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 Wood is widely used in construction, art, and home applications due to its 

aesthetic appeal and favorable mechanical properties. However, 

environmental factors significantly affect the growth and preservation of 

wood, often leading to defects that can reduce its performance and 

ornamental value. Researchers have introduced machine vision and deep 

learning methods to address the challenges of high labor costs and 

inefficiencies in identifying wood defects. Deep learning has shown great 

success in image recognition tasks, yielding impressive results. This paper 

reviews previous work on deep-learning strategies for identifying wood 

surface defects. It also discusses data augmentation techniques to address 

limited defect data and explores transfer learning to enhance classification 

accuracy on small datasets. Finally, the paper examines the potential 

limitations of deep learning for defect identification and suggests future 

research directions. 
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1. INTRODUCTION 

Since the Paris Agreement, endorsed by the United Nations in New York in 2016, countries 

worldwide have strived to preserve resources, use energy efficiently, and reduce carbon emissions. In this 

context, conserving forest resources and optimizing wood utilization have become increasingly important. 

Historically, wood has been one of the most abundant and valuable materials. In ancient times, it was 

essential for shelter, tools, fuel, and weaponry. As civilizations advanced, alternative materials began to 

replace wood for specific uses. However, there has been a resurgence in the production of new and diverse 

wood-based products. With rapid global economic growth, the demand for wood and wood products has 

surged as people seek an improved quality of life. Unfortunately, the current wood storage and processing 

capacity is insufficient to meet this demand. Limited wood supply and low utilization rates have hindered the 

development of the wood industry. Therefore, a comprehensive evaluation of log and board processing 

quality is necessary to improve utilization rates and enhance the quality of wood products. 

Wood is widely used in manufacturing due to its strength, durability, and versatility, making it 

suitable for various applications. However, it is rare to find logs with flawless surfaces in wood manufacturing. 

As a natural biological material, wood is vulnerable to microorganisms that can damage its structure, leading 

to defects. These defects, such as irregular tissue formations and structural damage, can affect the quality and 
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lifespan of wood products [1], [2]. Wood defects can be categorized into three types: growth defects (caused 

by physiological factors), pest damage defects (due to pathological factors), and processing defects (resulting 

from human error) [3]. Moreover, surface defects significantly impact the quality of wood finishes, influencing 

strength and aesthetic appeal [4]. Defects can be classified as permissible or non-permissible, depending on 

their severity. Permissible defects are minor and allowable, while non-permissible defects render wood 

unsuitable for products that require high structural integrity or visual perfection [5]. Wood or its components 

can be sorted based on the type, size, and number of defects, which helps determine whether it can be repaired, 

recycled, or discarded. Identifying defective wood surfaces was essential for maintaining high production 

quality and safety [6]–[9]. In wood manufacturing, defects reduced wood yield by an average of 10% [10]. 

Therefore, the early identification of defective items on the production line was critical to maintaining overall 

quality [11]. A thorough inspection was necessary to ensure that wood met the specifications for its intended 

use by implementing robust quality control processes [12], [13]. Quality control in wood manufacturing 

ensured that products met performance, safety, and aesthetic standards. Early identification of defects enabled 

manufacturers to take corrective action, helping to maintain product quality and consistency [8], [12]. 

Before the introduction of automated visual inspection (AVI), the wood industry relied on manual 

inspection methods, where human operators physically inspected wood surfaces to identify defects. This 

traditional approach was widely used in primary and secondary wood industries and did not require complex 

technical setups. However, it offered limited potential for future development due to frequent changes in 

standard operating procedures as new defects were identified. The manual inspection methods were often 

inaccurate, inefficient, and restricted production volumes, with accuracy rates of only about 70%, raising 

concerns about their reliability [14]–[16]. Additionally, manual inspections were costly, as training personnel 

required significant time and resources, and visual fatigue often led to misidentified defects [17]. Human 

error also varies depending on the workers' experience, skills, and alertness [18]. Furthermore, high 

production volumes and repetitive tasks over prolonged periods negatively impacted human operators, 

leading to exhaustion, stress, and reduced inspection quality [19]. As a result, manual inspections were not 

only slower but also less accurate compared to automated methods [20]–[22]. 

To overcome the limitations of manual inspection, the wood industry increasingly embraced 

technology integrated with intelligent algorithms [23]. These algorithms significantly enhanced defect 

identification processes, which became a primary focus within the industry [24], [25]. Researchers actively 

explored advanced techniques, such as deep learning to improve accuracy and efficiency. As a result, there 

was growing interest in machine vision systems, which offered faster and more precise approaches to defect 

identification [26]. AVI systems, equipped with artificial intelligence, gained traction as a solution to 

enhance quality control in the wood-based industry [5], [15], [27]. With advancements in artificial 

intelligence and computer vision technologies, deep learning emerged as a highly effective method for 

identifying wood defects [28]–[30]. Furthermore, due to their simplicity and affordability, AVI systems 

became popular for ensuring higher accuracy and production volumes by eliminating human limitations, 

improving reliability, and maintaining quality standards [14]. Despite advancements, the wood industry still 

requires solutions to improve processing efficiency and increase yield without compromising product quality. 

AVI has been highlighted for its role in ensuring consistent product reliability and addressing yield losses due 

to limitations in manual inspections. Research indicates that AVI offers 25% higher identification accuracy 

than traditional methods, leading to a 5.3% increase in yield and considerable cost savings for the average 

rough mill [31]. Furthermore, automated grading has shown greater precision and consistency than 

conventional inspections, which often struggle to optimize wood resources [32]. Studies also demonstrate 

that AVI outperforms human inspectors in identifying defects and plays a crucial role in maintaining quality 

control, ultimately benefiting the secondary wood industry by improving yields and production quality [26]. 

Moreover, one significant advancement in deep learning for wood defect identification is using data 

augmentation and transfer learning techniques [33]. Data augmentation addresses the challenge of limited 

datasets by enabling models to generalize better and improve classification accuracy. On the other hand, 

transfer learning leverages pre-trained models, such as residual network (ResNet) and Inception, fine-tuning 

them for specific tasks like wood defect classification, reducing the need for retraining from scratch. As deep 

learning techniques evolve, further exploration of sophisticated augmentation methods and advanced transfer 

learning frameworks will be crucial for enhancing defect identification systems. This combination of 

techniques overcomes the limitations of manual inspection and significantly improves wood production 

efficiency, quality assurance, and resource utilization. 
 

 

2. WOOD DEFECT IDENTIFICATION APPROACHES USING DEEP LEARNING 

Detecting and identifying defects are crucial in manufacturing to maintain controlled and efficient 

production processes [34]. Traditionally, these tasks relied on skilled human operators. However, the 

introduction of AVI has enhanced the autonomy of manufacturing operations. AVI-based quality control has 
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gained popularity in the secondary wood industry due to its ability to improve inspection accuracy, boost 

production rates, and lower labor costs. An AVI system typically involves several stages: image acquisition, 

image enhancement, segmentation, feature extraction, and feature classification [35]. Efficient material 

handling ensures smooth logistics, maintaining steady material flow, reducing vibrations, and regulating 

speed during timber imaging. Critical subsystems like sensors and lighting are essential for capturing, 

digitizing, and storing image data. The inspection process begins with defect detection, pinpointing the 

location of flaws in the wood. This is followed by defect identification, where defects' type, size, and 

frequency are analyzed. These components also offer guidelines for optimized timber cutting based on the 

identified defects. Finally, the collected data is used in the grading phase, where the timber is classified 

according to specific production standards. 

In the wood industry, one of the most effective methods for identifying defects involves processing 

and analyzing images of wood surfaces. Numerous studies have explored using AVI systems, employing 

traditional image processing, specialized techniques, and artificial intelligence methods [36]. Deep learning 

represents a significant advancement within machine learning, characterized by the construction of multi-

layered neural networks that emulate the complex processes of the human brain. It enables the recognition of 

diverse inputs such as images, sounds, and texts [37]. Within these neural networks, algorithms in each layer 

continuously perform calculations and predictions, progressively enhancing accuracy over time. This 

methodology adheres to data-driven principles, representing observed images in various forms, whether as pixel 

density value vectors or abstract features like edge sequences [38]. While deep networks often include more 

hidden layers than traditional neural networks, the effectiveness of learning outcomes does not depend solely on 

layer depth. Successful deep learning design hinges on determining the optimal number of hidden layers tailored 

to specific tasks [3]. This evolution has propelled deep learning into a leading approach in academic research 

and industry applications. Deep learning algorithms automated the feature extraction process, eliminating the 

need for manual input from experts. Convolutional neural networks (CNNs) exemplified this approach, 

extracting features directly from images in a fully automated manner [29]. The goal of applying deep learning 

was to independently process new data, make accurate decisions, and provide reliable recommendations based 

on thousands of calculations while significantly reducing the potential for human error. 

Various advanced deep learning frameworks have proven particularly effective for wood surface 

defect detection, simultaneously learning feature extraction and classification during training. This innovative 

approach highlights the adaptability and robustness of deep learning methodologies in addressing real-world 

challenges. Table 1 summarizes significant studies from 2019 to 2024, showcasing the evolution of deep 

learning architectures for wood defect identification. These studies demonstrate the growing application of 

deep learning techniques, which have significantly improved defect detection accuracy in the wood industry. 
 

 

Table 1. Overview of deep learning models used in wood surface defect identification 
Reference Year Approach Defect type 

[39] 2024 Inception-ResNet-V2 CNN model Cracks, knots, and undamaged 

[40] 2024 Improved ResNet-50 model Brown stain, blue stain, knot, borer holes, rot, bark 

pocket, wane, and split 
[41] 2023 Inception-V3 model Cracks, knots, and undamaged 

[42] 2023 Improved ResNet-50 model Knots, cracks, and color-related defects 

[43] 2023 Improved RegNet model Wormhole, dead knot, and live knot 
[33] 2022 ResNet50 model Brown stain, blue stain, knot, borer holes, rot, bark 

pocket, wane, and split 

[11] 2022 Faster R-CNN model Knot, wane, edge, stain, and branch. 

[44] 2022 Inception-ResNet-V2 CNN model Edge-glued 

[45] 2022 Derived ResNet-v2 model Wormhole, live joint, and dead joint. 

[46] 2021 TL-ResNet34 model Decay knots, dry knots, edge knots, encased knots, 
horn knots, leaf knots, and sound knots. 

[47] 2021 Based bilinear fine-grained (BLNN) Knot 

[48] 2021 CNN model Defective wood 
[49] 2021 Deep convolutional neural network 

(DCNN) model 

Not specified 

[29] 2020 Multi-channel mask R-CNN Dead knots, live knots, and cracks. 
[30] 2020 DCNN model Crack, knot, and mildew 

[50] 2020 Mask R-CNN model Dead knots, live knots, and insect holes 

[51] 2019  Mix-FCN model Dead knot, live knot, blue stain, crack, brown stain, 
and pitch streak 

[52] 2019 AlexNet model External defects 

[53] 2019 ResNet18 model Not specified 
[14] 2019 Faster R-CNN model Split, core, branch, and stain 

[22] 2019 Faster R-CNN model Knots and holes 

[54] 2019 CNN model Knots 

[55] 2019 VGG-16 model Not specified 
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Recent studies on wood surface defect identification have led to the development of several CNN 

architectures. In 2024, Ehtisham et al. [39] developed an automated method for assessing defects in wooden 

structures using CNNs and image processing techniques to enhance inspection efficiency. Traditional manual 

inspections, though effective, are time-consuming and costly. The study employed the Inception-ResNet-V2 

CNN model, trained with a dataset of 9000 images divided into cracks, knots, and undamaged sections. The 

model achieved 92% classification accuracy on new test images, with minimal errors in defect quantification. 

This automated approach provided significant practical benefits for industry professionals by reducing labor 

costs, speeding up inspections, and improving accuracy, making it a valuable tool for maintaining the safety and 

durability of wooden structures. Next, in the same year, Chun et al. [40] investigated ways to enhance the 

classification accuracy of timber defect identification using deep learning, particularly ResNets. The focus is 

refining these networks by increasing depth and incorporating multi-level features to build a more effective 

framework for identifying different defect types. A series of ablation experiments were performed, testing the 

performance of three new architectures (R1, R2, and R3) against the standard ResNet50 model. While the R1 

architecture achieved slight improvements over ResNet50, particularly with adding an extra layer called 

"ConvG," ResNet50 still showed better overall performance. Similarly, the R2 framework provided some 

improvements but still fell behind R1. The most significant results were achieved with the R3 architecture, which 

integrated fully pre-activation functions, leading to a 14.18% increase in classification accuracy compared to 

ResNet50. The R3 architecture also performed well across various timber species, though it showed slightly 

reduced accuracy for rubberwood. Nonetheless, R3 outperformed both ResNet50 and the other proposed models, 

highlighting the effectiveness of deeper networks and pre-activation functions. Statistical analyses, including 

independent t-tests and one-way ANOVA, confirmed that the improvements were significant across multiple 

species, demonstrating the potential of the R3 architecture for timber defect classification.  

Next, in 2023, Zou et al. [42] proposed an improved modeling method based on ResNet-50 to 

enhance the accuracy and efficiency of wood defect identification, which was crucial for ensuring furniture 

manufacturing quality. Recognizing the complexities involved in data and the need for high efficiency, the 

study introduced a new optimization scheme that combined a convolutional block attention module with a 

cross-stage partial network (CSPNet) tailored for the ResNet-50 architecture. The research explored how 

varying the cross-stage parameters in CSPNet affected classification performance, revealing that the default 

parameters were not always optimal. Additionally, the author proposed the ranger optimizer, which showed 

superior performance over the traditional Adam optimizer in terms of training efficiency and prediction 

accuracy. Experiments conducted using a dataset of real-world wood surface defects demonstrated that the 

proposed model achieved an impressive overall detection accuracy of 86.25% in identifying defects such as 

knots, cracks, and color-related issues. These results underlined the effectiveness and feasibility of the new 

modeling approach in improving wood defect identification compared to existing state-of-the-art methods. 

Next, in 2022, Ling and Xie [45] developed a derived model based on ResNet-v2 to address the 

limitations of traditional manual detection methods for wood defects, which are often time-consuming, 

inefficient, and inaccurate. This new model aims to accurately identify defect types such as wormholes, live 

joints, and dead joints on wooden surfaces, significantly improving classification accuracy while reducing labor 

requirements. The study highlights that the ResNet-v2-derived model demonstrates better recognition capabilities 

and enhanced generalization abilities than traditional CNN. Experimental results indicate that the classification 

accuracy of the ResNet-v2-derived network exceeds 80% for various configurations, with a peak accuracy of 

97.27% under certain conditions. These findings suggest that the proposed model offers a more efficient and 

reliable solution for wood defect identification, making it a valuable tool in the industry for improving quality 

control and operational efficiency. In the same year, Mohsin et al. [11] proposed a novel method for automatic 

real-time defect detection and classification on wood surfaces. This approach utilized a DCNN framework called 

Faster R-CNN for detection, combined with MobileNetV3 as the backbone network for feature extraction. The 

key innovation of this method lies in its ability to efficiently detect knots and other defects while performing 

classification in real-time from input video frames. The study focused on achieving speed and accuracy, which 

were crucial for industrial quality control and inspection tasks requiring defect detection in real-time, particularly 

on computationally limited processing units or commodity processors. The model was designed to be 

lightweight, making it suitable for deployment on mobile and edge devices. MobileNetV3 was pre-trained on a 

large image dataset to enhance feature extraction, while Faster R-CNN was employed for defect detection and 

classification. The system processed input video frames at an average speed of 37 per second using a low-cost, 

low-memory graphics processing unit (GPU). The method achieved an overall accuracy of 99% in detecting and 

classifying defects, demonstrating its effectiveness for practical applications in wood surface inspection. 

In 2021, Gao et al. [46] developed the TL-ResNet-34 model, a transfer residual neural network, to 

enhance the identification of wood knot defects with speed and accuracy. This model improved accuracy by 

over 0.78% through careful extraction of structural defect features and optimization of training parameters and 

datasets. By incorporating transfer learning, the model benefited from a pre-training phase that allowed for 

more effective learning from the limited available data. Experimental results demonstrated that TL-ResNet-34 
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achieved an impressive recognition rate of 99.22% on the training dataset, with a low training loss of 2.83% on 

the validation dataset while identifying seven distinct wood knot defects. Overall accuracy reached 98.69%, 

with minimal fluctuations in the loss and accuracy curves during testing, indicating the model's stability and 

reliability. Significantly, this method minimized the need for extensive image preprocessing and feature 

extraction, making it efficient and accurate in both the training and testing phases. The findings suggested that 

TL-ResNet-34 held significant potential for applications in wood non-destructive testing and wood defect 

identification, allowing for quick and accurate assessments of collected wood knot defects. This innovation 

could significantly improve wood utilization and resource conservation in the industry. 
 
 

3. DISCUSSION 

Based on the findings from recent studies on wood defect identification, several critical discussions 

can be drawn. The research highlights the growing importance of utilizing deep learning techniques, 

particularly CNNs, to enhance the accuracy and efficiency of defect identification in wood. The evolution of 

CNN architectures, such as Inception-ResNet-V2 and various ResNet models, has shown promising results in 

improving classification accuracy. For instance, the automated method developed in 2024 achieved a 

classification accuracy of 92%, demonstrating how deep learning can significantly outperform traditional 

manual inspection methods, which are often time-consuming and costly [39], [42], [46]. Next, as seen in the 

Faster R-CNN and MobileNetV3 framework, the emphasis on real-time detection and classification 

capabilities addresses practical needs in industrial settings where quick decision-making is essential. The 

ability to process video frames at 37 frames per second with an accuracy of 99% illustrates the potential of 

these advanced models to enhance quality control in wood processing [11], [46]. Moreover, integrating 

optimization strategies, such as convolutional block attention modules and transfer learning techniques, has 

improved model performance, addressing challenges like limited labeled datasets. These advancements 

promise substantial benefits, including reduced labor costs and enhanced safety, and they also optimize 

resource utilization in timber manufacturing, demonstrating a significant shift toward automation in wood 

defect identification. Furthermore, introducing the ranger optimizer and adjusting the CSPNet parameters 

contributed to better accuracy, underscoring the necessity of continual improvement in the model training 

process [39], [42], [46]. The studies also highlighted challenges, particularly the limited availability of labeled 

datasets in wood defect detection. Models like TL-ResNet-34, which effectively leverage transfer learning, 

show that even with fewer training examples, it is possible to achieve high recognition rates, emphasizing the 

importance of innovative approaches to data scarcity [46]. In addition, implementing these advanced detection 

systems in real-world scenarios promises significant benefits, including reduced labor costs, improved safety, 

and enhanced durability of wooden structures. By automating defect detection, industries can optimize their 

processes, leading to better resource conservation and more efficient use of timber [39], [42], [46]. 

The analysis of wood defect identification methods from 2019 to 2024 reveals a predominant 

reliance on CNN-based models, highlighting their effectiveness in identifying surface defects in wood. CNNs 

enhance defect identification through hierarchical feature learning, significantly reducing the time and effort 

associated with manual inspections [39]. Various architectures, including ResNet, Faster R-CNN, and 

Inception-ResNet, showcase the versatility and dominance of CNNs in this field. Their popularity stems from 

two main factors: high performance and ease of training [56]. The modular design of CNNs, comprising 

convolutional bases and fully connected layers, allows for robust feature extraction and accurate defect 

classification. This capability improves the precision of defect identification by capturing intricate features 

within high-dimensional data [57]–[59]. However, challenges persist, notably the substantial computational 

power required for effective CNN operation, often necessitating expensive GPUs and large datasets [60]. To 

overcome these barriers, research is needed to develop compact, efficient CNN models that can function on 

low-power computing resources, such as CPUs or FPGAs, making them more accessible for industrial 

applications. Furthermore, creating and sharing large, high-quality datasets of surface defects is crucial for 

enhancing model training and performance. Addressing these gaps will facilitate the broader adoption of 

CNNs in automated surface inspection systems, balancing computational demands with cost-effectiveness 

and data availability. Overall, CNNs play a vital role in advancing wood defect identification, offering 

superior feature extraction and classification capabilities essential for improving automation in the industry. 

Furthermore, the analysis of models presented in Table 1 indicates significant advancements in the 

sophistication of CNN architectures, with notable models like Inception-ResNet-V2 and ResNet-50 demonstrating 

enhanced performance across various defect categories. These advancements highlight the robustness and 

adaptability of CNNs in real-time defect detection, as seen with models such as Faster R-CNN, which effectively 

identify defects like knots, holes, and stains in industrial applications. In 2024, the focus has shifted towards 

refining advanced models, particularly Inception-ResNet-V2 and improved versions of ResNet-50, underscoring 

ongoing innovation in defect identification methodologies. The previous years, 2022 and 2023, also reflected 
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significant improvements in ResNet-50, emphasizing efforts to optimize accuracy and efficiency. While the 

models in Table 1 effectively address a range of defects from common issues like cracks and knots to specific 

problems such as wormholes and insect damage they often concentrate on a limited number of defect types. Most 

studies focus on knots, significantly impacting structural strength and product quality. This trend underscores the 

necessity for more comprehensive deep learning models capable of multiclass identification, allowing for a broader 

scope of wood defect detection. Moreover, several studies labeled defect types as "not specified," indicating a 

general focus on wood surface defects without detailing specific types. This presents an opportunity for future 

research to explore and document various defects, enhancing quality control in the wood industry. 

In addition, the quality of the training dataset is crucial for effectively training deep learning models. 

Deep neural networks typically contain many trainable parameters, making them highly prone to overfitting, 

especially when training data is limited. Various regularization techniques have been developed to address 

this issue to enhance the model's generalization capability. One effective method is data augmentation, which 

directly impacts the training dataset. Data augmentation involves applying various transformations to input 

images to expand the training dataset artificially. It is essential to carefully select transformations appropriate 

for a specific problem, as these transformations should maintain the semantic meaning of the labels. Data 

augmentation is considered a standard approach in deep learning, especially when fewer data samples are 

available. It is widely used to improve the adaptability of neural networks for classification tasks and to 

mitigate overfitting issues. Numerous studies have explored the effectiveness of data augmentation in wood 

defect identification, demonstrating its potential to enhance accuracy and efficiency. Table 2 summarizes 

various data augmentation techniques employed in past research, highlighting the specific methods used by 

different researchers to improve the diversity and effectiveness of their training datasets. 
 

 

Table 2. Techniques for data augmentation in wood defect identification 
Researchers Data augmentation techniques 

[33] Morphological transformations: x-reflection and rotation 

[14] Geometric transformations: flip, rotation transformation, and resize transformation. 

[61] Brighten change and Gaussian noise. 
[30] Rotating the training images at 90°, 180°, and 270°, randomly cropping the training images, flipping the training 

images horizontally, vertically, and diagonally, adjusting the brightness, contrast, saturation, or hue of the 

training images, and adding Gaussian and salt-and-pepper noises to the images 

 

 

Research by Chun et al. [33] highlighted the efficacy of data augmentation in enhancing the 

performance of CNNs for classifying timber defects in various species. They employed morphological 

transformations, such as x-reflection and rotation, to expand the training dataset, which addressed the challenges 

posed by limited data availability. The results demonstrated a significant improvement in classification 

performance, with the best model, ResNet50, achieving an accuracy of 94.59%. Statistical analyses, including 

T-tests, confirmed that the enhancements in classification accuracy due to data augmentation were significant 

for most CNN algorithms tested, except for AlexNet. Furthermore, the authors observed that simply increasing 

the number of training epochs and the learning rate did not necessarily yield better classification precision, 

underscoring the importance of carefully tuning hyperparameters for optimal results. Overall, the study 

concluded that data augmentation was a vital technique for overcoming the limitations of small datasets and 

improving the classification capabilities of CNNs in the context of timber defect identification. 

Next, Urbonas et al. [14] discussed the importance of data augmentation in enhancing the performance 

of AVI systems for identifying defects on wood veneer surfaces. They highlighted that traditional visual quality 

inspections in the lumber and wood processing industry were often performed by human operators, leading to 

potential errors due to the tedious nature of the task. To improve accuracy and speed, the authors proposed using 

a Faster R-CNN alongside data augmentation and transfer learning techniques. The authors specifically 

mentioned employing a synthetically augmented dataset to train their models, which included pre-trained 

networks like AlexNet, VGG16, BNInception, and ResNet152. Their experiments showed that data 

augmentation significantly contributed to the overall classification accuracy of defect identification, achieving 

an average accuracy of 80.6% with ResNet152 and an impressive 96.1% when combining all defect classes. 

This indicated that data augmentation effectively enhanced the robustness of the models, making them suitable 

for real-time industrial applications. Moreover, the authors acknowledged that while data augmentation and 

transfer learning improved defect detection, the method's reliance on manually labeled images for training 

presented a limitation, as these labels might not always be accurate. They suggested that future work could 

explore more complex data augmentation techniques and apply these methods to analyze surface defects in 

other types of wood panels, thereby broadening the scope of their approach. Overall, the authors emphasized 

that data augmentation was crucial in developing effective automated inspection systems for wood processing, 

demonstrating its applicability to various industrial materials. 
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Then, Romanovskis et al. [61] discussed the importance of data augmentation in optimizing the use 

of oak wood during industrial processing. The author trained two different Mask R-CNN models using the 

instance segmentation method. The first model was trained solely on the original data obtained from the 

scanner. In contrast, the second model included the original images and additional artificially adjusted images 

to expand the dataset. The authors employed two data augmentation methods “brighten change” and 

“Gaussian noise” which were selected because they did not alter the physical location of objects within the 

images. All new images were generated based on labeled images, eliminating the need for relabeling, as the 

original image JSON file was attached to the artificially generated images. This approach saved significant 

time in the marking process. The results indicated that the original model achieved an average accuracy of 

73%. However, the model that utilized data augmentation showed an improvement of approximately 16%, 

reaching an average accuracy of around 89%. The authors concluded that the augmented model successfully 

identified and localized defects specific to oak wood, demonstrating that data augmentation is a valuable 

technique for enhancing model performance in the context of wood processing. 

Lastly, He et al. [30] discussed the role of data augmentation in their proposed method for detecting 

wood features and classifying defects from images collected using a laser scanner. In their approach, the 

authors implemented data augmentation as a strategy to avoid overfitting during the training of the DCNN 

model. They collected a dataset comprising images of 600 pieces of red and camphor pine wood, which 

included specific defect categories such as knots, cracks, and mildew stains. The dataset was divided into 

training, validation, and testing subsets, with data augmentation applied to enhance the size and diversity of 

the training data. The results demonstrated that the DCNN model achieved an overall accuracy of 99.13%, 

with only 1.12 seconds required for detection, including image preprocessing and identification. Data 

augmentation significantly contributed to the model’s performance, allowing it to recognize wood defects 

more accurately and effectively than conventional methods.  

By incorporating transfer learning, the model benefited from a pre-training phase that facilitated 

more effective learning from the limited available data. In the rapidly evolving field of deep learning, transfer 

learning has emerged as a pivotal technique, particularly for tasks involving limited labeled data. Numerous 

pre-trained CNN models are readily available in the literature, providing significant advantages in learning 

comprehensive visual feature representations. These models have been extensively trained on large datasets, 

allowing them to capture complex patterns and intricate features, which is especially beneficial when 

working with small, task-specific training datasets [62]. Leveraging transfer learning enables researchers to 

adapt pre-trained models to meet their specific needs, offering a pragmatic and efficient approach for training 

deep learning models in scenarios with limited labeled data. This methodology allows practitioners to modify 

and fine-tune pre-trained models using domain-specific information, significantly accelerating the learning 

process for image classification and identification tasks. Instead of starting the training process from scratch, 

transfer learning utilizes existing models trained on larger datasets and adjusts their weights to align with the 

intended task. This technique enhances both accuracy and effectiveness across various applications [33]. 

Training deep learning models from scratch can be computationally expensive; therefore, utilizing 

models already published in the literature can save time and resources while achieving comparable performance in 

computer vision tasks [63]. Several deep neural network models, such as Xception, Inception, AlexNet, VGGNet, 

GoogLeNet, and ResNet, have been proposed for object classification over the past few decades. Moreover, 

transfer learning strategies have been widely applied in wood surface defect classification. Additionally, transfer 

learning has proven effective across various domains, including manufacturing, medical diagnostics, and baggage 

screening [64]–[66]. This approach eliminates the need for extensive datasets and minimizes the prolonged training 

periods typically associated with developing deep learning algorithms from scratch [67], [68].  

Several studies effectively utilized transfer learning to identify wood defects. Urbonas et al. [14] 

discussed transfer learning as a critical technique in developing an AVI system for detecting defects on wood 

veneer surfaces. By employing pre-trained neural network models such as AlexNet, VGG16, BNInception, 

and ResNet152, the researchers aimed to enhance the accuracy of the faster R-CNN model for this specific 

task. Transfer learning allowed them to leverage the learned features from large datasets, resulting in the best 

average accuracy of 80.6% using ResNet152 and a remarkable 96.1% accuracy when combining all defect 

classes. Additionally, data augmentation was used to increase the diversity of the training dataset, further 

improving model performance. The findings suggested that these methods could apply to other industrial 

materials, showcasing the versatility of transfer learning. However, the reliance on manually labeled images 

for training posed a limitation, as labeling errors could impact results. The authors planned to explore more 

complex transfer learning and data augmentation techniques in future research and extend their methods to 

analyze surface defects in other types of wood panels.  

Next, Gao et al. [69] discussed transfer learning as an integral component of their proposed model, 

ResNet-18, for detecting wood knot defects. In this study, transfer learning was leveraged to enhance the 

performance of deep learning techniques in the context of wood defect detection, which had historically 
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faced challenges such as long training times, low recognition accuracy, and the need for manual feature 

extraction. Integrating transfer learning with the "squeeze-and-excitation" (SE) module into the residual basic 

block structure, the ResNet-18 model improved feature extraction in the channel dimension and effectively 

fused features across multiple scales. The experimental results indicated that the model achieved an 

impressive accuracy of 99.02% in detecting wood knot defects, significantly higher than the classical 

ResNet-18 model's accuracy of 90.83%. Additionally, the proposed approach reduced training time and 

eliminated the need for extensive image preprocessing and manual feature extraction, thereby greatly 

enhancing recognition efficiency. Overall, the author concluded that the ResNet-18 model, through its 

transfer learning, provided a promising solution for wood nondestructive testing and defect identification, 

paving the way for more efficient wood knot defect detection in future applications. 

In addition, Hu et al. [50] discussed transfer learning as a crucial component of their proposed method 

for identifying wood defects in poplar veneer using a combination of a progressive growing generative 

adversarial network (PGGAN) and the Mask R-CNN model. In this study, transfer learning was employed to 

enhance the performance of the Mask R-CNN model, specifically by integrating it with a classifier layer. This 

approach allowed the model to learn from a pre-trained network, improving its ability to identify and classify 

defects such as dead knots, live knots, and insect holes in the veneer. The experimental results indicated that the 

model achieved high accuracy rates of 99.05% for live knots, 97.05% for dead knots, and 99.10% for insect 

holes, demonstrating the effectiveness of the transfer learning strategy in achieving precise defect detection. The 

author highlights that the classification accuracy of the Mask R-CNN model, which was based on ResNet50 and 

further enhanced through transfer learning, reached 98.4% when tested on an expanded dataset. Additionally, the 

use of PGGAN for data augmentation helped to improve the diversity of defect images and balance sample 

distribution, contributing to the overall performance of the detection model. The findings suggest that transfer 

learning can significantly enhance detection accuracy, especially when working with smaller datasets. The author 

concludes that this technology has potential applications in wood processing equipment, particularly in wood 

classification systems, indicating a promising avenue for future implementation. 

Also, Ding et al. [1] discussed transfer learning as a key strategy in their approach to detecting wood 

defects, specifically in solid wood boards. This study applied the transfer learning method to the single-shot 

multi-box detector (SSD), a target detection algorithm, using the DenseNet network to enhance performance. 

The results indicated a mean average precision of 96.1% for detecting the three types of defects, showcasing 

the effectiveness of transfer learning in improving detection accuracy. The authors emphasized the potential 

of transfer learning and advanced neural network architectures in enhancing wood defect detection methods. 

They also intended to extend their model to identify other wood surface defects, such as wormholes and 

discoloration, and to improve target location precision in future research. 

Then, Ehtisham et al. [41] discussed transfer learning as a crucial element in their study of 

identifying and classifying defects in wooden structures. The research evaluated ten pre-trained CNN models 

ResNet18, ResNet50, ResNet101, ShuffleNet, GoogLeNet, Inception-V3, MobileNet-V2, Xception, 

Inception-ResNet-V2, and NASNet-Mobile and each model was further trained and validated, demonstrating 

the effectiveness of transfer learning in adapting these pre-trained models for specific tasks. The findings 

indicated that the Inception-V3 model performed the best, achieving an overall accuracy rate of 97.3% and a 

training time of 97 minutes. This model’s architecture, featuring 48 deep layers, allowed it to classify defects 

in wooden structures effectively. The study highlighted the efficiency of using pre-trained CNNs, as they 

significantly improved classification accuracy and reduced the time required for defect identification 

compared to traditional manual inspection methods. 

Furthermore, Chun et al. [33] discussed transfer learning as a significant component in their study of 

identifying timber defects across four Malaysian timber species. They highlighted using the ResNet50 

algorithm, based on transfer learning, outperforming other CNN models, achieving a classification accuracy 

of 94.59% when combined with data augmentation techniques. The research indicated that data augmentation 

addressed issues related to limited datasets and improved the classification performance of CNNs by 5.78%. 

The study evaluated the effectiveness of transfer learning in conjunction with various hyperparameter 

settings, such as learning rates and epochs, demonstrating that while these adjustments were important, 

higher values did not always lead to better accuracy in CNN classification. Overall, the findings suggested 

that data augmentation and transfer learning were effective strategies for enhancing the identification of 

timber defects, and the authors noted potential for future research in exploring more complex augmentation 

techniques and applying deep learning to analyze different types of timber defects across various species. 
 

 

4. CONCLUSION 

The growing importance of deep learning methods is evident, as recent research highlights their 

effectiveness in enhancing the accuracy and efficiency of wood defect identification, significantly 

outperforming traditional inspection methods and leading to improved quality control in the timber industry. 
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Advancements in CNN architectures, such as Inception-ResNet-V2 and various ResNet models, have 

demonstrated remarkable improvements in classification accuracy, reflecting a shift towards more sophisticated 

and practical techniques for defect identification. Furthermore, implementing frameworks like Faster R-CNN 

and MobileNetV3 showcases the ability of these advanced models to provide real-time detection and 

classification, which is essential for industrial applications where quick decision-making is crucial. Despite 

these advancements, challenges remain, particularly regarding the limited availability of labeled datasets. 

However, innovative approaches like transfer learning and data augmentation have proven effective in 

enhancing model performance, even when working with smaller datasets. The economic and practical benefits 

of integrating these advanced detection systems are substantial, including reduced labor costs, improved safety, 

and more efficient resource utilization in timber manufacturing, ultimately leading to significant process 

optimizations in the wood industry. While current studies predominantly focus on specific defect types, such as 

knots, there is an urgent need for more comprehensive models capable of multiclass identification to improve 

the detection of a broader range of defects and enhance overall quality control in wood processing. Future 

research should prioritize the creation of larger, high-quality datasets and developing compact, efficient CNN 

models that can function on low-power computing resources. Exploring more complex data augmentation 

techniques and applying transfer learning across various wood types and defect categories could further propel 

advancements in this field. In summary, the research emphasizes that significant strides have been made in 

utilizing deep learning for wood defect identification; however, ongoing innovation and adaptation are crucial to 

overcoming existing challenges and maximizing the benefits of these technologies in real-world applications. 
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