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 Music genres help categorize music but lack strict boundaries, emerging 

from interactions among public, marketing, history, and culture. With 

Spotify hosting over 80 million tracks, organizing digital music is 

challenging due to the sheer volume and diversity. Automating music genre 

classification aids in managing this vast array and attracting customers. 

Recently, convolutional neural networks (CNNs) have been used for their 

ability to extract hierarchical features from images, applicable to music 

through spectrograms. This study introduces the Inception-ResNet 

architecture for music genre classification, significantly improving 

performance with 94.10% accuracy, precision of 94.19%, recall of 94.10%, 

F1-score of 94.08%, and 149,418 parameters on the GTZAN dataset, 

showcasing its potential in efficiently managing and categorizing large 

music databases. 
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1. INTRODUCTION 

Music genre is a label used by humans to categorize and describe the characteristics of a music. 

Music genres do not have strict definitions and boundaries as they emerge through complex interactions 

between the audience, marketing, history, and culture [1]. Observations on music genres have led some 

researchers to propose new classification definitions purely for the purpose of information retrieval from 

music [2]. However, with the existing music genres, it is clear that certain genres have characteristics 

typically associated with instrumentation, rhythmic structure, and musical content. 

The process of extracting information from music is becoming increasingly important in organizing 

and managing the vast amount of digitally available music files on the internet. However, this process has 

become nearly impossible to be done manually by humans due to the continuously increasing and diverse 

number of digital music. Therefore, automated music genre classification has become one of the services that 

will assist music distribution vendors in organizing the multitude of music files and leveraging music 

information to attract customers. 

During the past decade, there has been a surge in the use of convolutional neural network (CNN) 

architectures, which have achieved satisfactory performance in the field of image recognition [3]. CNNs can 

effectively extract information from an image due to their hierarchical structure [4]. Low-level features, such 

as basic textures, are built into high-level semantic information through CNN layers [5]. The specific 

capabilities of CNNs can assist in tasks such as music classification by leveraging information from 

spectrograms, which contain texture information from music signals. 

Liu et al. [6] proposed an architecture called bottom-up broadcast neural network (BBNN), which 

adopts a relatively wide and shallow structure. The main idea behind the BBNN architecture is to develop 

effective blocks and different block-to-block connections to exploit and preserve low-level information to 
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higher layers. The architecture is designed in such a way that spectrogram information at the lower level can 

participate in decision-making layers throughout the network. Therefore, BBNN is equipped with a broadcast 

module (BM) consisting of InceptionV1 blocks and dense connectivity. They reported an accuracy of 93%, 

indicating an improvement over previous CNN architectures. However, there are several drawbacks to the 

BBNN, including the use of InceptionV1 blocks in the BM. InceptionV1 has a high computational cost due 

to the use of large filters, specifically a 5×5 filter. BBNN adopts a relatively shallow structure [6]. This can 

limit its capacity to capture complex features and representations, especially for tasks that require depth and 

higher-level hierarchical information processing, such as music classification. The use of max-pooling with a 

large window size, specifically (4, 1), in shallow layers. Down-sampling using max-pooling with a large 

window size can drastically reduce the input dimensions, resulting in lost information and potential accuracy 

degradation [7]. 

In 2016, Szegedy et al. [8], Inception-v4 and Inception-ResNet, combining Inception modules with 

residual connections to improve deep learning efficiency. Inception-v4 refines the original Inception 

architecture, while Inception-ResNet integrates residual connections to enhance gradient flow and training 

speed. Experiments show that Inception-ResNet trains faster and achieves comparable or better accuracy than 

traditional Inception networks. The study highlights how residual connections mitigate the vanishing gradient 

problem, leading to more stable learning. Overall, the research demonstrates that combining Inception 

modules with residual learning results in highly accurate and computationally efficient deep networks. This 

research aims to improve the accuracy performance and reduce the computational complexity of the BBNN 

architecture. The researchers propose music genre classification using the Inception-ResNet architecture with 

input in the form of mel-spectrograms of audio signals. 

 

 

2. LITERATURE REVIEW 

Over recent years, the classification of music genres through visual representations like 

spectrograms short-time Fourier transform (STFT) and mel-spectrogram, mel-frequency cepstral coefficients 

(MFCC) has seen significant advancements. These visual methods leverage traditional texture descriptors 

from computer vision such as local phase quantization, local binary patterns, and Gabor filters to encapsulate 

the spectrograms' content, which resembles temporal energy distribution changes across frequency bins. 

Despite the traditional classification techniques, including support vector machine (SVM) and Gaussian 

mixture models (GMM), outperforming human accuracy (70%) on various music datasets, they are still 

heavily reliant on feature engineering [9]. 

Deep neural networks have significantly reduced the reliance on task-specific prior knowledge, 

achieving notable successes in computer vision [10], [11] and inspiring applications in music genre 

classification [12], [13]. Pioneering work by Lee et al. [14], a deep learning framework for audio 

classification was introduced, employing a convolutional deep belief network to learn from spectrograms, 

inspiring further research in using deep learning for audio recognition. Previous researchers in [15], [16], 

innovated by stacking hidden layers and employing different activation functions and classifiers, achieving 

up to 84% accuracy on the GTZAN dataset [17]. Despite these advancements, challenges remain in feature 

learning without classifier supervision, impacting the prediction capabilities of the models and maintaining a 

two-stage process in the framework. 

Recent advancements in music genre classification have seen the integration of feature learning and 

classification into a single stage, primarily using CNN-based methods. Jakubik [18] introduced recurrent 

neural network (RNN) architectures, specifically long short-term memory (LSTM), and gated recurrent unit 

(GRU), from the image domain to music analysis, achieving remarkable accuracies of 91 and 92% on the 

GTZAN dataset, showcasing their efficacy. The NNet2 model introduced a novel CNN architecture with 

shortcut connections to all layers, enhancing learning capacity through a combination of max and average 

pooling, and achieved an 87% accuracy on GTZAN [19]. Additionally, to address the varying significance of 

different temporal segments in music, the studies in [3], [20], [21] incorporated an attention mechanism with 

a bidirectional RNN, a technique further refined by integrating stacking attention modules in subsequent 

work, emphasizing the evolving focus on nuanced temporal analysis in music content. The most recent work 

was conducted by Liu et al. [6] introduced the BBNN, a model featuring a wide and shallow architecture 

designed to efficiently utilize low-level spectrogram information across its decision-making layers. This 

network incorporates a BM with InceptionV1 blocks and dense connections, aiming to enhance the flow of 

information from lower to higher layers. Despite achieving a 93% accuracy, surpassing many conventional 

CNN architectures, the BBNN faces challenges such as the computationally expensive use of InceptionV1 

blocks, its shallow structure which might limit the extraction of complex features necessary for music 

classification, and the use of max-pooling with large window sizes that may lead to significant information 

loss and potential reductions in accuracy. To overcome these drawbacks, in this article an Inception-ResNet 

module is proposed. 
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3. PROPOSED ARCHITECTURE 

We propose the use of Inception-ResNet blocks to replace the InceptionV1 blocks and make 

modifications to the shallow layers in the BBNN model [6]. The Inception-ResNet block is designed using 

the TensorFlow library and consists of a total of 89 layers, including several components such as the stem 

module (5 layers), reduction module (23 layers), Inception-ResNet module (54 layers), and the fully 

connected module (7 layers). Figure 1 shows the proposed architecture using Inception-ResNet blocks. The 

stem module serves as a feature extraction component at the beginning of the network. The stem model is 

responsible for processing the input data and extracting meaningful features that will be further used by the 

subsequent layers. Figure 2 shows the schematic of the stem module. 

 

 

 
 

Figure 1. Proposed architecture using Inception-ResNet blocks 

 

 

 
 

Figure 2. Stem module 

 

 

The stem module consists of two downsampling stages, reducing the dimensions from (647, 128) to 

(323, 128), and then from (323, 128) to (161, 128). In each downsampling stage, there is a 3×3 convolutional 
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layer with rectified linear unit (ReLU) activation. The convolutional layers extract initial features that serve 

as the foundation for the subsequent layers. The use of max-pooling with a size of (4, 1) in the BBNN model 

reduces the input dimension by a quarter. This can potentially eliminate some important features or detailed 

spatial information, especially when the input size is relatively small. In the proposed stem module, the use of 

two stages of max-pooling with a size of (2, 1) achieves a good balance between reducing the input 

dimension and retaining important information in the feature representation. 

In the proposed architecture, three Inception-ResNet modules are used: Inception-ResNet A  

(22 layers), Inception-ResNet B (16 layers), and Inception-ResNet C (16 layers). The scheme of the 

Inception-ResNet module was introduced by Szegedy et al. [8]. Figures 3 and 4 show the Inception-ResNet A, 

Inception-ResNet B, and Inception-ResNet C modules, respectively. In Figure 3, the Inception-ResNet A 

module functions to extract features at the initial stage. The module consists of three branches with a 

combination of 1×1 and 3×3 convolutions. Each output from the branches is merged through a 1×1 

convolution with a linear activation function. This layer is called the activation scale, which adjusts the 

magnitude of the module's output adaptively. 

In Figure 4(a), the Inception-ResNet B module functions to extract features at the intermediate 

stage. The module consists of two branches with a combination of 1×1, 1×7, and 7×1 convolutions. The use 

of 1×7 and 7×1 filters instead of a 7×7 filter is conducted to reduce the total computations in the module. In 

Figure 4(b), the Inception-ResNet C module has the same configuration scheme as the Inception-ResNet B 

module, which functions to extract features at the final stage. The module consists of two branches with a 

combination of 1×1, 1×3, and 3×1 convolutions. 
 
 

 
 

Figure 3. Inception-ResNet A module 
 
 

Each Inception-ResNet module has a different number and size of filters, allowing for more control 

over the capacity and complexity of the model. There is a difference between the Inception-ResNet modules 

and the Inception modules in the BBNN model, where there is no use of convolutional layers with large 

filters, such as 5×5. Convolutions with large filters are replaced with two convolutions with filters  

(1×3 and 3×1) or (1×7 and 7×1) to reduce the total number of parameters. This allows for the creation of 

deeper models. The reduction module aims to reduce the dimension of the features while preserving and 

enhancing important information. Figure 5 shows the scheme of the reduction module. To reduce the size of 

the feature dimension, a convolutional layer with a stride of two is used, which reduces the feature dimension 

by half of its original size. 
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(a) (b) 

 

Figure 4. The layer architecture for (a) Inception-ResNet B module and (b) Inception-ResNet C module 
 

 

 
 

Figure 5. Reduction module 
 

 

4. EXPERIMENTAL SETUP 

4.1.  Dataset 

The dataset used in this study is the GTZAN dataset. GTZAN is the most widely used public dataset 

for evaluation in music genre recognition (MGR) research [22]. The files were collected between 2000-2001 

from various sources to represent various music recording conditions, such as personal CDs, radio, 

recordings, and microphones. GTZAN contains 1,000 music tracks in .wav format, each lasting for  
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30 seconds [23]. GTZAN consists of 10 genres, including blues, classical, country, disco, hip-hop, jazz, 

metal, pop, reggae, and rock [22]. 

 

4.2.  Preprocessing 

The audio dataset with a duration of 30 seconds will be processed into mel-spectrogram form. There 

are 1,000 audio samples consisting of 10 music genres, with 900 samples used for training and 100 samples 

used for testing. To process the audio dataset into mel-spectrograms, we need to perform STFT, mel-scaling, 

and triangle filtering, all of which are available in the Python library called Librosa. There are several 

parameters used in audio preprocessing, including a window length for Fourier transform of 512 samples, a 

hop length (number of samples between frames) of 1,024 samples, and a total of 128 mel bands for  

mel-scaling. The preprocessing scheme can be seen in Figure 6. After going through the audio preprocessing 

process, the result is obtained in the form of mel-spectrograms with dimensions of 128×647. 
 
 

 
 

Figure 6. Mel-Spectrograms by preprocessing 
 

 

4.3.  Training and testing 

The process of designing the architecture, training, and testing was performed on Google 

Collaboratory Pro version using a Tesla P100 GPU, 15 GB of RAM, and 2 CPU cores. The model training 

stage was conducted for 100 epochs using the Adam optimizer with a batch size of 8. An initial learning rate 

of 0.01 was established and was automatically reduced by a factor of 0.5 if the loss did not decrease for three 

consecutive epochs. Additionally, the training stage implemented an early stopping mechanism, which 

stopped the training when the monitored loss did not decrease for 5 epochs. The categorical cross-entropy 

loss function was used to calculate the loss value for the multiclass classification model.  

The model training employed the K-fold cross-validation method. K-fold cross-validation is a 

commonly used technique in machine learning for more objective model performance evaluation [24]–[26]. 

In K-fold cross-validation, the dataset is randomly divided into 𝑘 balanced subsets called folds. The K-fold 

cross-validation method helps address the uncertainty issue in model evaluation caused by variations in the 

training and testing data splits. By combining evaluations from 𝑘 independent iterations, we obtain a more 

objective overview of the model's performance. In this training, 𝑘 was set to 10 for the K-fold  

cross-validation method, and stratified sampling was used to ensure balanced data. 
 

 

5. RESULTS AND ANALYSIS 

5.1.  Result 

The training process of the Inception-ResNet architecture follows the experimental scheme 

described in section 4. In each training iteration or epoch, the model is evaluated using validation data that is 

not used for training the model. Two evaluation metrics are used: accuracy and loss. The main goal of these 

evaluation metrics is to measure how well the model generalizes and predicts with high accuracy on unseen 

data. The evaluation metric values obtained from the training process of 100 epochs using the TensorFlow 

library are shown in Figure 7. Figure 7(a) illustrates the accuracy comparison graph with epoch iterations, 

where accuracy represents the percentage of correctly predicted data out of the total data. Figure 7(b) 

displays the loss comparison graph with epoch iterations, where loss is the result of the categorical  

cross-entropy loss function.  

After the training process, the Inception-ResNet model is evaluated using several metrics to assess its 

performance. The evaluation metrics used for the music genre classification task include accuracy, precision, 

recall rate, and F1-score. Table 1 shows the evaluation metrics calculated by averaging the accuracy, precision, 

recall rate, and F1-score metrics from the results of the 10-fold cross-validations process. To assess the model's 
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performance in predicting audio for each music genre, separate metric calculations are performed for each 

genre, each consisting of 100 test data, as shown in Table 2. Additionally, a confusion matrix is generated to 

illustrate the number of correct and incorrect predictions for each category, as shown in Figure 8. 
 
 

 

 
(a) (b) 

 

Figure 7. Evaluation metrics result of (a) validation and train accuracy and (b) validation and train loss 
 

 

Table 1. Evaluation metrics 
Evaluation metrics (%) 

Accuracy Precision Recall rate F1-score 

94.10 94.10 94.19 94.08 

 

 

Table 2. Evaluation metrics per genre 
Genre Evaluation metrics (%) 

Accuracy Precision Recall rate F1-score 

Blues 94.0 95.9 94.0 94.9 

Classical 99.0 98.1 99.0 98.5 

Country 95.0 90.4 95.0 92.7 

Disco 90.0 92.7 90.0 91.3 
Hip-Hop 98.0 98.9 98.0 98.9 

Jazz 94.0 95.9 94.0 95.8 

Metal 98.0 92.4 98.0 92.4 

Pop 96.0 88.1 96.0 91.8 

Reggae 91.0 96.8 91.0 93.8 
Rock 86.0 92.5 86.0 89.1 

 

 

 
 

Figure 8. Confusion matrix 
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The number of parameters in the model refers to the number of weights or parameters that need to 

be updated during the model training process. These parameters are values set by the model and used for 

computations during training. Table 3 shows the number of parameters in the Inception-ResNet architecture 

obtained from the simulation results using the TensorFlow library. Trainable parameters refer to the 

parameters that change during the training process, including the weights and biases in each convolutional 

layer and fully connected layer. Non-trainable parameters refer to the parameters that does not change during 

the training process, including global and constant parameters. Total parameters refer to the sum of trainable 

parameters and non-trainable parameters. The results of music genre classification prediction using the 

Inception-ResNet architecture are shown in Figure 9. 

 

 

Table 3. Total parameters 
Parameters Value 

Trainable parameters 147,818 

Non-trainable parameters 1.600 

Total parameters 149.418 

 

 

 
 

Figure 9. Model predictions 

 

 

5.2.  Analysis 

The Inception-ResNet model was evaluated using several evaluation metrics to assess its 

performance. The evaluation metrics used for music genre classification include accuracy, precision, recall 

rate, and F1-score. These evaluation metrics consist of four components: true positive (TP), true negative 

(TN), false negative (FN), and false positive (FP). In the case of music genre classification, the input is 

transformed into binary vectors using one-hot encoding. Each unique category or level of the categorical 

variable is represented by a binary vector, where the length of the vector is equal to the number of unique 

categories. For each data point, only one element in the vector is positive (denoted by 1), indicating the 

corresponding category, while the other elements are negative (denoted by 0). 

Accuracy is a commonly used evaluation metric to measure the performance of a classification 

model. It calculates the percentage of correct predictions (TP and TN) out of all predictions made by the 

model. According to Table 1, the accuracy obtained from the model using the test data is 94.10%. This 

accuracy value indicates that the model performs well and accurately predicts the music genre overall. 
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However, based on Table 2, there are genres with accuracy under 90%, such as rock, indicating that the 

model is less accurate in predicting audio with that genre. The confusion matrix in Figure 8 shows that the 

model misclassified some rock audio as metal, which can be attributed to the similarities between rock and 

metal genres. 

Precision is an evaluation metric used to measure how accurately a classification model identifies 

positive predictions. It calculates the percentage of TP predictions out of all positive predictions made by the 

model. According to Table 1, the precision obtained from the model using the test data is also 94.10%.  

This precision value indicates that the model has a high level of accuracy in classifying audio into their 

respective classes. However, based on Table 2, there are genres with precision under 90%, such as pop, 

indicating that the model tends to make mistakes by predicting audio that should not belong to that genre as 

members of that genre. 

Recall rate, also known as sensitivity or TP rate, is an evaluation metric used to measure how well a 

classification model correctly identifies the overall number of positives. Recall calculates the percentage of 

TP predictions out of the total number of actual positives. According to Table 1, the recall rate obtained from 

the model using the test data is 94.19%. 

F1-score is an evaluation metric used to combine information about precision and recall into a single 

number that describes the overall performance of a classification model or selection system. F1-score 

measures how well the model can achieve a balance between precision and recall. According to Table 1, the 

F1-score obtained from the model using the test data is 94.08%. 

The number of parameters in a model is directly related to computational cost. The more parameters 

a model has, the more complex it is, and the more computational operations are required during training or 

prediction. According to Table 3, the total number of parameters obtained is 149,418. 

The training graphs in Figure 7 show a consistent increase in validation accuracy and a decrease in 

validation loss throughout the training process. This indicates that the model can generalize well, as it 

achieves good performance not only on the training data but also on the validation data. Additionally, there is 

no significant difference between the validation accuracy and train accuracy values at the final epoch, 

indicating that the model does not suffer from overfitting. 

 
5.3.  Performance comparison Inception-ResNet and bottom-up broadcast neural network 

The evaluation metrics of the trained Inception-ResNet model are compared with the BBNN model. 

Table 4 presents a comparison of the performance between these two models, which have undergone the 

same training process and dataset pre-processing [6]. Based on Table 4, the proposed architecture model has 

higher values in each metric and a smaller total number of parameters compared to the BBNN architecture. 

The proposed architecture utilizes Inception-ResNet modules, which have fewer parameters compared to the 

InceptionV1 modules used in the BBNN architecture. This allows the authors to create a deeper architecture 

to enhance the model's capacity in capturing complex features and representations from mel-spectrograms. 

 

 

Table 4. Performance comparison 
Model Total parameter Evaluation metric (%) 

Accuracy Recall Precision F1-score 

Inception-ResNet 149.418 94.10 94.10 94.19 94.08 

BBNN [5] 185.642 93.90 94.0 93.7 93.7 

 

 

The reduction in the number of parameters in the Inception-ResNet modules is due to the absence of 

using convolutional layers with larger filters, such as 5×5. Instead, the large filters are replaced with two 

convolutions using filters of size (1×3 and 3×1) or (1×7 and 7×1) to reduce the computational cost or total 

number of parameters. Figures 3 and 4 illustrate the Inception-ResNet modules used in the proposed 

architecture. 

In the BBNN architecture, a single stage of max-pooling with a size of (4, 1) is used, which directly 

reduces the input dimension by a quarter. This may lead to the loss of some important features or detailed 

spatial information. On the other hand, in the proposed Inception-ResNet architecture the use of two stages of 

max-pooling with a size of (2, 1) strikes a good balance between reducing the input dimension and retaining 

important information in the feature representation. The lower total number of parameters can improve the 

performance of music genre classification on devices with limited computational resources, such as mobile 

phones. Additionally, the higher accuracy can enhance the performance of applications that utilize the genre 

classification model, such as recommender systems, data pipelines, and other applications. 
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6. CONCLUSION 

In this article, we propose a music genre classification framework based on the Inception-ResNet 

architecture. The proposed framework can capture complex features with a deeper architecture in  

mel-spectrograms. Even with a smaller number of parameters, the proposed framework manages to 

outperform the existing model on all measurement metrics including accuracy, recall, precision, and  

F1-score, based on GTZAN datasets. With a smaller number of parameters, the proposed framework can 

potentially be applied to devices with limited computational resources. 
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