one-stage CNN model used on edge devices.

3.2. Video validation and deploying RetinaNet152 and MobileNetV2 models on edge device

The evaluation of the RetinaNet152 and MobileNetV2 models is based on classification results,

which have a considerable impact on road damage calculations. The test seeks to differentiate the model's

predictions when running on video samples to see if they match the intended objects. Confusion evaluators

use metrics such as TP, FP, and FN. TP indicates that objects within the bounding box were accurately

identified based on their anticipated label. FP implies that objects were mistakenly identified within the

bounding box, whereas FN shows that things should have been discovered but were not. Precision, recall, and

F1-score are among the measures obtained from confusion metrics.

Precision assesses the ability to make accurate positive predictions. Recall (sensitivity or true

positive rate) measures the model's ability to detect all cases that should be positive. The F1-score illustrates

the trade-off between precision and recall, demonstrating the balance of these two criteria. Table 3 shows the

results of the validation testing of the RetinaNet152 and MobileNetV2 model's detection with video samples.

Table 3 presents the detection results for the RetinaNet152 and MobileNetV2 models based on

video samples. The average values for the system performance parameters precision, recall, and F1 score are

the same for the RetinaNet152 and MobileNetV2 models. Based on the video validation results, Figures 2

exhibit the classification and detection capabilities of the RetinaNet152 and MobileNetV2 models to detect

road damage systems.

Table 3. The performance of video validation
Proposed sytem Type TP FP FN Ground truth Precision Recall F1-score

RetinaNet152 model L00 29 14 1 30 0.67 0.97 0.79

R02 3 2 1 4 0.60 0.75 0.67

R03 12 7 1 13 0.63 0.92 0.75

00 3 1 4 7 0.75 0.43 0.55

 Average 0.66 0.77 0.67

MobileNetV2 model L00 32 10 2 28 0.76 0.94 0.84
R02 5 2 1 3 0.71 0.83 0.76

R03 13 5 2 12 0.72 0.86 78

00 2 2 4 7 0.5 0.33 0.4
 Average 0.67 0.74 0.69

Figure 2. Prediction results RetinaNet152 and MobileNetV2 models, parameter batch size 8, and

Adam optimizer

The implementation testing of the road fault detection system focuses on analyzing the CNN

model's performance on NVIDIA Jetson Nano 4 GB used as an edge device [32]. In this research, utilizing

the RetinaNet152 [38] and MobileNetV2 models, adjusting hyperparameters such as batch size and an

optimizer are built to increase system performance. Performance parameters include average frame per

second (FPS) and average inference time. Table 4 shows the results of deploying the RetinaNet-152 and

MobileNetV2 models on the edge device with modifications in hyperparameter tuning parameters such as

batch size and optimizer.

Int J Artif Intell ISSN: 2252-8938 

Detecting road damage utilizing retinanet and mobilenet models on edge devices (Haniah Mahmudah)

1437

Table 4. Comparison of inference time RetinaNet152 and MobileNetV2 models
Model FPS Inference Time (s) Model (Mb)

RetinaNet152 0.05 19.48 70
MobileNetV2 3.50 0.28 3.7

Table 4 shows that the performance of the RetinaNet-152 model on the NVIDIA Jetson Nano 4 GB

has direct field-testing results with a very low FPS of 0.05. This demonstrates that adjusting the batch size

and optimizer hyperparameters can increase system performance (mAP, recall, and F1-score) but also speed

up inference time. Inference time with smaller values and model sizes demonstrates that the RetinaNet 152

model performs better at detecting road damage. However, deployment findings on the edge device model

RetinaNet152 showed a lower FPS on the Adam optimizer with a batch size of 8 versus 4. Larger batch sizes

have the potential to accelerate the training process, resulting in faster inference time. However, big batches

require resources, particularly when implemented on edge devices with limited memory. Among

the cases, Adam optimizer with batch size 8 produced better parameter values: FPS 0.05, inference time

19.4780 seconds, model size 70 MB.

Based on research conducted with the MobileNetV2 model [34], this research developed the

MobileNetV2 model, which was deployed utilizing an NVIDIA Jetson 4 GB. The MobileNetV2 model has

an inference time 0.28 seconds faster than RetinaNet152 and an FPS of 3.5, giving it better performance than

RetinaNet152. Table 4 demonstrates how the MobileNetV2 model, which has faster inference, may be

utilized to detect road damage on edge devices.

The general RetinaNet152 model cannot be employed directly on edge devices; however, methods

are required to reduce inference time. This is due to the RetinaNet152 model's far more sophisticated

architecture than MobileNetV2. RetinaNet152 contains more layers and parameters to accommodate the need

for high precision in object detection tasks involving multiple objects at varying scales and features.

This means that RetinaNet152 needs more processing resources to perform this inference. If the

RetinaNet152 model is used in research on edge devices, methods such as quantization, prunning, and

knowledge distillation must be used to reduce inference time.

3.3. Comparation system performance model CNN

Table 2 shows the system performance results of the RetinaNet152 and MobileNetV2 models with

respect to all the minimum loss parameters. The results of mAP of 0.469; AR of 0.410 and F1-score of 0.377

for the RetinaNet152 model parameters batch size 8 and Adam optimizer are obtained. Table 4 shows the

efficiency of the RetinaNet152 model with batch size 8 and Adam optimizer in terms of inference time of

19.48 seconds, FPS of 0.05, and model size of 70 MB. The MobileNetV2 model parameters batch size 8 and

Adam optimizer yielded the highest F1-score value of 0.481, with mAP 0.606 and AR 0.476, respectively.

The MobileNetV2 model with batch size 8 and Adam optimizer is efficient in terms of inference time of 0.28

seconds, FPS of 3.50, and model size of 3.7 MB. The RetinaNet152 and MobileNetV2 models with test

results have the best system performance when compared to the findings of another investigation, as shown

in Table 5.

Table 5. The system performance on edge device
Previous studies Model CNN System performance Edge device

[16] MobileNet Recall 0.71; precision 0.77; inference time 1.5 s. Smartphone

[32] MobileNetV2 mAP 0.22 NVIDIA Jetson Nano

[33] MobileNet V1 Accuracy 0.60; frames per second 1.2 s Raspberry Pi
[34] MobileNetV2 mAP 0.086; AR 0.241 NVIDIA Jetson Nano

Proposed system RetinaNet152 mAP 0.469; AR 0.410; F1-score 0.377; size model 70 MB;

inference time 19,4780 second; FPS 0.05

NVIDIA Jetson Nano

Proposed system MobileNetV2 mAP 0.606; AR 0.476; F1-score 0.481; size model 3.7 MB;

inference time 0.28 second; FPS 3.5

NVIDIA Jetson Nano

This study investigates the effects of batch size and the optimizer on CNN models, specifically the

RetinaNet152 and MobileNetV2 models, which are deployed on edge devices to detect road defects.

Although earlier research investigated the influence of hyperparameter CNN models on system performance,

little has been performed to specifically examine the effect of batch size and the optimizer. This result study

is compared to the MobileNetV2 model [32], [34] research using learning rate and batchsize hyperparameter

tuning. In this study, based on Table 5, the RetinaNet152 model using batchsize and optimizer

hyperparameter tuning methods proposed in this study show a proportional improvement in system

performance results for mAP and AR. Based on the system performance comparison in Table 5, the

  ISSN: 2252-8938

Int J Artif Intell, Vol. 14, No. 2, April 2025: 1430-1440

1438

hyperparameter tuning strategy in the MobileNetV2 model improves performance significantly, resulting in

good system performance and rapid inference time. This demonstrates that the MobileNetV2 model could

potentially be implemented directly on edge devices for road damage detection. The RetinaNet152 model,

which employs the batchsize hyperparameter tuning method and the optimizer developed in this paper,

achieves a proportional improvement in system performance results for mAP and AR. However, the

RetinaNet152 model cannot be implemented directly on edge devices; it requires post-training procedures

like quantization and prunning, among others.

However, according to the results of this study, RetinaNet152 models need to improve system

performance in several respects when compared to the MobileNetV2 model [16]. The first method is to

improve system performance by expanding the dataset by boosting image capture resolution with a

high-resolution camera. There is no comparable dataset for road damage research [16]; hence, it presents

unique issues. Furthermore, adding many augmenting scenarios will increase system performance on the

RetinaNet152 and MobileNetV2 models. In addition, to improve system performance, the RetinaNet152 and

MobileNetV2 models should be optimized for hyperparameter selection utilizing grid search, random search,

bayesian optimization, and so on. Further research into the deployment of CNN models on edge devices should

focus on the structure and size of the models. This is a crucial issue to consider because CNN models with large

model structures and sizes demand more processing resources during the inference phase to detect objects.

To reduce inference time, a CNN model with a large model structure and size should be employed in edge

device research, along with methods such as quantization, prunning, and knowledge distillation [39], [40].

4. CONCLUSION

There is a need for a device as an edge device that recognizes road damage using technology and

AI, as a sort of road digitalization creates a system to identify road damage automatically, efficiently, and in

real time. The use of CNN models for road damage detection on edge devices requires a trade-off between

high accuracy and high efficiency. Currently, edge devices have limited storage. Results comparing the

effects of increasing batch size and different optimizers on RetinaNet152 and MobileNetV2 models: i) the

Adam optimizer performed better, with a mAP, AR, and F1-score for batch size 8. This means that tweaking

the optimizer improves overall model performance; ii) the MobileNetV2 model's hyperparameter tuning

technique considerably enhances performance, resulting in fast inference time and good system performance

overall. This shows that the MobileNetV2 model might be deployed directly on edge devices to detect road

damage; and iii) the RetinaNet152 model, which uses the batchsize hyperparameter tuning approach and the

optimizer described in this research, achieves a proportionate gain in system performance for mAP and AR.

However, the RetinaNet152 model cannot be deployed directly to edge devices using the Jetson Nano 4 GB.

The RetinaNet152 model can be deployed on edge devices; however, a technique for speeding up inference

time is essential, as are post-training procedures such as quantization and prunning. Several

recommendations are made for further research or implementation. First, consider augmenting and improving

the dataset's quality to attain better CNN model training outcomes. Second, system implementation testing

should be carried out on a high-end computer server, such as a NVIDIA RTX 3080 with 32 GB of RAM. In

addition, consider using the RetinaNet50 model, which has a lighter design and model size than the

RetinaNet152. Finally, investigate speeding up the inference time exploring methods like post-training

quantization and converting Tensorflow Lite models to TensorRT to improve implementation efficiency.

ACKNOWLEDGEMENTS

The authors would like to thank Politeknik Elektronika Negeri Surabaya and Institut Teknologi

Sepuluh Nopember for financial support, laboratory equipment and facilities for this work.

REFERENCES
[1] I. Widyatmoko, “Digital transformation to improve quality, efficiency and safety in construction of roads incorporating recycled

materials,” IOP Conference Series: Earth and Environmental Science, vol. 599, no. 1, Nov. 2020, doi: 10.1088/1755-

1315/599/1/012093.
[2] V. Hegde, D. Trivedi, A. Alfarrarjeh, A. Deepak, S. Ho Kim, and C. Shahabi, “Yet another deep learning approach for road

damage detection using ensemble learning,” in 2020 IEEE International Conference on Big Data (Big Data), IEEE, Dec. 2020,

pp. 5553–5558, doi: 10.1109/BigData50022.2020.9377833.
[3] A. Pernestål, A. Engholm, M. Bemler, and G. Gidofalvi, “How will digitalization change road freight transport? scenarios tested

in sweden,” Sustainability, vol. 13, no. 1, Dec. 2020, doi: 10.3390/su13010304.

[4] G. M. Jog, C. Koch, M. Golparvar-Fard, and I. Brilakis, “Pothole properties measurement through visual 2d recognition and 3d
reconstruction,” in Computing in Civil Engineering (2012), Reston, VA: American Society of Civil Engineers, Jun. 2012, pp.

553–560, doi: 10.1061/9780784412343.0070.

Int J Artif Intell ISSN: 2252-8938 

Detecting road damage utilizing retinanet and mobilenet models on edge devices (Haniah Mahmudah)

1439

[5] E. Buza, S. Omanovic, and A. Huseinovi, “Pothole detection with image processing and spectral clustering,” in 2nd International
Conference on Information Technology and Computer Networks (ITCN ’13), 2013, pp. 48–53.

[6] L. Huidrom, L. K. Das, and S. K. Sud, “Method for automated assessment of potholes, cracks and patches from road surface

video clips,” Procedia - Social and Behavioral Sciences, vol. 104, pp. 312–321, Dec. 2013, doi: 10.1016/j.sbspro.2013.11.124.
[7] M. B. S. G. Naik and V. Nirmalrani, “Detecting potholes using image processing techniques and real-world footage,” in Cognitive

Informatics and Soft Computing-Advances in Intelligent Systems and Computing, Springer, Singapore, 2021, pp. 893–902, doi:

10.1007/978-981-16-1056-1_72.
[8] R. Sharma, K. Singh, and L. Chand, “Analysis of image processing techniques for road anomalies detection,” International

Journal of Emerging Research in Management &Technology, vol. 5, no. 1, 2016, doi: 10.13140/RG.2.2.15513.54886.

[9] M. Gao, X. Wang, S. Zhu, and P. Guan, “Detection and segmentation of cement concrete pavement pothole based on image
processing technology,” Mathematical Problems in Engineering, vol. 2020, pp. 1–13, Jan. 2020, doi: 10.1155/2020/1360832.

[10] M. H. Yousaf, K. Azhar, F. Murtaza, and F. Hussain, “Visual analysis of asphalt pavement for detection and localization of

potholes,” Advanced Engineering Informatics, vol. 38, pp. 527–537, Oct. 2018, doi: 10.1016/j.aei.2018.09.002.
[11] N.-D. Hoang, “An artificial intelligence method for asphalt pavement pothole detection using least squares support vector

machine and neural network with steerable filter‐based feature extraction,” Advances in Civil Engineering, vol. 2018, no. 1, Jan.

2018, doi: 10.1155/2018/7419058.
[12] H. Song, K. Baek, and Y. Byun, “Pothole detection using machine learning,” in Advanced Science and Technology Letters,

SERSC, Feb. 2018, pp. 151–155, doi: 10.14257/astl.2018.150.35.

[13] L. Liu et al., “Deep learning for generic object detection: a survey,” International Journal of Computer Vision, vol. 128, no. 2,
pp. 261–318, Feb. 2020, doi: 10.1007/s11263-019-01247-4.

[14] N.-D. Hoang, T.-C. Huynh, and V.-D. Tran, “Computer vision‐based patched and unpatched pothole classification using machine learning

approach optimized by forensic‐based investigation metaheuristic,” Complexity, vol. 2021, no. 1, Jan. 2021, doi: 10.1155/2021/3511375.
[15] C. Chun and S.-K. Ryu, “Road surface damage detection using fully convolutional neural networks and semi-supervised

learning,” Sensors, vol. 19, no. 24, Dec. 2019, doi: 10.3390/s19245501.

[16] H. Maeda, Y. Sekimoto, T. Seto, T. Kashiyama, and H. Omata, “Road damage detection and classification using deep neural
networks with smartphone images,” Computer-Aided Civil and Infrastructure Engineering, vol. 33, no. 12, pp. 1127–1141, Dec.

2018, doi: 10.1111/mice.12387.

[17] S. Zhou and W. Song, “Deep learning-based roadway crack classification using laser-scanned range images: a comparative study
on hyperparameter selection,” Automation in Construction, vol. 114, Jun. 2020, doi: 10.1016/j.autcon.2020.103171.

[18] S. Faghih-Roohi, S. Hajizadeh, A. Nunez, R. Babuska, and B. De Schutter, “Deep convolutional neural networks for detection of

rail surface defects,” in 2016 International Joint Conference on Neural Networks (IJCNN), IEEE, Jul. 2016, pp. 2584–2589, doi:
10.1109/IJCNN.2016.7727522.

[19] L. Pauly, H. Peel, S. Luo, D. Hogg, and R. Fuentes, “Deeper networks for pavement crack detection,” in 34th International

Symposium on Automation and Robotics in Construction, International Association for Automation and Robotics in Construction,
Jul. 2017, pp. 479–485, doi: 10.22260/ISARC2017/0066.

[20] A. Zhang et al., “Deep learning–based fully automated pavement crack detection on 3d asphalt surfaces with an improved

cracknet,” Journal of Computing in Civil Engineering, vol. 32, no. 5, Sep. 2018, doi: 10.1061/(ASCE)CP.1943-5487.0000775.
[21] Y. Cha, W. Choi, and O. Büyüköztürk, “Deep learning‐based crack damage detection using convolutional neural networks,”

Computer-Aided Civil and Infrastructure Engineering, vol. 32, no. 5, pp. 361–378, May 2017, doi: 10.1111/mice.12263.

[22] D. Wang, Z. Liu, X. Gu, W. Wu, Y. Chen, and L. Wang, “Automatic detection of pothole distress in asphalt pavement using
improved convolutional neural networks,” Remote Sensing, vol. 14, no. 16, Aug. 2022, doi: 10.3390/rs14163892.

[23] M. Faramarzi, “Road damage detection and classification using deep neural networks (yolov4) with smartphone images,” SSRN

Electronic Journal, 2020, doi: 10.2139/ssrn.3627382.
[24] M. A. Benallal and M. S. Tayeb, “An image-based convolutional neural network system for road defects detection,” IAES

International Journal of Artificial Intelligence (IJ-AI), vol. 12, no. 2, Jun. 2023, doi: 10.11591/ijai.v12.i2.pp577-584.

[25] R. Ishimwe, P. Iradukunda, and J. B. Kwizera, “Real-time road damage detection using deep convolutional neural networks and a
smartphone: project report,” Carnegie Mellon University, pp. 1-5, 2021, doi: 10.13140/RG.2.2.26696.44801.

[26] J. Dharneeshkar, V. S. Dhakshana, S. A. Aniruthan, R. Karthika, and L. Parameswaran, “Deep learning based detection of
potholes in indian roads using yolo,” in 2020 International Conference on Inventive Computation Technologies (ICICT), IEEE,

Feb. 2020, pp. 381–385, doi: 10.1109/ICICT48043.2020.9112424.

[27] K. R. Ahmed, “Smart pothole detection using deep learning based on dilated convolution,” Sensors, vol. 21, no. 24, Dec. 2021,
doi: 10.3390/s21248406.

[28] E. M. Dogo, O. J. Afolabi, and B. Twala, “On the relative impact of optimizers on convolutional neural networks with varying

depth and width for image classification,” Applied Sciences, vol. 12, no. 23, Nov. 2022, doi: 10.3390/app122311976.

[29] H. Samma, S. A. Suandi, N. A. Ismail, S. Sulaiman, and L. L. Ping, “Evolving pre-trained cnn using two-layers optimizer for road

damage detection from drone images,” IEEE Access, vol. 9, pp. 158215–158226, 2021, doi: 10.1109/ACCESS.2021.3131231.

[30] Y. Wang, Z. Xiao, and G. Cao, “A convolutional neural network method based on adam optimizer with power-exponential
learning rate for bearing fault diagnosis,” Journal of Vibroengineering, vol. 24, no. 4, pp. 666–678, Jun. 2022, doi:

10.21595/jve.2022.22271.

[31] Vidushi, M. Agarwal, A. Rajak, and A. K. Shrivastava, “Assessment of optimizers impact on image recognition with
convolutional neural network to adversarial datasets,” Journal of Physics: Conference Series, vol. 1998, no. 1, Aug. 2021, doi:

10.1088/1742-6596/1998/1/012008.

[32] I. D. Pratama, H. Mahmudah, and R. W. Sudibyo, “Design and implementation of real-time pothole detection using convolutional
neural network for iot smart environment,” in 2021 International Electronics Symposium (IES), IEEE, Sep. 2021, pp. 675–679,

doi: 10.1109/IES53407.2021.9594038.

[33] M. Al Qurishee, “Low-cost deep learning uav and raspberry pi solution to real time pavement condition assessment,” M.Sc.
Thesis, Department of Science and Engineering, University of Tennessee, Chattanooga, US, 2019.

[34] Z. S. Hernanda, H. Mahmudah, and R. W. Sudibyo, “CNN-based hyperparameter optimization approach for road pothole and

crack detection systems,” in 2022 IEEE World AI IoT Congress (AIIoT), IEEE, Jun. 2022, pp. 538–543, doi:
10.1109/AIIoT54504.2022.9817316.

[35] A. C. Aqsa, H. Mahmudah, and R. W. Sudibyo, “Detection and classification of road damage using cnn with hyperparameter

optimization,” in 2022 6th International Conference on Informatics and Computational Sciences (ICICoS), IEEE, Sep. 2022, pp.
101–104, doi: 10.1109/ICICoS56336.2022.9930607.

[36] L. Ale, N. Zhang, and L. Li, “Road damage detection using retinanet,” in 2018 IEEE International Conference on Big Data (Big

Data), IEEE, Dec. 2018, pp. 5197–5200, doi: 10.1109/BigData.2018.8622025.

  ISSN: 2252-8938

Int J Artif Intell, Vol. 14, No. 2, April 2025: 1430-1440

1440

[37] Z. Xue et al., “Large-batch optimization for dense visual predictions,” arXiv-Computer Science, pp. 1-23, Oct. 2022.

[38] H. Mahmudah, S. Arifin, A. S. Aisjah, and C. A. Prastyanto, “Optimizers impact on retinanet model for detecting road damage on
edge device,” in 2024 IEEE International Conference on Artificial Intelligence and Mechatronics Systems (AIMS), IEEE, Feb.

2024, pp. 1–6, doi: 10.1109/AIMS61812.2024.10512864.

[39] H. Mahmudah, S. Arifin, and A. S. Aisyah, “A survey of the optimization system road damage detection on cnn model for edge
device,” in 2023 International Conference on Information Technology and Computing (ICITCOM), IEEE, Dec. 2023, pp. 323–

328, doi: 10.1109/ICITCOM60176.2023.10442409.

[40] M. M. H. Shuvo, S. K. Islam, J. Cheng, and B. I. Morshed, “Efficient acceleration of deep learning inference on resource-
constrained edge devices: a review,” Proceedings of the IEEE, vol. 111, no. 1, pp. 42–91, Jan. 2023, doi:

10.1109/JPROC.2022.3226481.

BIOGRAPHIES OF AUTHORS

Haniah Mahmudah completed bachelor’s degree in Department of Engineering

Physics, Institut Teknologi Sepuluh Nopember and master's degree in Department of

Electrical Engineering, Institut Teknologi Sepuluh Nopember. She is currently working as a

lecturer in Department of Electrical Engineering, Politeknik Elektronika Negeri Surabaya. She

is also active in conducting research especially in signal processing, wire and wireless

communication, internet of things, applied of machine learning. She can be contacted at email:

haniah@pens.ac.id.

Aulia Siti Aisjah received doctoral degree Institut Teknologi Sepuluh Nopember.

She is currently working as a lecturer in Department of Engineering Physics, Institut

Teknologi Sepuluh Nopember. Her research interests are in apllied of machine learning in

industrial, marine engineering and instrumentation. She can be contacted at email:

auliasa@its.ac.id.

Syamsul Arifin is currently working as a lecturer in Department of Engineering

Physics, Institut Teknologi Sepuluh Nopember. His research interests are in instrumentation

and apllied of machine learning. He can be contacted at email: syamsul.arifin@its.ac.id.

Catur Arif Prastyanto completed bachelor’s degree, master's degree and

doctor’s degree in Department of Civil Engineering, Institut Teknologi Sepuluh Nopember.

He is currently working as a lecturer in Department of Civil Engineering, Institut Teknologi

Sepuluh Nopember. Her research interests are highways and transportation. He can be

contacted at email: catur_ap@its.ac.id.

https://orcid.org/0000-0002-1675-2077
https://scholar.google.co.id/citations?user=CQRaKcEAAAAJ&hl=id
https://www.scopus.com/authid/detail.uri?authorId=24766923600
https://orcid.org/0000-0001-5235-1927
https://scholar.google.co.id/citations?hl=id&user=o7hyMS4AAAAJ
https://www.scopus.com/authid/detail.uri?authorId=55005951700
https://orcid.org/0009-0009-5332-0052
https://www.scopus.com/authid/detail.uri?authorId=58722797500
https://orcid.org/0009-0000-9128-5184
https://scholar.google.co.id/citations?hl=id&user=YzwZrkYAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57192933737

