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Green hydrogen is a sustainable and clean energy source, for this purpose, it
conducts the global energy transition. The integration of artificial
intelligence (Al), especially machine learning (ML) and deep learning (DL)
with the process of green hydrogen production is essential in enhancing its
production. This literature review studies in detail the intersection between
Al and green hydrogen. Firstly, it concentrates on ML and DL algorithms
used in forecasting green hydrogen production. Secondly, it presents an
analysis of the studies released from 2021 to March 2024. Finally, the focus
is on the results realized by the ML and DL algorithms proposed by the
studies reviewed. This study provides a summary that explains the trends
and methods used, as well as highlights the gaps and the opportunities in the
field of Al and green hydrogen production. This liternature review presents a
solid foundation for future research initiatives in this field.
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1. INTRODUCTION

Renewable energy sources such as solar energy, wind energy, and others are becoming an important
option in the energy sector [1], the process of producing green hydrogen starts with these sources that
generate green electricity. Green hydrogen become an alternative to traditional fossil fuels due to the cleaner
process of producing energy. The advantage of green hydrogen is that when it's used, it only produces water
as a byproduct, unlike fossil fuels that produce dangerous gas emission [2], this quality makes it as an
important element to build greener and sustainable future. Another important aspect is that green hydrogen
can be stored for long periods with little energy loss [3] makes it a long-term energy solution.

Producing green hydrogen with electricity, especially using renewable energy sources, is a greener
choice compared to old ways of making hydrogen. This fits with worldwide goals to use less fossil fuels and
protect the environment. A great use of green hydrogen is to power electric cars [4], which are cleaner and
more efficient than traditional vehicles. Other uses include power generation, heating, and various other
applications [5]. To produce green hydrogen, the following three steps are essential as described in Figure 1.
Renewable energy: the process begins with the generation of electricity from renewable energy sources [6],
[7] for example, solar panels [8], wind turbines [9], or hydroelectric plants [10]. The electricity needs to
come from renewable energy sources to confirm that hydrogen production is sustainable and does not emit
greenhouse gases. Electrolysis process [11]-[14]: electrolysis involves splitting water (H.O) into its basic
components, hydrogen (H2) and oxygen (O2). This is achieved by applying an electrical current to water that
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has an electrolyte added to it, which helps in the conduction of electricity. The hydrogen gas collects at the
cathode (the negative electrode), and oxygen gas collects at the anode (the positive electrode). Green
hydrogen output: the result is green hydrogen [15], [16] that can be used in various applications [5].

However, the passage to universal use of green hydrogen comes with challenges. Key issues include
the unpredictability of weather, varying conditions across different areas, and the complexity of modeling
energy systems [17]. To reduce these challenges and make green hydrogen more practical, we need to
prepare forecasts in advance. In recent years, artificial intelligence (Al), particularly machine learning (ML),
and deep learning (DL), has emerged as a tool in addressing these challenges within the renewable energy
sector. ML and DL models are adept at processing and learning from vast datasets, including time series,
meteorological, and geographical data. This capability is crucial for developing predictive models for green
hydrogen production. The novelty of this work lies in its comprehensive presentation of a state-of-art for
future research on forecasting green hydrogen production. By synthesizing current methodologies and trends
in the field of ML and DL. We didn’t find any literature review papers specifically addressing forecasting
green hydrogen production, highlighting the uniqueness and importance of our study in setting the
groundwork for future investigations in this area.

The structure of this paper is as follows: section 2 explores in detail statistical methods, ML, and DL
algorithms, and performance metrics that are commonly used in the field of forecasting green hydrogen
production. Section 3 presents the methodology of our survey, detailing the strategies and criteria employed
for selecting and analyzing relevant and comprehensive articles related to the subject. Section 4 combines
results and discussions for a clearer understanding. The paper concludes by summarizing the main findings
and implications derived from this survey.

- il

Figure 1. Green hydrogen production pipeline

2. BACKGROUND
2.1. Machine learning, deep learning, and statistical methods in hydrogen production forecasting

This section examines the statistical methods, ML and DL models used in the papers reviewed in
section 3. Table 1 displays the statistical methods. Table 2 outlines the ML and DL models.

Table 1. Statistical methods used in the selected studies

Ref Statistical method Short description
[18] Arithmetic optimization An innovative optimization technique inspired by fundamental arithmetic
algorithm (AOA) operations: addition, subtraction, multiplication, and division. It optimizes model
hyperparameters, enhances feature selection, and boosts the overall algorithm
performance.

[19],[20] Complete ensemble empirical A sophisticated signal processing technique that builds upon the empirical mode
mode decomposition with decomposition (EMD) method. It decomposes complex signals into simpler,
adaptive noise (CEEMDAN)  constituent components known as intrinsic mode functions (IMFs). This method is
especially valuable for feature extraction and noise reduction in time series data. By
breaking down signals into their simpler components, CEEMDAN enables
algorithms to more effectively identify underlying patterns and trends, thereby
enhancing predictive accuracy.

[21],[22] Al-Biruni earth radius (BER) A historical method was created by the Persian scholar Al-Biruni to determine the
Earth's radius. This innovative approach involves observing the horizon from a high
vantage point and applying geometric principles and trigonometry to estimate the
Earth's curvature and, subsequently, its radius.

[23], [24] Particle swarm optimization ~ An optimization technique inspired by the social behavior of birds and fish. It

(PSO) optimizes model hyperparameters, enhances feature selection, and improves overall
algorithm performance. This is achieved by simulating the collective movement of a
group of points, referred to as particles, through the solution space. The direction of
each particle is adjusted based on both individual discoveries and the group's
collective findings of optimal solutions.
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Table 2. ML and DL models used in the selected studies

Short description

886 )
Ref ML/DL model
[25}-[27] Extreme learning machine (ELM)
[28], [29] Convolutional neural network (CNN)
[30], [31] Recurrent neural network (RNN)
[30], [32] Long short-term memory (LSTM)
[33] Gated recurrent unit (GRU)
[34] Categorical boosting (CatBoost)
[35], [36] Support vector machine (SVM)
[37] Prophet
[38], [39] Linear regression (LR)
[40] Seasonal auto regressive integrated moving
average exogenous (SARIMAX)
[41], [42] Stochastic gradient descent regression

(SGDR)

A feedforward neural network characterized by the presence of one
hidden layer with randomly allocated weights offers substantial
benefits, including accelerated learning speeds and simplified
implementation.

A neural network optimized, primarily designed to process and
interpret data with a grid-like topology. CNNs can handle time-series
data for forecasting and anomaly detection in various fields like
weather prediction.

A type of neural network designed for sequential data, such as time-
series data. It’s characterized by its ability to maintain an internal
memory of previous inputs in a sequence, allowing it to capture
temporal dependencies and context in data.

An advanced version of RNNSs, specialized in remembering
information for extended periods. It’s highly effective in complex
sequence prediction tasks like time series analysis, where long-term
context is crucial.

A type of RNN that effectively captures dependencies in sequences,
with a simpler structure than LSTM, improving efficiency.

A ML algorithm optimized for supervised learning tasks. It’s designed
to provide high accuracy while requiring minimal data preprocessing
and parameter tuning.

A ML algorithm is used for classification and regression. It works by
finding the hyperplane, that separates data points by the largest margin
possible.

A forecasting tool designed for handling time series data. It’s
particularly effective for data with strong seasonal effects and several
seasons of historical data. It works well with daily observations and
can handle missing data and trend changes.

A ML algorithm is used in regression problems. It models the
relationship between a dependent variable and independent variables.
An advanced statistical model used for forecasting time series data.
SARIMAX extends the ARIMA model by incorporating seasonal
trends and external (exogenous) variables, making it highly effective
for complex time series with seasonal patterns.

A ML algorithm is used for regression tasks. It employs the SGD
optimization method, making it efficient for large datasets.

2.2. Measurements of forecasting performance

Performance measurements consist of a variety of statistical tools and methodologies employed to
evaluate and quantify the effectiveness of a model [43]. Table 3 illustrates the performance metrics used in
selected research studies, detailing the metrics, their formulas, and the components involved in each formula.
This helps in directly comparing the quantitative aspects of different regression models.

Table 3. Performance metrics used in the selected studies
Formula

Metric Components

N is the number of observations.
y; is the actual value.

¥, is the predicted value.

¥; the mean of the actual values.

Mean absolute error (MAE)

N
1 .
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Mean squared error (MSE)

Root mean squared error (RMSE)
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2.3. Forecasting horizons

Forecasting horizons refer to the time periods for which predictions are made. The accuracy of ML
and DL algorithms in predicting green hydrogen production from renewable energy sources is dependent on
the time horizon of the forecasts [44]. Table 4 presents the categories of forecasting horizons.

Table 4. Categories of forecasting horizons [44]

Type Description
Short-term few minutes or hours up to 72 hours ahead
Medium-term from around 72 hours to a few weeks ahead
Long-term from several weeks to several months or even years ahead

3. METHODOLOGY

In our study, we focused on English language papers and selected the Scopus database to find
articles, as it’s known for offering high-quality data. Scopus includes a diverse array of publications, such as
journal and conference papers, patents, and various websites in significant fields, as cited in the source [45].
Figure 2 presents the papers search process used in our literature review. We used the search terms
[(*forecasting™ OR "prediction™) AND (“green hydrogen production” OR "hydrogen production™)], and found
approximately 1019 documents, indicating significant research interest in hydrogen production. To narrow
our focus, we refined our search using [(“forecasting” OR "prediction™) AND ("green hydrogen production”
OR ("hydrogen production” AND (“renewable energies” OR "green energy™)) AND ("machine learning" OR
"deep learning™))], relevant to our review topic, and found about 25 documents. These papers were published
between 2018 and March 2024, as presented in Figure 3. For our analysis, we carefully chose articles that
specifically focused on green hydrogen production, particularly emphasizing their connection with ML and
DL algorithms. Table 5 presents the papers selected for this study.

Narrowing the search using criteria
(Morecasting” OR "prediction™) AND
("green hydrogen production” OR
("hydrogen production® AND
("Renewable energies” OR *Green
energy”)) AND ("machine learning”
OR * deep leaming"))

25 documents

®

Searching using criteria Selection of Articles on Green
(“forecasting” OR Hydrogen Production and Their
“prediction”) AND (“green Association with Machine Leaming
hydrogen production” OR and Deep Leaming Techniques
“hydrogen production®)
8 documents

1019 documents

Figure 2. Papers search process

Documents

2018 2019 2020 2021 2022 2023 2024

Year

Figure 3. Scopus indexed papers per year using the terms [("“forecasting" OR "prediction") AND ("green
hydrogen production” OR ("hydrogen production” AND (“renewable energies" OR "green energy")) AND
("machine learning” OR " deep learning™))]
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Table 5. Papers selected for review

Year Article Short description

2024 [46] The study advances the field of hydrogen production powered by wind and solar energy through the
creation of advanced DL models for weather prediction. Using FCN and CNN models, it forecasts
weather patterns essential for generating hydrogen from renewable energy sources. Leveraging data
from 25 weather stations across Latvia, the models achieve significant accuracy in predicting energy
outputs.

2024 [47] The study presents a green hydrogen production method using solar energy, optimized by ML. It
evaluates four ML models for predicting hydrogen output from a solar-powered system, with the
CatBoost model optimized by AOA showing the best accuracy.

2024 [48] The study discusses improving green hydrogen production from solar energy by addressing the
variability in solar power output, which impacts the consistent electricity supply needed for
electrolysis. The study introduces a forecasting algorithm CEEMDAN-bidirectional long short-term
memory (BiDLSTM), to predict solar-based hydrogen production potential accurately.

2024 [49] The study focused on enhancing green hydrogen production forecasting using CEEMDAN-GRU. with
the energy for electrolysis sourced from wind energy. It introduces a novel method for determining
green hydrogen production by analyzing the wind patterns across 9 selected provinces, identifying the
most suitable wind turbine power based on wind speed decomposition.

2023 [50] The study introduces a forecasting method for solar hydrogen generation using an optimized RNN
model, combining BER and PSO. This method aims to enhance the accuracy and efficiency of
predicting solar energy production, showing promising results in comparison to existing forecasting
techniques. The effectiveness of the BER-PSO-RNN algorithm is validated by statistical tests,
demonstrating its potential in optimizing the operation of sustainable energy systems.

2023 [51] This study evaluates the potential of green hydrogen production via photovoltaic-powered water
electrolysis in China. By forecasting green hydrogen production using a photovoltaic-electrolysis
system and ML methods, it finds the non-time series algorithm SVM outperforms FbProphet in
accuracy. Results show high R? values and varying RMSE across four regions, with significant daily
production potential in high radiation areas.

2022 [52] This study investigates the potential of employing wind energy for green hydrogen production in a
suburban environment. It explores the use of Al techniques, particularly LSTM, support vector
regression (SVR), and LR algorithms, to predict daily green hydrogen output based on wind data
collected at a specific site. The findings suggest that LSTM models perform best in predicting green
hydrogen production, demonstrating the feasibility of this renewable energy approach.

2021 [53] This study explores forecasting the solar hydrogen production potential in Islamabad, Pakistan, using
ML algorithms: Prophet, SARIMAX, and SGDR. Focusing on a photovoltaic-electrolytic system.
Among the three algorithms tested, Prophet was the most accurate, especially for the months
transitioning into winter.

4. RESULTS AND DISCUSSION

In this section, we elaborate on the papers selected from the previous section. Firstly, we outline the
criteria used for comparing these results as presented in Table 6. i) Models: models used in the mentioned
paper to forecast green hydrogen production; ii) Dataset: dataset used to train, test, and evaluate the proposed
model; iii) Features: inputs used to train the proposed model; iv) Targets: outputs of the proposed model;
v) Metrics: methods used to evaluate and optimize the performance of the model; and vi) Best model: the
model that delivered the best performance.

V1: wind speed, VV2: temperature, V3: wind direction, V4: precipitation, V5: atmospheric pressure,
V6: relative humidity, V7: snow depth, V8: visibilty meteorological, VV9: solar irradiance, V10: timestamp,
V11: global horizontal irradiance, V12: sunshine hours, VV13: fixed month, VV14: wind gust, V15: diffuse
horizontal irradiance, VV16: direct normal irradiance, VV17: difference between measure and calculated diffuse
horizontal irradiance. The results presented in Table 6 indicate that the studies employ two categories of
algorithms within ML and DL, hybrid models at 41.2% and standard models at 58.8%. Figure 4 illustrates the
distribution for each type of algorithm used in the studies.

An important factor is the variability of algorithms used. Neural network (NN) models are the most
used, at 52.9% of the total studies reviewed. They are followed by SVM, Prophet, and linear regression
models (LR, SGDR), each at 11.8%. CatBoost and SARIMAX are each at 5.9%. This explains that neural
network models can model complex non-linear relationships within large datasets compared to other models.
Figure 5 illustrates the usage of the models in the studies.

According to Javaid et al. [52], LSTM, SVM, and LR are used in predicting wind direction, with
LSTM outperforming SVM and LR. This underscores the potential of NN in capturing patterns over time,
demonstrating that NNs can outperform traditional ML algorithms in certain scenarios. In opposition the
study [47] combines statistical methods and standard models, specifically AOA-ELM, AOA-CNN,
AOA-GRU, and AOA-CatBoost, and demonstrates that AOA-CatBoost outperforms NN algorithms. We
conclude that it is important to select the appropriate model based on the specific characteristics and
requirements of the problem.
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Table 6. Overview of predictive models in the selected papers

Year Article Models Dataset Features Targets Metrics Best model Horizon

2024 [46] FCN,CNN Latvian open data portal in V1, V2, V3, Wind speed MSE CNN Short term
25 weather stations V4, V5, V6,

V7, V8, V10
2024 [47] AOA-ELM, Numerical simulations V1,V5,V9, Electrical power, MSE, AOA- Short term
AOA-CNN, V10 thermal power, MAE, R2- CatBoost
AOA-GRU, electrical score
AOA-CatBoost efficiency,
thermal
efficiency,
hydrogen
production
2024 [48] CEEMDAN- National portal of the V9, V10 Solar irrradiance  RMSE, CEEMDAN- Short term
BiDLSTM National Institute of Wind MAE, BiDLSTM
Energy in India R2-score
2024 [49] CEEMDAN- MERRA (Modern Era V1, V3,V5, Wind speed RMSE, CEEMDAN-  Short-term
GRU Retrospective-analysis for V10 MAPE, GRU
Research and Applications R2-score
- NASA)

2023 [50] BER-PSO-RNN Meteorological data from V2, V5, V6, Solar energy MAE, BER-PSO- Medium-
the HI-SEAS weather V9, V10 MAPE, RNN term and
station in Hawaii RMSE, Long-term

R2-score
2023 [51] SVM, Prophet  National Meteorological V2, V3, V4, Hydrogen MSE, SVM Short-tem
Information Center of V6, V10 (for production RMSE,
China Meteorological Prohpet), R2-score
Administration, rp5.ru V12, V13
weather database, Xihe (for SVM)
Energy Big Data Platform,
and others
2022 [52] LSTM, SVM, Collected in Pakistan at V1, V3, Wind speed MAE, LSTM Short-term
LR latitude 33.64° N, V10, V14 Standard
longitude 72.98° E, and deviation
elevation 500 meters
above mean sea level
2021 [53] Prophet, Custom Weather V1,V2,V3, Hydrogen MAE, Prophet Short-term
SARIMAX, Variables Dataset from V5, V6, production MSE,
SGDR Islamabad at latitude V10, V11, RMSE,
33.64 N, longitude 72.98 V15, V16, MAPE,
E, 500 meters above mean V17 R2-score

sea level

Standard Models

Figure 4. Distribution of model types

Hybrid Models

According to Cheng et al. [51], the SVM outperforms Prophet in predicting hydrogen production.
Conversely, the success of the Prophet model over SARIMAX and SGDR in forecasting hydrogen
production is demonstrated in study [53]. This highlights the potential of automated forecasting models in
effectively handling the seasonal and trend components of time series data. The studies [46], [48]-[50] used
NN to predict renewable energy targets in order to examine hydrogen production. This underscores the
effectiveness of NN in the renewable energy sector.
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In the realm of model evaluation, the R2-score is the most used, at 25%, followed by RMSE and MAE,
each at 20.8%, MSE at 16.7%, MAPE at 12.5%, and standard deviation at 4.2%. The variability indicates that
no single metric is universal. Figure 6 illustrates the distribution of performance metrics used in the studies.

NN (FCN. CNN, LSTM. GRU, AOA-GRU @ MSE
AOA-ELM, AOA-CNN. AOA-RNN,
59% CEEMDAN-BIDLSTM) @ MaE
59% SVM R2
FbProphet @ RMSE
Linear Regression (LR, SGDR) @ MAPE
S CatBoost (AOA-CatBoost) @ Standard deviation
SARIMAX
52.9%
1.8%
11.8%
Figure 5. Comparative usage of forecasting models Figure 6. Distribution of performance metrics

In the context of targeting, the studies [46], [48]-[50], [52] employed renewable energy targets to
examine hydrogen production. In opposition, the studies [47], [51], [53] directly focused on hydrogen
production targets for their investigations. This distinction demonstrates that there is a gap in research
focusing only on forecasting green hydrogen production. In the same context, the datasets used in these
studies differ in several aspects, the location of the study, the methodology used to gather the data, and the
features selected for training, validating, and testing the models.

We found that the feature V10 (timestamp) is present in all datasets [46]-[53]. This is because the
objective of the studies is to predict renewable energy targets or green hydrogen production in the future,
taking time into account. Additionally, the features V1 (wind speed), V3 (wind direction), and
V5 (atmospheric pressure) are used in five studies. Features V2 (temperature) and V6 (relative humidity) are
used in four studies. V9 (solar irradiance) is used in three studies, V4 (precipitation) is used in two studies,
and the rest of the features are used only in one study. Figure 7 present the distribution of features used in the
studies. We conclude that the important features are timestamp, wind speed, wind direction, atmospheric
pressure, temperature, relative humidity, solar irradiance, and precipitation. This leads us to research feature
selection for examining the forecasting of hydrogen production.

In the realm of forecasting horizons, studies [46]-[53] focus on short-term forecasting, while only study
[50] focuses on both medium-term and long-term forecasting. These results highlight the gap in medium-term
and long-term forecasting research. Figure 8 illustrates the distribution of forecasting horizons across the studies.

V17: Difference between measure I

N

V12: Sunshine hours

2.1%

V10; Timestamp

21.3%

V&: Visibilty metecrological

21%

V4: Precipitation

V8: Solar irradiance
6.4%

V1: Wind speed

V6: Relative humidity

V3: Wind direction

V2: Temperature

V5: Atmeospheric pressure
10.6%

Figure 7. Distribution of features
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Medium-term and Long-term

Short-term

Figure 8. Distribution of forecasting horizons across the studies

5. CONCLUSION

This literature review demonstrated the role of ML and DL in the realm of green hydrogen
production. By analyzing studies from 2021 to March 2024, we have captured recent advancements and
applications of ML and DL for forecasting green hydrogen production, as well as identified the gaps and
opportunities. The results highlighted the algorithms of ML and DL and performance metrics that are most
commonly used, the key features and forecasting horizons in the field of forecasting green hydrogen
production. For future research initiatives, it is important to carefully select algorithms based on the specific
characteristics of the study, this is crucial when focusing on neural networks, which are effective at
discovering hidden patterns in time series data. Additionally, the focus on automated forecasting models that
demonstrated potential in efficiently managing the seasonal and trend components inherent in such data.
Futhermore the importance of feature selection techniques to improve the forecasting accuracy of hydrogen
production cannot be overstated. Moreover, a significant research gap exists in medium-term and long-term
forecasting, which requires efforts to improve the methods for these time scales.
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