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ABSTRACT

In this study, we assess three convolutional neural network (CNN) architec-
tures—VGG16, ResNet50, and InceptionV3 for multi classification of fundus
images in the retinal fundus multi-disease image dataset (RFMID2), compris-
ing of 860 images. Focusing on diabetic retinopathy, exudation, and hem-
orrhagic retinopathy, we preprocessed the dataset for uniformity and balance.
Using transfer learning, the models were adapted for feature extraction and
fine-tuned to our multi-label classification task. Their performance was mea-
sured by subset accuracy, precision, recall, F1-score, hamming loss, and Jaccard
score. VGG16 emerged as the top performer, with the highest subset accuracy
(84.81%) and macro precision (95.83%), indicating its superior class distinc-
tion capabilities. ResNet50 showed commendable accuracy (79.75%) and preci-
sion (86.70%), whereas InceptionV3 lagged with lower accuracy (66.67%) and
precision (81.21%). These findings suggest VGG16’s depth offers advantages
in multi-label classification, highlighting InceptionV3’s limitations in complex
scenarios. This analysis helps optimize CNN architecture selection for specific
tasks, suggesting future exploration of dataset variability, ensemble methods,
and hybrid models for improved performance.
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1. INTRODUCTION
The integration of AI-driven image processing in healthcare has marked a significant leap forward in

diagnosing critical retinal conditions such as diabetic retinopathy [1], exudation [2], and hemorrhagic retinopa-
thy [3]. These conditions, notorious for their potential to impair vision, are increasingly being detected with
advanced computational approaches, notably convolutional neural networks (CNNs) [4]. Our investigation
evaluates the capabilities of three distinguished CNN models— VGG16 [5] , ResNet50 [6], and InceptionV3
[7]—on the retinal fundus multi-disease image dataset (RFMID2) dataset [8], which encompasses 860 fundus
images annotated for these specific diseases. The generation of the dataset RFMID2 is depicted in Figure 1.
Applying transfer learning [9] followed by feature extraction [10] of the fundal images, we aim to fine-tune
these models to the task of multi-label retinal disease classification. The RFMID2 dataset serves as an ideal
ground for this exploration, given its diverse and comprehensive annotation of retinal pathologies. By ensuring
a balanced dataset and employing rigorous preprocessing measures, we seek to establish a level field for eval-
uating model performance across key metrics [11]: subset accuracy, precision, recall, F1 score, hamming loss,
and Jaccard score [12]. As the global incidence of retinal diseases escalates, the urgency for developing rapid
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and reliable diagnostic tools becomes paramount. This study not only compares the effectiveness of different
CNN architectures in automated retinal disease detection but also aims to contribute to the enhancement of
diagnostic processes in ophthalmology. Through our findings, we anticipate setting the stage for future ad-
vancements in automated retinal imaging [13], potentially transforming patient care and management in the
field.

Figure 1. Creation of retinal fundus multi image dataset RFMID2 [8]

The advent of CNNs has significantly impacted machine learning [14], enhancing multi-label clas-
sification [15] tasks across various domains, including medical image analysis [16]. VGG16, ResNet, and
Inception are notable architectures that have contributed to advancements in this field. VGG16 is celebrated for
its depth and the use of small, uniform filters, making it adept at capturing detailed features crucial for medical
imaging. Its architectural simplicity has played a pivotal role in deepening our understanding of CNNs. ResNet
introduces skip connections, allowing the training of very deep networks by overcoming the vanishing gradi-
ent problem. This innovation enables the learning of complex patterns, illustrating the model’s versatility in
tasks such as disease classification from medical scans. Inception models, with their unique inception modules,
capture information at different scales. This capability is particularly beneficial for medical diagnostics, where
images may contain intricate patterns across various resolutions. Applying these CNNs in medical imaging
has transformed diagnostic methods, enabling the classification and diagnosis of multiple diseases from a sin-
gle image with unprecedented accuracy. This advancement not only simplifies the diagnostic process but also
improves early disease detection, potentially enhancing patient outcomes. The continuous evolution of CNN
architectures promises further advancements in medical image analysis. VGG16, ResNet, and Inception mod-
els, with their versatility and adaptability, promise a future where AI-driven diagnostics combined with human
expertise, offering faster and more precise diagnoses. Table 1 describes the a brief review on the deep learning
techniques for retinal diseases classification.

In the exploration of CNNs for retinal disease classification using datasets like RFMID2, researchers
face a set of challenges but also encounter numerous opportunities for advancement. Understanding these
can guide future research directions and help in overcoming existing limitations. The Table 2 explains the
challenges and opportunities in retinal disease classification right from data collection till diagnosis.

The advent of deep learning has revolutionized the field of medical imaging, offering unprecedented
opportunities for enhancing diagnostic accuracy and patient care. CNNs, in particular, have shown remark-
able success in automatically detecting and classifying diseases from various types of medical images. This
potential is especially pertinent in the realm of ophthalmology, where conditions like diabetic retinopathy, ex-
udation, and hemorrhagic retinopathy can be identified through retinal imaging. Timely and precise detection
of these diseases is vital to prevent severe consequences, such as blindness. Thus, leveraging deep learning
for this purpose addresses a significant need in healthcare. In light of these developments, this work proposes
to apply and compare three state-of-the-art CNN architectures—VGG16, InceptionV3, and ResNet50—for the
classification of ophthalmic diseases in retinal images. By leveraging these models’ pre-trained weights for
feature extraction and employing custom classification layers, this study aims to investigate each architecture’s
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efficacy in accurately identifying diabetic retinopathy, exudation, and hemorrhagic retinopathy. This compar-
ative analysis will contribute to identifying the most suitable deep learning approach for enhancing diagnostic
processes in ophthalmology, ultimately aiding in early disease detection and treatment planning. The Table 3
explains the techniques and analysis done for this research.

Table 1. Review on deep learning approaches in retinal disease classification
Topic Description
Multilevel glowworm swarm optimization
convolutional neural network (MGSCNN)
[17] for multi-disease classification

A method that integrates CNN with glowworm swarm optimization (GSO) [18]
for classifier optimization, emphasizing normalization, smoothing, and resizing
in preprocessing. This model showcases the efficacy in enhancing classification
accuracy for retinal images.

Addressing class imbalance [19] The literature provides various strategies to handle class imbalance prob-
lems. These strategies include resampling methods (both oversampling minority
classes and undersampling majority ones), classifier adaptation that requires the
model to be tailored to address the dataset’s imbalance, ensemble approaches
that use multiple models, and cost-sensitive methods that employ custom met-
rics in the loss function to emphasize the minority classes.

Optical coherence tomography (OCT) image
classification with VGG-16 [20]

Describes the adaptation of VGG-16 using transfer learning for OCT retinal im-
ages, focusing on data augmentation and custom layers for disease classification.
Includes performance evaluation metrics and Grad-CAM for model visualization
[21].

Publicly available fundus image datasets
[22]

A variety of datasets have been reviewed and are used in multi-label retinal
disease classification, including DRIVE, STARE, CHASE-DB, Messidor, and
e-ophtha datasets. Each dataset has been developed for different diagnostic pur-
poses, exhibiting diverse variations and abnormalities that are crucial for training
deep learning models.

Table 2. From data to diagnosis: artificial intelligence challenges and opportunities in retinal disease
classification

Challenges Opportunities
Class imbalance: A common issue in medical datasets, includ-
ing those for retinal diseases, is class imbalance. Minority
classes (rarer diseases) are not much in number, which can
bias the model towards more frequent conditions. Addressing
this requires innovative strategies beyond simple resampling,
demanding more sophisticated approaches like cost-sensitive
learning or synthetic data generation.

Advanced architectural innovations [23]: Exploring beyond
VGG16, ResNet, and Inception models to newer architectures
can provide opportunities for improved performance. Innova-
tions in neural network design could offer solutions to class
imbalance, enhance feature extraction, and improve model in-
terpretability.

Data quality and variability: The quality of retinal images can
vary significantly due to different imaging conditions, patient
demographics, and disease stages. This variability can hinder
the model’s ability to generalize from the training data to real-
world applications.

Multi-modal data fusion [24]: Combining retinal fundus im-
ages with other types of medical data (e.g., OCT [25], pa-
tient demographics) through multi-modal learning approaches
could enhance diagnostic accuracy and offer a more holistic
view of patient health.

Interpretability and trust: For clinical applications, it’s crucial
that model predictions are interpretable by healthcare profes-
sionals. Developing models that offer transparency in their
decision-making process remains a challenge, affecting their
adoption in clinical settings.

Transfer learning and domain adaptation [26]: Leveraging
transfer learning more effectively, including domain adaptation
techniques, can help models better generalize across different
datasets and imaging conditions, reducing the gap between re-
search settings and real-world applications.

Integration with clinical workflows: Successfully integrating
AI models into clinical workflows involves challenges related
to system compatibility, data privacy, and the need for real-
time analysis without disrupting existing procedures.

Collaboration between AI researchers and clinicians: Strength-
ening the collaboration between AI researchers and clinical
practitioners can lead to the development of more practical,
user-friendly AI tools that fit seamlessly into clinical work-
flows and address real healthcare needs.

The study explores the impact of architectural variations inherent to VGG16, inceptionV3, and ResNet-
50. This includes the depth of the networks, the use of inception modules versus residual connections, and their
implications for feature representation and extraction capabilities. Each model was fine-tuned to the specific
task of medical image classification. This involved adjusting learning rates, experimenting with different num-
bers of dense layers in the classification head, and exploring dropout for regularization to prevent overfitting.
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Table 3. CNN architectures in ophthalmic disease detection: techniques, variations, and insights
Methodology/feature
extraction

Description

Dataset description The study uses a RFMID2 consisting of 860 images labeled with the presence or absence of diabetic
retinopathy, edema, and hemorrhagic retinopathy. The labels are encoded in a CSV file, facilitating a
structured approach to supervised learning.

Balancing and sampling To address potential class imbalance, a balanced subset of images was constructed. This ensures equi-
table representation of each condition, enhancing the model’s ability to learn from an evenly distributed
dataset.

Image resizing and nor-
malization

All images were resized to 512x512 pixels to standardize input size. Additionally, pixel values were
normalized to a [0, 1] range to aid in model convergence and efficiency during training.

Data analysis The comparative analysis of label frequencies and combinations was conducted for both retinal fundus
multi image datasets that includes creating graphical representations to illustrate label frequencies and
co-occurrence patterns

Utilization of pre-trained
models

Leveraging the VGG16, InceptionV3, and ResNet50 models pre-trained on ImageNet enables the ex-
traction of rich, hierarchical features from the medical images, even with a limited dataset size.

Global average pooling
(GAP)

Following feature extraction, a GAP layer was applied to reduce the feature dimensionality while main-
taining spatial hierarchies, facilitating a robust input for the classification layer.

2. METHOD
This section thoroughly outlines the methods adopted in our investigation. It details the research

framework, the procedures for obtaining the dataset, and the analytical strategies applied to fulfill our inves-
tigative goals. We offer an in-depth description of our procedural approach to maintain openness and ensure a
clear understanding of our research execution.

2.1. Setup and variables considered
The Table 4 describes the specification of the retinal fundus dataset used in the research. The RFMID2

[8] a publicly accessible dataset has 860 retinal images, respectively. From this diabetic retinopathy, exudation,
and hemorrhagic retinopathy have been identified for this reserach.

Table 4. Specification of the retinas fundus dataset [8]
Aspect Desciption of the medical data
Research domain Multiple label classification of retinal fundus image
Detailed study focus Classification of various diseases using retinal fundus images
Collection method Utilized the TOPCON TRC-NW300 for data collection
Data presentation Includes images and associated data in CSV format
Variables under study The majority of the subjects underwent mydriasis dilation using 0.5% tropicamide. Another subsect of

patients without mydriasis were also accessed.
Experimental setup Images captured using non-invasive techniques, maintaining specific distances between the camera lenses

and the subjects’ eyes with the patients in a seated position.
Data origin Data collected from Shri Ganpati Netralaya in Jalna, Maharashtra, and the Center of Excellence in Signal

and Image Processing at SGGS Institute of Engineering and Technology in Nanded, Maharashtra, India.

2.2. Dataset processing
The Figure 2 depicts the flowchart explaining the methodology used in this research for the classifica-

tion of retinal diseases from RFMID2 dataset. The methodology depicted in the flowchart explains the use of
convolutional neutal networks for the classification of retinal images. It starts with identifying the labels that
are crucial for this study namely diabetic retinopathy, exudation, and hemorrhagic retinopathy from the 860
fundus images. Starting with data collection, the algorithm follows the integration of fundal images and the
disease labels to ensure preprocessing steps like resizing, normalization, and dataset partitioning. This facili-
ates the model training and validation. An emphasis is specifically placed on the dataset imbalance to ensure
an unbiased model evaluation. This research study has considered three CNN architectures namely VGG16,
InceptionV3, and ResNet50 for the feature extraction of the fundal images. GAP is implemented to simplify
the complex data from the images into a format that is easier to identify the patterns assosiated with the retinal
diseases used in this study. Training is conducted followed by evaluation of the model’s prediction against the
established performance metrics. This way of structured comaparison and analysis of the results highlights the
efficiency of the models in diagnosisng retinal diseases. The prediction also helps shed light into the details sur-
ronding diabetic retinopathy, exudation, and hemorrhagic retinopathy. With this rigorous process the research
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helps to identify the promising CNN architecture for fundal images, therby offering valuable insights into the
automated diagnosis of retinal conditions to help in advance opthalmic cure.

Figure 2. Flowchart for deep learning in ophthalmic disease classifications

3. RESULTS AND DISCUSSION
Based on the comparison of the three architectures considered in the research we have arrived at the

following analysis which reveals the distinct performance features of VGG16, InceptionV3, and ResNet mod-
els, highlighting their use in various applications based on their unique strength and weakness. The VGG16
model demonstrates superior performance in almost all evaluated metrics. With a subset accuracy of 84.81%, it
significantly outperforms Inception and ResNet models in predicting the entire set of labels for an instance. This
is complemented by its high precision, both on a macro (95.83%) and micro (95.56%) level, suggesting that the
model is particularly effective at minimizing false positives. Moreover, VGG16’s recall rates (macro: 80.74%,
micro: 79.63%) gives a strong indication about its capability to identify positive instances, which, combined
with its precision, leads to the highest F1-scores among the models (macro: 87.22%, micro: 86.87%). These
results highlight VGG16’s balanced performance, making it a robust choice for tasks requiring precise label
predictions. ResNet, on the other hand, presents itself as a competitive alternative, with a subset accuracy of
79.75%, positioning it between VGG16 and Inception in terms of the ability to match the full label set. While
its precision and recall scores are moderately lower than those of VGG16, they still showcase respectable
performance (precision macro: 86.70%, recall macro: 75.37%). The F1-scores for ResNet (macro: 80.00%,
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micro: 79.21%) further underscore its balanced precision-recall trade-off, indicating its effectiveness in a vari-
ety of scenarios where a slightly lower accuracy is acceptable. Inception’s performance, while trailing behind
VGG16 and ResNet, offers insights into the challenges and limitations of the architecture within the specific
task context. With a subset accuracy of 66.67%, and the lowest precision (macro: 81.21%, micro: 78.05%)
and recall (macro: 59.72%, micro: 60.38%) scores among the three, Inception appears to struggle more with
correctly identifying positive instances and minimizing false positives. Its F1-scores (macro: 65.51%, micro:
68.09%) reflect these challenges, suggesting areas for improvement, particularly in tasks requiring high preci-
sion and recall. The Table 5 shows the results of the three CNN architecture models namely VGG16, Inception,
and ResNet models carried out in this research study.

Table 5. Comparative analysis of VGG16, Inception, and ResNet across key performance indicators
Metrics VGG16 (%) Inception (%) ResNet (%)

Subset accuracy 84.81 66.67 79.75
Precision (Macro) 95.83 81.21 86.70

Recall (Macro) 80.74 59.72 75.37
F1-Score (Macro) 87.22 65.51 80.00
Precision (Micro) 95.56 78.05 85.11

Recall (Micro) 79.63 60.38 74.07
F1-Score (Micro) 86.87 68.09 79.21
Hamming Loss 5.49 12.82 8.86

Jaccard Score (Macro) 78.62 53.10 69.30
Jaccard Score (Micro) 76.79 51.61 65.57

The graph representated in Figure 3 gives an overview between the performance metrics of the
VGG16, Inception, and ResNet models across the key metric as discussed in the Table 5. We see that VGG16
emerges as the most accurate and balanced model, offering high precision and recall, which are critical for
applications demanding stringent accuracy in label prediction. ResNet’s performance, while not reaching the
heights of VGG16, remains strong, suggesting its potential as a versatile model capable of delivering robust
results across various tasks. Inception’s lower performance metrics indicate potential difficulties in tasks re-
quiring high precision and recall, highlighting the importance of model selection based on specific task re-
quirements and the inherent trade-offs between different architectures. This comparison not only emphasizes
the strengths of VGG16 in achieving high accuracy and a balanced precision-recall relationship but also illus-
trates the versatility of ResNet and the targeted applicability of Inception. The choice between these models
should be guided by the specific requirements of the application, including the need for precision, recall, and
the ability to correctly predict complete sets of labels.

Figure 3. Grouped bar depicting the comparative analysis of VGG16, Inception, and ResNet across key
performance indicators
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4. CONCLUSION
This study’s findings underscore the importance of model selection in the deployment of CNNs for

image recognition tasks. The choice of model can significantly influence the outcome, depending on the specific
requirements of accuracy, computational efficiency, and application context. Future research should explore
the adaptability of these models to emerging image recognition challenges, including their performance on
increasingly complex datasets and in real-world scenarios. Additionally, investigating the integration of these
architectures into ensemble methods could offer paths to further enhance their accuracy and efficiency. In
conclusion, while VGG16 emerges as the top performer in our analysis, the strengths of ResNet and Inception
in certain contexts cannot be overlooked. The decision to employ a particular model should be guided by the
specific demands of the task at hand, balancing considerations of accuracy, efficiency, and practical constraints.
As the field of deep learning continues to evolve, so too will the capabilities and applications of these models,
promising new opportunities for innovation and improvement.
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