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 The paper outlines the development of an algorithm focused on imitating 

movements of a human arm and replicating strokes generated by the user's 

hand within a working environment. The algorithm was crafted to discern the 

position of either the user's left or right arm, tracking each section (fingers, 

wrist, elbow, and shoulder) through a detection and tracking system. These 

movements are then replicated onto a virtual arm, simulating the actions of a 

cutting tool, generating strokes as it moves. Convolutional neural networks 
(CNNs) were employed to detect and classify each arm section, while 

geometric analysis determined the rotation angles of each joint, facilitating 

the virtual robot's motion. The stroke replication program achieved an 84.2% 

accuracy in stroke execution, gauged by the closure of the polygon, distance 
between initial and final drawing points, and generated noise, which was 

under 10%, with a 99% probability of drawing a closed polygon. A Fast 

region-based convolutional neural network (Fast R-CNN) network detected 

each arm section with 60.2% accuracy, producing detection boxes with 
precision ranging from 17% to 59%. Any recognition shortcomings were 

addressed through mathematical estimation of missing points and noise filters, 

resulting in a 90.4% imitation rate of human upper limb movement. 
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1. INTRODUCTION 

Research oriented to the detection and tracking of the human body [1] allows exploring applications 

associated with improving the living conditions of people, for example, with the monitoring of pain therapies 

through yoga as mentioned in [2]. Another approach to body tracking is in human machine interaction to avoid 

collisions between these [3]. Also by performing specific identifications such as hand and elbow, drone control 

can be performed as discussed in [4]. Aspect that at the specific level of pattern learning allows to generate 

trajectory tracking [5]. 

Nowadays, pattern learning and/or reinforcement learning techniques are used by deep learning 

algorithms to track, for example, convolutional neural networks (CNN) [6] applied to tracking mobile systems 

under the concept of internet of things [7] or satellite information [8]. For the topic of interest CNNs can be 

used to track groups of people [9] or a varied group of targets [10]. What is important in this case is to have 

one or several tracking targets and to train the CNN adequately with sufficient data as described in [11] and 

robust enough to support occlusions [12]. If required, many tracking systems have depth cameras for  

distance-based tracking [13], [14]. 

https://creativecommons.org/licenses/by-sa/4.0/
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Aspects such as the tracking of geometries for railway safety by means of CNNs [15] and the tracking 

of body parts such as the eye [16], show the potential of CNNs in tracking tasks. In this work, the use of 

convolutional networks to identify and track parts of the human arm to replicate its movement in a robotic 

manipulator to perform specific cutting geometries oriented to industrial work for example steel sheets or 

similar is exposed. The tracking of the shoulder, elbow and hand to replicate a particular geometry with the 

robotic manipulator using convolutional networks by regions, to know its spatial location and match it with 

that of the robot, thus proposing the network architecture and the tracking method. Networks by regions such 

as the Faster region-based convolutional neural network (R-CNN) [17] are used for object classification and 

localization, with applications such as road safety [18], object collection by robots [19], among others [20]. 

This allows the use of these networks for tracking objects in complex environments where they need to be 

located. 

The following is the development of an application focused on recognizing the position of a user's 

arm in real time, by means of an red, green and blue (RGB) supervisory camera and CNN-based pattern 

recognition methods. The objective is to generate a tracking system in order to move a virtual robotic 

manipulator responsible for mimicking the movements of the user, and trace the path of its end effector as if it 

were a cutting tool. This algorithm presents an innovative method of recognizing and tracking the movement 

of the human upper limb, by using Fast R-CNN to extract relevant sections of the arm such as the shoulder, 

elbow, wrist and fingers, and from their relative positions, control the rotation angles of each joint of the robot 

to achieve the desired displacement, in addition to estimating the missing points in the detection of the network 

to solve its low percentage of accuracy. 

The article is divided into five sections: in the first section, a brief introduction to human movement 

imitation systems, the use of CNNs and their different variations and applications is given. In the second 

section, the operation of the algorithm from the first contact of the user with the interface to the completion of 

the program with the fully replicated stroke is explained. In the third section, the architecture of the Fast  

R-CNN trained for feature extraction is presented. 

 

 

2. METHOD  

Next, the methodology that allows obtaining the algorithm of imitation of movements of the human 

upper limb, whose purpose is to replicate the actual position of the arm during a video shot, and to generate 

strokes with the final effector, simulating a cutting tool, is presented. The developed algorithm is responsible 

for detecting and tracking the location of the relevant regions of the arm, such as the shoulder, elbow, wrist 

and fingertips. For this purpose, Fast R-CNN and RGB supervising camera are used, in order to extract a 

relationship of angles between each of the regions found and thus extract the degrees of rotation of each joint 

of a virtual robot to generate the imitation of the movement.  

Simultaneously, the end effector of the robot generates a series of strokes during its displacement, 

which represent the cut made by a tool that would be located at its far end. The sequence of operation of the 

algorithm is shown in the diagram in Figure 1, where each step was demarcated with numbers from 0 to 4 and 

different functions were used for each of the tasks required by the program, which are explained in each of the 

following stages. The program interface is presented in Figure 2.  

 

2.1.  Step 0: Initialization of variables 

The development required the use of an RGB camera to capture the working environment and the 

input image was resized from 480x640 pixels to 320x427 pixels, in order to speed up the arm position detection 

process by reducing the number of pixels to be evaluated. To generate the Fast R-CNN training database, the 

elements of the working environment were varied and the bare arm was captured from the shoulder to the 

fingertips, as the example shown in Figure 3, where it is possible to observe the ROIs marked on each section 

of the arm (shoulder, elbow, wrist, fingers). As shown in Figure 3, the arm must always enter from the right 

side of the image, and the hand must have its fingers fully extended in order to detect the fingers (Fingers).  

 

 

 
 

Figure 1. Algorithm flowchart 
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Figure 2. Real and virtual position of the arm within the interface (GUI) 

 

 

 
 

Figure 3. Arm capture with labels shoulder (blue), elbow (yellow), wrist (green), and fingers (red) 

 

 

The first step of the algorithm consists of initializing the variables to be used throughout the program, 

which are listed in Table 1, where their function, name and initialization value are mentioned, with timeL being 

the completion time entered by the user in the graphical interface. Both the length of the links (L) and the 

angles of the robot (Q) were taken in order from the point anchored to the ground (equivalent to shoulder in 

Figure 3), to the end effector (equivalent to fingers in Figure 3). The values of L were taken as an average of 

the lengths of an adult arm as measured experimentally with different test subjects. In addition to the variables 

mentioned in Table 1, the camera, the virtual environment, and the Fast R-CNN trained for the algorithm 

(called detector) are initialized. 

 

 

Table 1. Varibale initialization 
Variable Funtion Value 

L Length of the links of the virtual manipulator [L(1) L(2) L(3)] (meters) [0.36  0.3  0.2] 

Q Angles of the joints of the virtual manipulator [Q(1) Q(2) Q(3)] (radians) [0  0  0] 

CountTime Timer to determine the end of the program (seconds) 0 

timeL Time limit for program completion User-defined 

ite Iterator for plotting the trace generated by the robot 1 

numN Number of intermediate points between an end effector point and the next one 4 

P Array containing the position of the end effector at each detection [P(ite,1) P(ite,2) P(ite,3)] -- 

boxes Detection frames on the input image [x y width height] (pixels) -- 

[xc yc] Geometric center of the boxes -- 

Dim Input image dimensions [row column]. (pixels) [320 427] 
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2.2.  Step 1: Wait for the arm 

During the process of detection and tracking of the upper limb, the sections found and/or estimated 

are plotted in "User's Arm", as shown in Figure 4 (where each color corresponds to the labels in Figure 3), in 

order to give feedback to the user about the recognition process, and the current location of the arm. 

Subsequently, the angles for the movement of the virtual robot are calculated using the "ArmAngles", which 

is explained below. The direct kinematics of the manipulator is used to obtain the position of the end effector 

according to the angles found, storing in the matrix P(ite,:) that point. Finally, ite is increased by one (in each 

iteration) and Step 3 is executed. 

 

 

 
 

Figure 4. Detection of arm sections 

 

 

2.3.  Step 2: Obtaining angles 

In the second step, the detector is used to obtain the arm sections in each iteration of the "while" of 

Figure 1 and the functions "uniqBoxes" and "AngulosBrazzo" are applied to select the detection boxes with 

the highest percentage of confidence in case of detecting more than one element per category, and to convert 

the inclination angles of the fingers, wrist, elbow and shoulder points, generated on the image, into rotation 

angles for the joints of the manipulator. The detector receives as input the image captured by the camera and 

generates as output the classification of the sections (labels), the percentage of confidence with which each 

element was classified (scores) and the detection boxes generated on the image, where the arm sections (boxes) 

were found. The "uniqBoxes" function evaluates the number of detection boxes generated per category, and if 

more than one is found, it compares the scores of these boxes and selects the one with the highest percentage. 

A human centered motion detection (HCMD) matrix is calculated to store the coordinates of the 

geometric center of the detection boxes of each category, where each row of the matrix contains the positions 

[xc yc] of the shoulder, elbow, wrist, and fingers sections, in that order, each section being a different row, 

numbered from 1 to 4. The coordinates [xc yc] are obtained as shown in (1) and (2), yc being the vertical 

component and xc the horizontal one. Each row of boxes is composed of the elements previously indicated in 

Table 1, and as in HCMD, its rows correspond to each of the boxes detected in the classification categories. 

 

𝑥𝑐 = 𝑏𝑜𝑥𝑒𝑠(: ,1) −
𝑏𝑜𝑥𝑒𝑠(:,3)

2
 (1) 

 

𝑦𝑐 = 𝑏𝑜𝑥𝑒𝑠(: ,2) +
𝑏𝑜𝑥𝑒𝑠(:,4)

2
 (2) 

 

The function "EstimatedAngles" seeks to estimate the angle of rotation of the point whose coordinates 

of the neighboring sections are known, e.g., the case where the shoulder and wrist were detected, but the elbow 

was not (PC1, PC2 and Pe for Figure 5, respectively). For which, it is required to know the coordinates of the 

neighboring points and the anterior position of the missing point (PCa1 or PCa2 in Figure 5). With this 

information, a triangle relation is made as shown in Figure 5, where the dimensions of each robot link in pixels 

(Lm calculated in (3) assuming that the arm spans the entire length Dim(2) of the image) are known and, 

therefore, the internal angles of the triangle can be known, using the cosine theorem. 
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Figure 5. Ratio of triangles applying the cosine theorem 

 

 

[
𝐿𝑚(1)

𝐿𝑚(2)

𝐿𝑚(3)
] = [

𝐿(1)

𝐿(2)

𝐿(3)
] ∗

𝐷𝑖𝑚(2)

𝐿(1)+𝐿(2)+𝐿(3)
 (3) 

 

Where qd is the angle between the vertical and the line generated between the points PC1=[PC1x PC1y] and 

PC2=[PC2x PC2y], called d, which can be known by applying the distance equation between two points (4). 

Pe is the point to be estimated, PCa1 or PCa2 is the previous position of the point to be estimated, which is 

known, Lm are the lengths of the robot links in pixels (Lm(1) and Lm(2) for the case in which the elbow is 

estimated, Lm(2) and Lm(3) in case of estimating the wrist) and β is the angle between d and Lm(1), which 

will allow estimating the first angle of the q vector. 

 

 𝑑 = √(𝑃𝐶1𝑥 − 𝑃𝐶2𝑥)2 + (𝑃𝐶1𝑦 − 𝑃𝐶2𝑦)2 (4) 

 

Calculate β with the cosine theorem as shown in (5), and estimate the angle between Pe and PC1  

(qe1 and qe2) as shown in (6) and (7), where qe1 or qe2 is selected as the estimated angle, according to its 

difference with respect to the previous angle for that link, choosing the one that is closer. 

 

𝛽 = cos−1 (
𝐿𝑚(1)2+𝑑2−𝐿𝑚(2)2

2∗𝐿𝑚(1)∗𝑑
) (5) 

 

𝑞𝑒1 = 𝑞𝑑 − 𝛽 (6) 

 

𝑞𝑒2 = 𝑞𝑑 + 𝛽 (7) 

 

After estimating the first angle (qe), we proceed to obtain the estimated coordinates of the missing point (Pe) 

using (8), where h is 1 for the case in which the elbow is estimated, and 2 for estimating the wrist. In (8) what 

is done is to take the triangle formed by Lm(h), the vertical and a horizontal passing through Pe and the vertical, 

and calculate its two legs, in order to add them to the current position of point PC1 and thus obtain Pe. Once 

the estimated coordinates of the missing point are known, Pe is stored in HCMD(h+1,:), converting the 

unknown point into an estimated point. 

 

𝑃𝑒 = [
𝑦𝑒

𝑥𝑒
] = [

𝑃𝐶1𝑦 + 𝐿𝑚(ℎ) ∗ cos(𝑞𝑒)

𝑃𝐶1𝑥 − 𝐿𝑚(ℎ) ∗ sin(𝑞𝑒)
] (8) 

 

In order to subtract the angles of arm inclination, is calculated to q(1) (angle between L(1) and the 

vertical) to obtain the first estimated angle. After q(1), the estimated position of elbow is calculated using (9), 

where a rotation of elbow, q(1) degrees with respect to shoulder is made, taking as initial position of elbow a 

point just above shoulder, assuming that the distance both is Lm(1), as shown in (10), being RotZ the rotation 

matrix with respect to Z in (11), in HCMD matrix. 

 

𝐻𝐶𝑀𝐷(2, : ) = 𝑅𝑜𝑡𝑍(𝑞(1)) ∗ (𝐻𝐶𝑀𝐷𝑒(2, : ) − 𝐻𝐶𝑀𝐷(1, : )) + 𝐻𝐶𝑀𝐷(1, : ) (9) 

 

𝐻𝐶𝑀𝐷𝑒(2, : ) = [𝐻𝐶𝑀𝐷(1,1), 𝐻𝐶𝑀𝐷(1,2) + 𝐿𝑚(1)] (10) 
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𝑅𝑜𝑡𝑍(𝑞(1)) = [
cos 𝑞(1) − sin 𝑞(1)
sin 𝑞(1) cos 𝑞(1)

] (11) 

 

After obtaining and estimating the largest number of arm sections, the position points HCMD(i,:) and 

HCMD(i+1,:), being i the iterator of a for from one to three, are used to calculate the tilt angle of each pair of 

points using the tangent as shown in (12), where all angles stored in q were taken with respect to the vertical. 

Once the angles are obtained (either calculated or estimated), they are adjusted to be taken with respect to the 

robot's coordinate axis, where q(1) is taken with respect to the vertical, q(2) with respect to q(1), and q(3) with 

respect to q(2), using (13) through (15), forming the vector Q with the angles needed to mimic the motion of 

the human arm in the virtual environment. Finally, a noise filter was added to avoid abrupt changes in the 

position of the virtual arm between each iteration, denying its movement in cases where the variation of the 

angles between the previous and the current iteration is greater than 15º, whose value was experimentally 

selected to ensure smooth movements and avoid erroneous detections altering the polygonal trace. 

 

𝑞(𝑖) = tan (
𝐻𝐶𝑀𝐷(𝑖+1,2)−𝐻𝐶𝑀𝐷(𝑖,2)

𝐻𝐶𝑀𝐷(𝑖+1,1)−𝐻𝐶𝑀𝐷(𝑖,1)
) (12) 

 

𝑄(1) = 𝑞(1) (13) 

 

𝑄(2) = 𝑞(2) − 𝑄(1) (14) 

 

𝑄(3) = 𝑞(3) − 𝑄(1) − 𝑄(2) (15) 

 

2.4.  Step 3: Draw stroke 

To draw the cut line made by the virtual arm with the end effector, straight lines were drawn between 

each pair of points of the P matrix and the start and end points of the trajectory were changed to green and red, 

as shows Figure 6(a). The first joint, anchored to the ground, represents the shoulder, the second the elbow and 

the third the wrist, with the final effector being the user's fingertips. The drawing is performed during each 

iteration, allowing the user to observe the cutting process as he/she moves the arm. 

To prevent the number of points drawn in "Virtual robot arm" from altering the execution time of the 

algorithm, the cutting image was refreshed every 100 points, and the complete stroke was drawn at the end of 

the program. The Q angles are sent directly to the robot's joints to move it around the environment, no matter 

which arm of the user is being recognized, and if any of the arm sections are not detected, the missing angle is 

replaced by the angle of the previous iteration. 

A Fast R-CNN type network was used for the detection and classification of the arm sections: 

shoulder, elbow, wrist, and fingers, which was trained with a total of 4900 training images, for 250 epochs, a 

MiniBatchSize of 49, an input image of 320x427 pixels and detection frames of dimensions 40x40 pixels. An 

initial acquisition of 700 training images, and 100 test images were made, where the user's gender, arm position, 

height relative to the camera, and working environment were varied, and then the images were augmented with 

the Data Augmentation program from [21], altering the light intensity, colors, and adding noise to the image. 

The architecture for the network CNN [22] is presented in section 3 (Network 1), where small and 

square filters were used to extract the details of each section of the arm, and to differentiate each category by 

aspects such as the fingers of the hand, the change of area at the wrist between the hand and the arm, the folds 

of the elbow, and the contact of the shoulder with the clothing. The Fast R-CNN used (Arm_FastRCNN) 

achieved 60.2% accuracy for a total of 700 test images. Figure 6(b) shows an example of detection and 

classification of the human upper limb where it is possible to observe the detection of each of the sections of 

the arm, and the manipulator's imitation of the recognized position, in addition to the cut trace generated from 

the previous position to the current one. 

 

2.5.  Step 4: Calculation of time 

In each iteration of the "while" in Figure 1, it is evaluated whether the arm is recognized or not, using 

a conditional that counts the number of sections detected by the detector, where a count of the time that the 

application has been executed is started, in case no section is found. If the arm is not detected within the 

working area, the time that has elapsed from the capture of the environment to the detection of the upper limb 

is stored in the variable CountTime and is added to the following iterations until a section is detected, in which 

case, CountTime is equaled to zero and steps 2 and 3 are executed. This conditional is only executed after the 

first detection of the arm (Step 1).  
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(a) (b) 

 

Figure 6. Stroke test (a) stroke example and (b) arm tracking for stroke 

 
 

3. RESULTS AND DISCUSSION  

The algorithm was tested with the realization of 12 polygons as shown in Figure 7, where the accuracy 

of the stroke was evaluated based on the closure of the drawing and the number of lines that remained outside 

the polygon, as shown in Table 2, where "Closure" represents the percentage of closure of the polygon, being 

0% completely open (a straight line) and 100% completely closed. "Noise" represents the percentage of lines 

that remained outside the polygon and do not belong to the figure, obtained with respect to the dimensions of 

the polygon (corresponding to 100%) and without considering the start and end lines of the stroke. "Accurate 

closure" represents the distance between the end point and the initial point of the figure, 100% being completely 

together, and 0% being the drawing of a completely straight line between both points. The "Average Closure" 

was obtained as the average between the results of "Closure" and "Accurate Closure", and the "Stroke 

Accuracy" was calculated by subtracting the average noise percentage from the "Average Closure". 

 
 

 
 

Figure 7. Polygons made with the program 

 
 

Table 2. Precision of the program for the realization of multipolygonal traces 
Polygon Closing (%) Noise (%) Accurate closing (%) 

1 100 0 95 

2 96 10 90 

3 100 15 90 

4 100 10 100 

5 96 0 98 

6 100 15 90 

7 100 10 50 

8 100 5 98 

9 95 5 95 

10 100 0 80 

11 100 15 98 

12 100 30 80 

Average 98.92 9.58 88.67 

Average closing 93.79 

Stroke precision 84.21 
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According to the results in Table 2, in 94% of the cases it will be possible to make a 99% figure 

closure, with a closing accuracy of 89%. 99% of the cases it will be possible to close the figure, with a closing 

accuracy of 89%. Additionally, in 84% of the cases it will be possible to draw a polygon without noise. noise, 

and in case of having noise, it will be less than 10%. On the other hand, the percentage of accuracy of imitation 

of upper limb movements was calculated, based on the percentage the time during which the position of the 

virtual arm resembles that of the upper limb. the virtual arm position resembles the real one by more than 90%. 

For this purpose, five polygons were 5 polygons were performed, two with the right arm, two with the left arm 

and one with both arms. the right arm, two with the left arm and one with both arms, obtaining the results 

shown in Table 3, where all time values are in seconds. time values are in seconds. The "Imitation percentage" 

was obtained by dividing the "Successful imitation time" by the "Total imitation time" and multiplying it by 

100%, and the "Average" is the average percentage for the 5 cases presented. The "Total Imitation Time" was 

started counting from the first detection of the 4 arm sections, until the beginning of the count for the end of 

the program. 

 

 

Table 3. Program accuracy for the imitation of human upper limb movements 
Test arm Total imitation 

time 

Successful 

imitation time 

Percentage of 

imitation (%) 

Average 

Right 31 27 87.10 90.39 

Right 2 20 20 100.00 

Left 30 28 93.33 

Left 2 24 21 87.50 

Both 25 21 84.00 

 

 
In all tests, the virtual arm followed the real one with very small differences in position, determining 

as a not accurate imitation the positions in which 2 or more sections of the arm were not detected and estimated 

for more than half a second, which were the only situations in which a difference in the imitation was 

appreciated. As can be seen in Table 3, the program achieved 90.39% accuracy in the imitation of the 

movements of the human upper limb during the realization of a multipolygonal figure, thanks to the estimation 

of undetected points, which made up for the low percentage of accuracy of the Fast R-CNN. 

Next, a comparison between three different R-CNN architectures trained for the recognition of arm 

parts is presented, whose results obtained by confusion matrices and recall Vs precision plots were used to select 

the final network architecture. All networks were trained for 250 epochs with a MiniBatchSize of 49, which was 

selected as higher values increased training time per epoch and reduced accuracy. Figures 8(a) to 8(c) shows the 

confusion matrices [23]–[25] (where 1 is shoulder, 2 is elbow, 3 is wrist, and 4 is fingers) for the networks 

trained with the architectures in Table 4. Where the first network is an R-CNN as shown in Figure 8(a) 

Arm_RCNN and the second ones are Fast R-CNN as shown in Figure 8(b), which presented a lower detection 

time than the R-CNN with better detection results (Thrid network Figure 8(c)), reason why it was decided to 

use a Fast R-CNN for the application. 

 

 

   
(a) (b) (c) 

 

Figure 8. Confusion matrix (a) red arm_RCNN, (b) red arm_FastRCNN, and (c) red arm_FastRCNN 
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Table 4 present the architectures of the trained networks [26], where we tried to vary the size of the 

filters, the order of the layers and the depth of the networks. For all cases, the dimensions of the detection frame 

were 40x40 pixels, since this is the minimum size of the labels generated on the training images. Where C 

corresponds to a convolution layer, R to the rectified linear units, B to a batch normalization, MAXP to one of 

Maxpooling, FC to a fully connected, DROP to a dropout, and SOFT to a softmax. 

 

 

Table 4. CNN architectures 
NETWORK 1 NETWORK 2 NETWORK 3 

LAYERS 
Filter 

Size 
Stride 

Number  

Filters 
LAYERS 

Filter 

Size 
Stride 

Number  

Filters 
LAYERS 

Filter 

Size 
Stride 

Number  

Filters 

C+B+R 6x6 1 16 C+B+R 6x6 1 16 C+B+R 3x3 1 16 

C+B+R 5x5 1 64 C+B+R 5x5 1 64 MAXP 2x2 2 -- 

C+B+R 4x4 1 128 MAXP 3x3 2 -- C+B+R 3x3 1 256 

MAXP 3x3 2 -- C+B+R 4x4 1 128 MAXP 3x3 2 -- 

C+B+R 3x3 1 256 C+B+R 3x3 1 256 C+B+R 3x3 1 512 

C+B+R 3x3 1 512          

FC1+RELU+DROP 

FC2+RELU+DROP 

FC3+SOFT 

 

 

Observing that none of the networks exceeded 61%, the network with the highest percentage was 

taken and trained for an additional 200 epochs, however, its accuracy dropped to 59.5%, with no noticeable 

improvement in frame detection percentage. We tried to train that same network with a larger MiniBatchSize, 

and with a smaller one, obtaining percentages of 43% and 43.1%, respectively (Arm_FastRCNN_3 being the 

network with 43% accuracy). To verify that the percentage reduction was not due to over-training, the new 

trained networks were tested with the training database, obtaining about 44% accuracy, which allows us to 

deduce that the network did not memorize. 

Due to these results, it was decided to evaluate the activations [27] of the trained networks to observe 

the quality of the information extracted by each of them and from there determine the structure required for the 

final network. The activations showed that these architectures did not manage to focus on learning the arm, but 

captured other types of features such as the wood, the chair and the body, while the Arm_FastRCNN, focused 

on the arm and part of the background. For any of the trained networks, the most difficult section of the arm to 

recognize is the elbow, due to the multiple positions it can adopt, from fully stretched to tucked towards the 

chest, in addition to the upward or downward tilt (with respect to the ground), which can occur during the 

movement of the arm. Similarly, the displacement of Wrist and its rotation throughout the image also led to 

multiple representations, some of them similar to other parts of the arm such as Elbow. 

Due to these detection difficulties, the decision was made to make the process of "Point Estimation" 

as a Tracking system for the algorithm, in order to keep track of as many parts of the arm as possible for a 

robot teleoperation closer to the real one, over the lack of information generated by the network. Assuming 

that the point estimation conditionals make up for the low detection of elbow, the confusion matrix of 

Arm_FastRCNN was calculated for the remaining 3 sections of the arm, where the accuracy rose to 66.3%. 

 

 

4. CONCLUSION 

The tracking system (point estimation) implemented in the program, allowed reaching a percentage 

of recognition and replication of movements of the human upper limb of up to 90% accuracy, leading the 

program to achieve more than 98% of closure in the multipolygonal figures, with a percentage of noise of less 

than 10%, despite using a Fast R-CNN with only 60% accuracy. Concluding that the action of network 

recognition can be strengthened within the application. The wide variation of positions that the elbow can adopt 

throughout the application, and the high degree of similarity between the different sections of the arm and its 

multiple positions (both for the right and left arm), generated difficulties in the training of the network, due to 

the demanding need not to confuse the sections with each other, nor with the background, and to achieve an 

accuracy in the detection frames that would allow the position of the virtual arm to be similar to the real one. 

Due to these complications, it was preferred to select a network with an accuracy of 60% instead of another 

with 72%, because of the accuracy of the Arm_FastRCNN in the generation of the detection frames for each 

category, where a smaller number of frames were recognized, but closer to what was expected. The use of 

larger input images than those used in the training database for a Fast R-CNN, may increase its accuracy in the 

classification of the network categories, however, it does not mean that it increases in the same way the 

accuracy of the detection frames, nor the overall performance of the program performed for the replication of 
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traces and imitation of human upper limb, so it is essential, for this type of applications, to evaluate both the 

accuracy of the network and the accuracy in the detection of each of its categories. 
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