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 Rice is one of the primary sources of staple meals. It may turn out to be a 

disaster as the production of agricultural products is declined due to diseases 

and therefore it is required to straighten up the situation by taking 

precautionary measures. Generally, deep learning (DL) architectures are 

employed for the identification of plant leaf diseases and it is observed that 

there is a trade-off between the accuracy and parameters. This study 

introduces a light-weight architecture called rice leaf disease classification 

convolutional neural network (RLDC-CNN). The objective of the proposed 

architecture is to improve the accuracy and reduce the loss by using a 

combination of convolutional layers, maxpooling layers, and fully connected 

layers. These layers use activation function for non-linearity, dropout for 

regularization and implements hyperparameter tuning with various 

optimizers that include Adam, RMSprop, stochastic gradient descent (SGD) 

and adaptive gradient (AdaGrad). Experiments are conducted on the dataset 

of 7,096 images with batch size of 32 under various learning rates. The 

behavior is analyzed by comparing the existing models and the count of 

parameters (in millions) equipped by RLDC-CNN, DenseNet121, VGG-16, 

and ResNet50 is 0.65, 8.49, 15.44, 26.49 with accuracy of 99.15%, 98.94%, 

97.82%, 96.48% respectively. 
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1. INTRODUCTION 

In the modern sphere of agriculture, the primary focus has shifted towards the critical issues of 

ensuring food security and optimizing the crop yields. Rice crops, a dietary staple for a substantial portion of 

the global population, are constantly under the looming threat of various diseases that are potential to impair 

both the quantity and quality of yields. The symptoms and indications induced by the pathogens are utilized 

for the purpose of identifying and categorizing the diseases that affect the rice crops. 

Generally, these pathogens are fungi and viruses, that induce the illnesses such as bacterial blight, 

blast, brown spot, and tungro. Mostly, these diseases impact the foliage of the rice plant. The images 

representing the pathogens are shown in Figure 1. Figure 1(a) illustrates bacterial blight, a prevalent disease 

in rice. The disease manifests as chlorosis of foliage or desiccation of seeds. Figure 1(b) illustrates the 

occurrence of a blast, which is a result of fungal infection. The entire leaf exhibits a charred look, resulting in 

a decline in grain quality. The fungal spot, also known as brown spot, is depicted in Figure 1(c). It initially 
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appears as a brown dot and then takes on a cylindrical or circular shape. In severe situations, it can affect up 

to 50% of the yield. Figure 1(d) depicts tungro, a disease caused by the presence of two distinct viruses. 

Tungro illness manifests as stunted growth and decreased grain production. 

 

 

    
(a) (b) (c) (d) 

 

Figure 1. Infected rice leaves (a) bacterial blight, (b) blast, (c) brown spot, and (d) tungro 

 

 

The manual identification of these diseases poses significant challenges and requires a substantial 

amount of time. The importance of swiftly and accurately identifying these diseases cannot be overstated as it 

is vital for the timely deployment of effective strategies to safeguard agricultural productivity and economic 

stability [1]. Currently, several artificial intelligence (AI) approaches are used to detect and classify crop 

disease including k-nearest neighbors (kNN), decision tree (DT), support vector machine (SVM) [2], logistic 

regression, and convolutional neural networks (CNN) [3], [4]. 

Among several AI approaches, CNN is the most known and widely applied method for image 

analysis in agricultural research [5], [6]. CNNs are a type of deep, feed-forward artificial neural networks 

(ANN) that has gained significant prominence in the field of computer vision (CV) and its applications  

[7], [8]. It is found that these technologies can quickly learn complex problems because of the ability to share 

weights and known for encouraging scalability and massive parallelization [9], [10]. The main advantage of 

the CNN model is its ordered structure and huge learning capacity that which may solve complex challenges 

with flexibility and adaptability [11], [12]. Though the models of transfer learning (TL) have proved their 

learning abilities on larger datasets, it is found from those models that are proposed in recent past are capable 

of learning from smaller datasets [13], [14]. In contrast, training requirements for CNN could be more 

practical when considering scalability issues that focus on time [15], [16]. CNN can increase the likelihood of 

accurate classification; when extensive datasets are provided to describe the problem [17], [18]. 

During the survey, it is seen that many researchers have employed diverse deep learning (DL) 

algorithms to detect diseases in rice plants. Rahman et al. [19] proposed an architecture that addresses the 

interclass variation pertaining to various stages of specific disease. The experiment uses 1,426 images of rice 

plant and results in an accuracy of 94.33% with parameter count of 0.8 million. Krishnamoorthy et al. [20] 

proposes a model exclusively for the classification of rice leaf diseases, that addresses effectively vanishing 

gradient and deterioration. Also, the method incorporates global average pooling to decrease the parameter 

count. The model uses 5,200 images and the accuracy rate is found to be 95.67%. 

Sethy et al. [21] conducted an experiment using 11 distinct CNN models using TL approach. The 

dataset consists of 5,932 images that represent four different types of illnesses affecting rice leaves. The 

performance of one of the 11 models that implements ResNet50 and SVM is found to be good with F1-score 

of 98.98%. However, it is observed that the utilization of TL amplifies the intricacy of the model.  

Deb et al. [22] deployed five distinct TL models to analyze a collection of 7,096 images of rice leaves, each 

representing one of five different illness groups. The models employed in the study include AlexNet, VGG-16, 

ResNet-18, MobileNet-V2, and InceptionV3. The performance of InceptionV3 demonstrates its efficiency 

with an accuracy rate of 96.23%. 

Saleem et al. [23] present an approach that uses mutant particle swarm optimization (MUT-PSO) to 

detect rice leaf diseases to identify the most optimal CNN architecture. In this study, two datasets that 

consists of four classes each assess and observed an average accuracy of 96.62%. Chen et al. [24] proposed a 

lightweight inception network for the classification of rice leaf diseases, which incorporates the MobileNet 

architecture. The study uses a dataset consists of 12 distinct classes and experiment outcomes results with an 

accuracy of 97.89%. Joshi et al. [25] introduced a CNN framework designed specifically for rice leaf images. 

The architecture involves a series of convolutional layers that are utilized to identify and classify leaf 

conditions and found that the model came up with an accuracy of 93.75%. 



Int J Artif Intell  ISSN: 2252-8938  

 

A novel light-weight convolutional neural network for rice leaf disease … (Parthasarathi Jayaraman) 

2549 

Based on the literature survey, it is found that the existing works are to detect the diseases in rice 

leaf have used TL and tailored CNN architectures. Typically, TL architectures employ a large number of 

parameters and yield high levels of accuracy [26]. However, the utilization of bespoke architectures results in 

a reduction of parameters, albeit at the expense of accuracy [27]. There is a scope to create a CNN model that 

enhances the accuracy provided by TL models while minimizing the number of parameters. This reduction in 

parameters leads to less time complexity of the model. 

The proposed work aims to create a CNN architecture by combining domain expertise, modern 

neural network architectures, and the wealth of knowledge encoded existing models. The architecture may 

distinguish between the various disease manifestations that affect rice crops, that includes bacterial blight, 

blast, brown spot, and tungro. The significant contributions of the proposed study include, i) the development 

of a specialized CNN architecture known as rice leaf disease classification (RLDC)-CNN with fewer 

parameters. ii) the feature extraction process from the input image that utilizes a series of convolutional 

layers, max pool layers, and activation functions at various stages to introduce non-linear behavior. iii) the 

model uses Adam, RMSprop, SGD and adaptive gradient (Adagrad) optimizers and compared the level of 

optimization. iv) the evaluation of the model uses accuracy, precision, recall and F1-Score. v) the results are 

compared with the state-of-the-art (SOTA) models. 

The subsequent sections of this work are organized as follows, section 2 provides a comprehensive 

analysis of the dataset used for training and evaluation. The simulation findings are explained in section 3. 

Section 4 focuses on the conclusion, where the summary of the work and prospective directions for further 

research are suggested. 

 

 

2. METHOD 

This section outlines the sequential procedures involved in the proposed methodology. The 

procedure commences with gathering the dataset, which is subsequently subjected to data pre-processing. 

This entails doing operations such as adjusting the size, enhancing, and standardizing the images. 

Subsequently, an RLDC-CNN model is employed to extract features from the data. Hyper-parameter 

optimization involves adjusting the values of the epoch count, learning rate, and optimizers. Ultimately, the 

diseases are categorized according to the retrieved characteristics. The proposed methodology consists of 

three sections namely, i) data preparation and pre-processing; ii) feature extraction; and iii) hyperparameter 

optimization. The workflow of the proposed work is shown in Figure 2. 

 

 

 
 

Figure 2. Workflow of the proposed methodology 
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2.1.  Data preparation and preprocessing 

The study uses dataset curated from benchmarked Mendeley and Kaggle repository [28], [29].  

It encompasses a collection of 7,096 rice leaf images that shows the presence of diseases that may be 

classified across four classes namely, i) bacterial blight; ii) blast; iii) brown spot; and iv) tungro. Also, the 

dataset is included with images of healthy leaves. The dataset comprises of images of plants that are grown 

under different environmental conditions, growth stages, and disease severities. 

The images are converted to the size to fit the requirement of the DL pipeline. A series of pre-

processing steps are taken to standardize and stabilize the suitability of the dataset for training and 

evaluation. The size of the images is resized to 224×224 pixels from their original size of 300×300 pixels. 

The use of data normalization ensures that each pixel value should be in the range between 0 and 1, which 

leads to quick convergence. The pre-processed dataset is divided into two categories namely, i) the dataset 

for training and ii) the dataset for testing. Among the 7,096 images considered for conducting the experiment, 

80% of the images are used for training and the remaining 20% images are used for testing. Consequently, 

the dataset is balanced, as the 7,096 images are distributed nearly equitably among the five classes. The 

distribution of train and test images is illustrated in Figure 3. 

 

 

 
 

Figure 3. Rice leaf disease dataset description 

 

 

2.2.  Feature extraction 

The feature extraction procedure accepts pre-processed data as input and converts the raw data into 

numerical features, while maintaining the information from the original data set. The RLDC-CNN model is 

composed of multiple layers that are used to extract features. They are i) convolutional layer; ii) pooling 

layer; iii) activation function; iv) dropouts; v) flatten layer; and vi) fully connected (FC) layer and is shown in 

Figure 4. 

 

 

 
 

Figure 4. The proposed RLDC-CNN architecture 
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The proposed RLDC-CNN architecture consists of an input layer, 13 feature extraction layers that 

includes 5 convolutional layers, 5 maxpooling layer, 1 flatten layer, and 2 FC layers. The workflow starts 

with the input layer followed by the alternative arrangement of convolutional layer and maxpooling layer and 

then continues with the flatten layers to reach out the last two dense FC layers that proceed to the 

classification of images, the output. The training process begins with taking in the input image and then 

processed through a convolutional layer that consists of 16 kernels, each of size (3×3). The convolution 

procedure generates 16 feature maps, each of dimensions (222×222). These feature maps are subsequently 

passes on to the maxpooling layer that extract the vital features and reduces the image dimensions to the size 

(111×111). The process is repeated by passing the generated feature maps to the next subsequent convolution 

layers containing 32, 64, 128 kernels that are accompanied by maxpooling layer. 

In order to encourage non-linearity, the rectified linear unit (ReLU) activation function is used in 

combination with all convolution operations. To mitigate overfitting, the proposed work used a dropout layer 

with the rate of 0.2 and the same is implemented after the fourth convolution operation. This layer randomly 

deactivates a fraction of neurons during each training iteration and therefore an improvement in the model's 

resilience shall be observed. The process continues with the flatten layer that converts the combined feature 

maps that are obtained across the layers to form a single-dimensional vector of size 3,200. The vector is fed 

as input to the FC layer, which is responsible for combining the low-level features that are learned from the 

convolutional layers in order to form the high-level feature maps. In this study, the first FC layer is 

configured with 128 neurons which is followed by an output FC layer with 5 neurons that is equivalent to 

categories of diseases to be classified. The SoftMax activation function is followed by the output layer that 

gives the probabilistic outcome that may fit the rice leaf disease in one of the 5 classes. Table 1 represents the 

configuration summary of RLDC-CNN model that provides an overview of the architecture. The summary 

includes the details of the layers that determines the output shape and the number of parameters used across 

layers. 

 

 

Table 1. RLDC-CNN configuration summary 
Layer Output shape Parameters 

Conv2D (None,222,222,16) 448 

Maxpool2D (None,111,111,16) 0 
Conv2D (None,109,109,32) 4,640 

Maxpool2D (None,54,54,32) 0 

Conv2D (None,52,52,64) 18,496 
Maxpool2D (None,26,26,64) 0 

Conv2D (None,24,24,128) 73,856 

Maxpool2D (None,12,12,128) 0 
Dropout (None,12,12,128) 0 

Conv2D (None,10,10,128) 147,584 

Maxpool2D (None,5,5,128) 0 
Flatten (None,3200) 0 

Dense (None,128) 409,728 

Dense (None,5) 645 
Activation (None,5) 0 

Total Parameters 655,397 

 

 

2.3.  Hyperparameter optimization 

This section presents the optimization technique that is implemented in the proposed model. The 

objective function can be represented as θ that maximizes the accuracy and minimizes the loss. The objective 

function can be defined using the parameters that include ‘D-Train’, ‘n’, ‘M/k’, where D-Train represents the 

number of training images, ‘n’ stands for number of epochs and ‘M/k’ is the ratio for every batch ‘k’ of size 

32 with the training images ‘M’. Here, the epochs represent the number of times that the model executes the 

training dataset D-Train. For every epoch, the D-Train is split into batches. Each batch contains the samples that 

are considered for the updating of the model parameters. The loss function (L) is applied to the batches obtained 

that represents the discrepancy between the actual label yi and the predicted label y
^

i. ‘L ’ is shown as (1): 

 

𝐋 = − ∑  c
i=1 yi(log (y

^

i)) (1) 

 

The mean of losses of all batches is represented as cost function (C) and is represented as (2): 

 

𝐂 =
1

n
∑  n

i=1 ∑ [yij ∗ log (yij

^
)]

c

j=1
 (2) 
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In general, optimizers adjust the value of parameters to minimize the loss function. The proposed 

work employs stochastic gradient descent (SGD), Adagrad, RMSprop, and Adam optimizers to minimize the 

loss function. When RLDC-CNN is completely trained, the weight and bias values are adjusted with respect 

to LR. The weight and bias values are calculated using the (3) and (4): 
 

 Wt ← Wt−1 − η∇W(loss(W)) (3) 
 

 bt ← bt−1 − η∇W(loss(b)) (4) 
 

where, Wt−1 and bt−1 are the values of the weight and bias obtained during the previous execution, η is the 

learning rate (LR), ∇𝑊 represents the rate of change in the derivative with respect to weight. 

The proposed RLDC-CNN model updates the objective function θ after the completion of  

30 training epochs with LR of 0.001. Where 𝜃 contains the minimized arguments for weight, bias, loss and 

cost can be applied on unseen dataset D-Test. The learning parameters used for the implementation of 

RLDC-CNN is given in Table 2. 
 

 

Table 2. RLDC-CNN learning parameters 
S.No. Parameters Value 

1 Optimizer SGD, Adagrad, RMSprop, Adam 

2 Loss function Sparse categorical crossentropy 
3 Learning rate 0.001 

4 Batch size 32 

5 Epochs 30 

 

 

3. RESULTS AND DISCUSSION 

This study investigates the effects of customized CNNs for RLDC. It is found from the existing 

works given in section 1 that the models use TL models are not addressing the influence of optimizers that 

may increase the efficiency of the model. The proposed RLDC-CNN model outperforms the TL models in 

terms of accuracy and parameter reduction. The infrastructure setup for conducting the experiment includes, 

an Intel-core i5-82650 CPU operating at a frequency of 1.60 GHz with 8 GB of RAM. Google Colaboratory 

GPU is utilized as hardware accelerator in the Python framework that uses TensorFlow and Keras. 

The RLDC-CNN model is trained using the dataset of size 5,676, which is said to have balanced 

proposition of images with infections that can be classified across five classes, viz., bacterial blight; blast; 

brown spot; tungro; and healthy. The efficacy of the proposed model is assessed to gauge the overall 

performance and quality, through the consideration of various levels of severity and circumstances. The 

optimizers are individually combined with the model to analyze the performance that entails a dataset of 

1,420 images taken from D-Test. The proposed model is evaluated using the metrics, accuracy; precision; 

recall; and F1-score is represented using the (5) to (8) as: 
 

 Accuracy =
TP+TN

TP+TN+FP+FN
 (5) 

 

Precision =
TP

TP+FP
 (6) 

 

Recall =
TP

TP+FN
 (7) 

 

F1 − Score = 2 X 
Precision X Recall

Precision + Recall
 (8) 

 

where, (TP) represents true positive, (TN) is true negative, (FP) indicates false positive, (FN) specifies false 

negative. 

The analysis of the RLDC-CNN is described in the following subsections. Section 3.1 addresses the 

performance of the proposed model implementing one optimizer at a time. Section 3.2 discusses the 

efficiency of the proposed model with other pre-trained models. Section 3.3 presents the comparison of 

RLDC-CNN model and existing literatures. 

 

3.1.  Performance evaluation of RLDC-CNN with different optimizers 

The proposed RLDC-CNN model implements the optimizers namely, Adam; RMSprop; SGD; and 

Adagrad. The implementation combines the proposed model and one of the optimizers per time to get the 
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optimized results. It is observed from the results that the Adam optimizer achieves the highest accuracy of 

99.15%. It incorporates the most advantageous characteristics of other optimizers, specifically Adagrad and 

RMSprop, which is observed to yield improved convergence of the model. The performance of the  

RLDC-CNN model using different optimizers is presented in Table 3. 

 

 

Table 3. RLDC-CNN model with different optimizers 
Optimizer Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

Adam 99.15 99.15 99.13 99.13 
RMSprop 98.31 98.3 98.3 98.29 

SGD 97.96 97.96 97.92 97.93 

Adagrad 79.72 80.8 79.57 80.18 

 

 

Figures 5 to 8 shows the accuracy and loss plots, which represents the information of the 

convergence of the RLDC-CNN model that uses different optimizers. It is evident from Figure 5(a) that the 

Adam optimizer excels in terms of accuracy when compared to other optimizers. The model exhibits a 

convergence rate that is exceedingly rapid, with an accuracy of 99%. Figure 5(b) demonstrates that the Adam 

optimizer reduces the model's loss in the 10th epoch and that the results do not exhibit any form of overfitting. 

 

 

  
(a) (b) 

 

Figure 5. Training and validation plots of RLDC-CNN with Adam optimizer (a) accuracy and (b) loss 

 

 

The impact of the RMSprop optimizer is illustrated in Figure 6. Figure 6(a) exhibits the model's 

ability to attain an accuracy of 98%. Additionally, the model's loss is illustrated in Figure 6(b), which 

contains numerous peaks. Nevertheless, the peaks observed in the plots suggest that a regularization is 

warranted, which could potentially intensify the model's complexity. 

 

 

  
(a) (b) 

 

Figure 6. Training and validation plots of RLDC-CNN with RMSprop optimizer (a) accuracy and (b) loss 
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The behaviour of SGD and Adagrad is illustrated in Figures 7 and 8, and it is evident that the model 

converges after a considerable period. The accuracy of the SGD optimizer, which requires additional time to 

converge, is depicted in Figure 7(a). Figure 7(b) illustrates the SGD optimizer's loss, which is nearly 

converging at the 30th epoch, but still exhibits peaks. Figure 8(a) illustrates the Adagrad optimizer's accuracy, 

which is significantly lower than that of other optimizers due to its sluggish learning rate. Additionally,  

Figure 8(b) demonstrates that a substantial loss is observed when compared with the Adam optimizer. 

 

 

  
(a) (b) 

 

Figure 7. Training and validation plots of RLDC-CNN with SGD optimizer (a) accuracy and (b) loss 

 

 

  
(a) (b) 

 

Figure 8. Training and validation plots of RLDC-CNN with Adagrad optimizer (a) accuracy and (b) loss 

 

 

Figures 9 and 10 shows the confusion matrix that exhibit the performances of the RLDC-CNN 

model with the optimizers: Adam, RMSprop, SGD, and Adagrad. From the confusion matrix in Figure 9(a), 

it can be shown that Adam optimizer performs better than the other optimizers, with the fewest 

misclassifications. The confusion matrix in Figure 9(b) illustrates the performance of RLDC-CNN with 

RMSprop optimizer in distinguishing blast disease from other diseases, indicating difficulties in accurate 

classification.  

The confusion matrix displayed in Figure 10(a) clearly indicates that there are approximately  

28 instances of misclassifications. Which is higher compared to the results obtained with the adam optimizer 

shown in Figure 9(a). Figure 10(b) demonstrates the Adagrad optimizer. Which has 288 misclassifications, 

indicating that this optimizer performs poorly. 
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(a) (b) 

 

Figure 9. Confusion matrix (a) RLDC-CNN-Adam and (b) RLDC-CNN-RMSprop 

 

 

  
(a) (b) 

 

Figure 10. Confusion matrix (a) RLDC-CNN-SGD and (b) RLDC-CNN-Adagrad 

 

 

3.2.  Performance evaluation of RLDC-CNN with different pre-trained models 

The proposed RLDC-CNN model combines each one of the optimizers has shown that the model 

performs better with Adam optimizer. In this section, a study is made to assess the performance of the 

proposed RLDC-CNN model with Adam optimizer when compared with pre-trained models Viz., 

DenseNet121, VGG16, and ResNet50. The study involves 7,096 images of rice leaf diseases to conduct the 

experiment of the factors namely, i) the number of parameters and ii) accuracy. Table 4 shows the 

effectiveness of the proposed model that results in an accuracy of 99.15% considering a minimum of 0.65 

million parameters when comparing the parameters with other optimizers.  

 

 

Table 4. Performance comparison RLDC-CNN with various pre-trained models 
Model Parameters (in Million) Accuracy (%) 

RLDC-CNN+Adam 0.65 99.15 

DenseNet121 8.49 98.94 

VGG16 15.44 97.82 
ResNet50 26.49 96.48 
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3.3.  Comparative study of RLDC-CNN with existing CNN models 

Table 5 presents a comparative analysis of the RLDC-CNN model with other models addressed in 

the literature, as discussed in section 1. The superiority of the RLDC-CNN is apparent, as it surpasses the 

other models in both parameter usage and accuracy. The existing models utilize pre-trained architectures 

such as Inception ResNetV2, InceptionV3, and ResNet50 as part of their DL architectures. It is important to 

mention that pre-trained models need a substantial number of parameters, that may lead to high 

computational and memory requirements. This may become a serious issue when attempt to implement in 

embedded systems. The proposed RLDC-CNN architecture is carefully designed to improve the accuracy 

with minimum number of layers that results in good performance with optimized parameters. 

 

 

Table 5. Performance comparison RLDC-CNN with existing models in literature 
Authors DL architecture Parameters 

(Million) 

Accuracy (%) Precision (%) Recall (%) F1-score (%) 

Krishnamoorthy et al. [20] Inception ResnetV2 55.9 95.67 96.5 96.5 96.5 

Sethy et al. [21] ResNet 50+SVM 25.6 98.25 98.25 98.26 98.26 

Deb et al. [22] Inception V3 23.9 96.23 96.4 96.2 96.2 

Proposed methodology RLDC-CNN 0.65 99.15 99.15 99.13 99.13 

 

 

4. CONCLUSION 

Rice is the primary food source for a majority of the world's population. Various diseases impact the 

rice plant at different phases of its growth. The utilization of CV in conjunction with DL architecture can 

effectively identify certain disorders. This research presents RLDC-CNN, a novel light weight customized 

DL model to classify the rice leaf diseases. The model is evaluated using 7096 images taken from Mendeley 

and Kaggle repositories. The architecture of the model is made up of series of convolutional and max pool 

layers that are arranged alternatively. These layers in the model are used for feature extraction. In order to 

introduce non-linearity, the model incorporates the ReLU activation function. The dropout layer is used to 

deactivate certain neurons that may results in a simple model with great efficiency. To ensure optimization, 

the model uses Adam Optimizer which has a learning rate of 0.001 and sparse categorical entropy loss 

function. The optimization process is performed over 30 epochs, with each epoch consisting of a batch size 

of 32. This methodology facilitates the effective convergence and the use of minimum number of parameters. 

The RLDC-CNN model achieved an accuracy rate of 99.15% while utilizing a relatively small parameter 

count of 0.65 million. The proposed model is compared with various pre-trained models that include 

DenseNet121, VGG16, and ResNet50, and the proposed RLDC-CNN model outperforms other compared 

models. The proposed model would definitely help the farmers to identify the rice leaf diseases, which may 

lead to choose the appropriate procedure to cure the same. The accurate and timely diagnosis shall increase 

the productivity at very higher rate. The study's significant constraint is that variations in illumination or the 

presence of shadows from one image to another do not influence the dataset. It has the potential to diminish 

accuracy. In future studies, it would be beneficial to incorporate datasets including images of this nature. 

Moreover, it can be extended to include explainable AI, which would provide farmers with precise advice 

based on discovered ailments and effective solutions to resolve the problem. 
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