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 The reliable performance of lithium-ion batteries is crucial for the safe and 

efficient operation of electrical systems, particularly in electric vehicles. To 

mitigate the risk of battery failure due to degradation, accurate forecasting of 

the remaining useful life (RUL) is imperative. In this study, we propose 

employing various recurrent neural network (RNN) methods, including RNN, 

gated recurrent unit (GRU), and long short-term memory (LSTM), to enhance 

RUL prediction accuracy for lithium-ion batteries. Our approach aims to 

provide reliable, accurate, and simple estimates of remaining battery life, 

facilitating effective management of electric vehicle power systems and 

minimizing the risk of failure. Performance evaluation metrics such as mean 

absolute error (MAE), R-squared (R²), mean absolute percentage error 

(MAPE), and root mean squared error (RMSE) are utilized to assess 

prediction accuracy. Experimental validation conducted using the NASA 

lithium-ion battery dataset demonstrates the superiority of LSTM in reducing 

prediction error and enhancing RUL prediction performance compared to 

alternative approaches. These findings underscore the potential of neural 

network methodologies in advancing battery management practices and 

ensuring the longevity and reliability of lithium-ion battery systems. 
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1. INTRODUCTION 

Electric vehicles powered by lithium-ion batteries have emerged as a promising solution to combat 

the escalating threat of air pollution and reduce CO2 emissions stemming from global transportation systems 

[1]. These vehicles, heralded for their environmental benefits, rely on intricate battery packs to operate 

efficiently. However, as these batteries undergo continuous use, their performance undergoes changes, 

manifesting as capacity loss and increased resistance [2], [3]. The repercussions of such alterations extend 

beyond mere efficiency concerns, often culminating in severe catastrophes such as combustion or explosions 

within energy storage systems. These catastrophic events are largely precipitated by the heightened resistance 

within degraded batteries, which generates excessive heat. Consequently, the accurate estimation of battery 

lifespan assumes paramount importance, serving as a pivotal indicator of battery aging and damage status. 

Such insights are indispensable for ensuring the safety and reliability of electrified vehicles and energy storage 

systems alike. To navigate the complexities inherent in utilizing these batteries safely and effectively, the 

implementation of robust battery management systems (BMS) [4] becomes imperative. Recent years have 

witnessed a surge in research endeavors aimed at refining battery technologies, with a particular focus on 

empowering BMS to proficiently estimate battery parameters. Monitoring factors such as state of charge (SOC) 

[5], state of health (SOH) [6], remaining useful life (RUL), charge capacity, and internal resistance emerges as 
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quintessential practices to uphold the efficient and secure utilization of lithium-ion batteries [7]. Among these, 

RUL emerges as a pivotal parameter, pivotal for fault diagnoses and early safety warnings throughout the life 

cycle of lithium-ion batteries in electrified vehicles. Moreover, the accurate prediction of RUL plays an 

instrumental role in quantifying battery life and forecasting the remaining mileage of electric vehicles [8]. 

Lithium-ion batteries, renowned for their high energy density, power density, low self-discharge rate, and 

extended lifespan, stand out as favored choices across diverse applications.  

The concept of RUL, delineated as the remaining number of cycles to reach the failure threshold, has 

spurred the development of four distinct prediction methods: direct measurement, model-based, data-driven, 

and hybrid methodologies [9]. The direct measurement approach utilizes open-circuit voltage and 

electrochemical impedance spectroscopy to assess the capacity and impedance of battery cells. In contrast, the 

model-based method leverages various models, including electrochemical, equivalent circuit, and empirical 

models such as unscented Kalman filter (UKF) and particle filter (PF). Data-driven prediction methods, like 

gaussian processes (GP) [10], recurrent neural networks (RNN), long short-term memory networks (LSTM) 

[11], support vector regression (SVR) [12], grey models (GM), relevance vector machines (RVM) [13], and 

artificial neural networks (ANN) [14], are gaining increasing attention due to the abundance of data available 

from Li-ion batteries. These data-driven methods do not depend on complex chemical, physical, or 

mathematical models of battery capacity degradation, making them highly attractive for battery health 

prediction. In recent times, the prowess of neural networks, particularly RNNs, has garnered attention for its 

potential to enhance prediction accuracy. Leveraging their innate capacity for self-learning, RNNs hold 

promise in revolutionizing RUL prediction methodologies [15], [16]. Deep learning methods, already lauded 

for their success across various domains, offer further credibility to this approach, particularly in time-series 

prediction tasks. Proposing the utilization of diverse RNN methods in our study represents a concerted effort 

to augment the prediction accuracy of lithium-ion battery RUL, thereby advancing the frontier of battery 

management in electrified vehicles. The primary challenges faced in the context of RUL prediction in this 

study are multifaceted. Foremost among these challenges is the imperative to enhance the prediction accuracy 

of RUL, striving for high precision and minimizing prediction errors to ensure reliable prognostications. 

Additionally, the study grapples with the need to curb computational costs and reduce lengthy training times 

associated with complex prediction models, aiming to streamline processes and improve efficiency.  

Furthermore, the pursuit of an optimal solution presents challenges of its own, demanding high 

stability, rapid convergence speed, flexibility, and seamless implementation to effectively address the 

intricacies of RUL prediction in practical applications. Addressing these challenges is paramount to advancing 

the state-of-the-art in RUL prediction methodologies and ensuring their practical viability and efficacy. The 

key contributions of this paper revolve around the development of a predictive model for lithium-ion battery 

RUL prediction using a simple yet effective technique based on various RNN methods applied to univariate 

time series data. Furthermore, this work offers valuable insights into the efficacy of simple RNN methods in 

RUL prediction for lithium-ion batteries through comprehensive comparisons with other methodologies, 

including RNN, gated recurrent unit (GRU), and LSTM techniques employed in previous studies. Notably, our 

proposed LSTM method demonstrates outstanding performance, achieving exceptional predictive accuracy in 

RUL estimation and facilitating timely predictions based on previously estimated information. These 

advancements hold promise for enhancing battery lifetime control strategies and safety monitoring functions, 

thereby reducing the risk of catastrophic events. 

The subsequent sections of this paper are structured as follows. Section 2 outlines the framework of 

our method and elucidates the process of predicting the RUL and introduces the tools and methodology 

employed for predicting the RUL of lithium-ion batteries using the proposed methods. In section 3, we present 

the RUL prediction results and compare them with existing prediction methods. Lastly, the paper concludes 

with a summary of findings. 

 

 

2. METHOD  

2.1. The recurrent neural network methods 

Predicting the remaining life of lithium-ion batteries represents a multifaceted and crucial endeavor, 

particularly in domains like electric vehicles and portable electronics. In tackling this challenge, various neural 

network algorithms emerge as promising solutions, each offering distinct advantages contingent upon factors 

such as data nature, resource availability, and specific requirements. Among the array of proposed algorithms, 

RNNs, GRUs, and LSTMs networks, represented in Figures 1 to 3, stand out prominently. 

RNNs excel in capturing temporal features by leveraging correlations between current capacity and 

previous inputs, facilitating realistic estimations for future predictions. However, they encounter challenges 

with long-distance dependencies, leading to issues like vanishing gradients. In contrast, LSTM addresses these 

concerns by regulating gradient propagation and maintaining parameter memory across time iterations. The 
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LSTM architecture comprises long-term and short-term states, harnessing input and activation values to 

compute hidden layer nodes effectively. On the other hand, GRU [17], characterized by its simplified 

architecture featuring two gates—update and reset—offers comparable performance to LSTM with fewer 

parameters [9], [18], [19]. 

 

 

 
 

Figure 1. The RNN architecture 

 

 

  
 

Figure 2. The GRU architecture 

 

Figure 3. The LSTM architecture 

 

 

The selection of the most suitable algorithm hinges on dataset characteristics, computational 

resources, and desired accuracy levels. Leveraging the strengths of each algorithm, our method, as depicted in 

Figure 4, is meticulously crafted to capitalize on these diverse benefits, ensuring optimal performance in 

predicting lithium-ion battery RUL. To achieve optimal performance in predicting the RUL of lithium-ion 

batteries. To further enhance accuracy, we adhered to a well-defined process for RUL prediction, which is 

detailed in Figure 5. This systematic approach ensures a robust and efficient prediction model. 

 

 

 
 

Figure 4. The proposed framework to predict RUL of battery lithium-ion 
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Figure 5. The process for predicting RUL of battery lithium-ion 

 

 

2.2. Battery dataset 

The study validates its findings using experimental data sourced from the NASA [20] of excellence, 

focusing on aging data for 18650 lithium-ion batteries. The dataset includes three distinct modes: charging, 

where the battery is charged with a constant current until reaching 4.2 V, followed by a constant voltage phase; 

discharge, where the battery is discharged with a constant current until reaching 2.5 V; and termination, 

occurring when the battery's actual capacity drops below 70% of its rated capacity (2 Ah). Analysis is 

conducted using the dataset for the B0006 battery showing in Figure 6. 

 

 

 
 

Figure 6. Capacity degradation curve of B0006 battery 

 

 

2.3. System configuration and evaluation criteria of performance 

The hardware and software environment and hyper-parameters shown in Table 1 was used to 

implement the three methods, i.e. RNN, GRU, and LSTM, respectively. The Adam optimizer and Huber loss 

are utilized, as well as the rectified linear unit (ReLU) activation function. In addition, we utilize the mean 

absolute error (MAE) [21], root mean square error (RMSE), R square (R²) [22], and mean absolute percentage 

error (MAPE) [23] to evaluate the methods of RUL prediction performance. 
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Where 𝑦𝑘  stands for the genuine capacity of the battery, 𝑦𝑘̂  for the estimated capacity, and 𝑦𝑘̅̅ ̅ for the actual 

capacity average. The capacity forecast accuracy is greater when the MAE, MAPE, and RMSE are near to 

zero. When it comes to R², a number near to one means more accurate RUL predictions. The Detailed flowchart 

steps for predicting RUL based on the proposed model are illustrated in Figure 7. 

The model framework depend as model inputs are the current and previous capacity vector  

[C(t − i), . . ., C(t)]. While model outputs are C(t + 1), which can be predicted after employing the proposed 

method. We use a recursive prediction procedure where the previously forecast capacity as the next input of 

the model to predict new capacity value until the battery's EOL is arrived, then new RUL can estimated. 

 

 

Table 1. Environment of hardware and software and best values of hyper-parameters 
Hardware ENVIRONMENT Software ENVIRONMENT hyperparameters (size) hyperparameters 

RAM 8G Python with Tensorflow Window: 8 Epochs: 1500 
1.80 GHz CPU Windows 10 professional edition Batch: 8 learning_rate: 8e-4 

Intel(R) HD Graphics Family  shuffle_buffer: 1000 Regularization: without 

 

 

 
 

Figure 7. Flowchart steps for predicting RUL 

 

 

3. RESULTS AND DISCUSSION  

3.1. Remaining useful life prediction with the various methods 

In this section, we present the results of our experimentation on predicting RUL using three distinct 

methods RNN, GRU, and LSTM. Each method comprises four key steps: data pre-processing, training over 80 

cycles, validation prediction over 88 cycles, and 40 new prediction cycles (from 169 to 208). The RUL 

prediction results for each method are delineated, with real values depicted in yellow, predictions in green 

(beginning at cycle 80), and new predictions in red. First, employing the RNN method for lithium-ion batteries 

RUL prediction reveals close alignment between validation and true values as shown in Figure 8(a), indicative 

of effective learning. However, its performance in new predictions is suboptimal. Conversely, the GRU method 

as shown in Figure 8(b) exhibits improved accuracy during the validation phase, yet new prediction 

performance remains inadequate. The LSTM method, on the other hand, not only enhances RUL prediction 

accuracy for lithium-ion batteries but notably achieves satisfactory performance in new predictions. The 

consistency between estimates and true values is evident as shown in Figure 8(c), with significant improvement 

in new prediction accuracy. Furthermore, the loss curve of the LSTM method consistently converges towards 

zero, demonstrating continual learning and reduced perturbation compared to RNN and GRU methods as 

shown in Figures 9(a) to 9(c). These findings underscore the superiority of LSTM in achieving high estimation 

accuracy and robust performance in predicting new RUL, thus solidifying its status as the most accurate method 

for lithium-ion batteries RUL prediction. The subsequent section provides a summary of numeric RUL 

prediction errors and contextualizes them against other leading methods in the literature. 
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(a) (b) 

 

 
(c) 

 

Figure 8. RUL prediction results using: (a) RNN, (b) GRU, and (c) LSTM 

 

 

  
(a) (b) 

 

 
(c) 

 

Figure 9. RUL training performance: (a) RNN, (b) GRU, and (c) LSTM 
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3.2. Comparative results analysis 

3.2.1. Remaining useful life validation and the evaluation criteria 

In the preceding section, our focus was on evaluating the extrapolation capabilities of the LSTM model 

through RUL prediction tests conducted on the B0006 battery case. Subsequently, the prediction results for this 

battery were plotted, accompanied by the presentation of accuracy indicators. To ensure comprehensive capacity 

information inclusion during the training process, the initial 80 data points from the capacity degradation curve, 

constituting a near-even split, were utilized as the training sets. Subsequent to model training, predictions of future 

capacity across remaining cycles were made, emphasizing the significance of early-cycle RUL prediction for 

battery management. In this section, our attention shifts towards scrutinizing the recursive prediction performance 

and the robustness of our proposed method. The experiments conducted affirm the ability of the proposed method 

to effectively capture the dynamic nature of lithium-ion batteries. Evaluation of prediction performance was 

conducted using four key indicators: MAE, R², MAPE, and RMSE, with detailed results presented in Table 2. 

Table 2, along with Figures 8 and 9, provide a comprehensive insight into the performance evaluation 

of the proposed methodologies, all based on the B0006 battery's testing set with identical starting points. 

Notably, MAE, MAPE, and RMSE values associated with the LSTM method are notably lower compared to 

those of the RNN and GRU methods, while the R² values are correspondingly higher. These findings 

underscore the considerable enhancement in RUL prediction facilitated by the suggested approach. Particularly 

noteworthy are the significant improvements observed in MAE and RMSE metrics as shown in Figure 10 when 

transitioning from LSTM to GRU, indicating improvements of 29.2% and 10.8%, respectively. Such outcomes 

highlight the efficacy and superiority of the proposed LSTM method in enhancing predictive accuracy and 

precision for lithium-ion battery RUL prediction. 

 

 

Table 2. RUL prediction results for B0006 
Methods Start point MAE R² (%) RMSE MAPE 

RNN 80 0.01287 94.70 0.02321 0.9810 
GRU 80 0.01206 94.86 0.02286 0.9473 

LSTM 80 0.00854 95.91 0.02038 0.7861 

 

 

 
 

Figure 10. Comparing RUL estimation results by MAE and RMSE 

 

 

3.2.2. Results analysis and comparison 

This section compares the accuracy of RUL estimates across various methodologies from existing 

literature. single methods emerge as sufficient for handling time series data, as supported by the results in  

Table 3 and the accompanying analysis. Additionally, to offer a broader comparison encompassing various 

neural network prediction methodologies, we collate performance results from other studies utilizing the same 

NASA dataset and performance metrics, alongside commencing predictions from identical starting points. As 

delineated in Table 3, the LSTM method notably outperforms its single counterparts in terms of accuracy, 

affirming the efficiency and efficacy of LSTM as evidenced in this article. Specifically, the LSTM method 

demonstrates a demonstrable reduction in MAE and RMSE. The cumulative findings underscore the  
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high-accuracy estimation capabilities of the proposed LSTM RUL prediction method, positioning it as a 

superior choice in the realm of predictive modeling. 

 

 

Table 3. RUL prediction results of B0006 for various papers 
Methods Start point MAE RMSE 

RNN 

LSTM [24] 

78  0.1131 

0.0784 
UKF 

AUKF [22] 

80 0.0994 

0.0371 

0.1275 

0.0489 

RVM 
GM [13] 

80  0.0667 
0.0634 

SVR [12] 80  0.0477 

LSTM 
RNN [25] 

RVM 

70  0.0311 
0.0799 

0.0682 

RNN 
GRU 

LSTM 

80 0.01287 
0.01206 

0.00854 

0.02321 
0.02286 

0.02038 

 

 

4. CONCLUSION 

In conclusion, this study introduces the LSTM method as a novel approach for predicting the RUL of 

lithium-ion batteries, offering significant advancements over established methodologies such as RNNs and 

GRU. Leveraging a dataset sourced from NASA, our proposed approach undergoes rigorous experimental 

validation, affirming its exceptional predictive capabilities for lithium-ion battery RUL. Empirical findings 

unequivocally demonstrate the superior accuracy of the LSTM method compared to alternative approaches. 

Through comprehensive evaluation using four performance indices, LSTM emerges as the clear frontrunner, 

surpassing RNN, GRU, and other contemporary methodologies in predictive accuracy. These results 

underscore the significance of our proposed LSTM-based approach in advancing RUL prediction 

methodologies for lithium-ion batteries, with promising implications for enhancing battery management 

practices and ensuring operational efficiency and reliability in various applications. 
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