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 Green hydrogen is a sustainable and clean energy source, for this purpose, it 

conducts the global energy transition. The integration of artificial 

intelligence (AI), especially machine learning (ML) and deep learning (DL) 

with the process of green hydrogen production is essential in enhancing its 

production. This literature review studies in detail the intersection between 

AI and green hydrogen. Firstly, it concentrates on ML and DL algorithms 

used in forecasting green hydrogen production. Secondly, it presents an 

analysis of the studies released from 2021 to March 2024. Finally, the focus 

is on the results realized by the ML and DL algorithms proposed by the 

studies reviewed. This study provides a summary that explains the trends 

and methods used, as well as highlights the gaps and the opportunities in the 

field of AI and green hydrogen production. This liternature review presents a 

solid foundation for future research initiatives in this field. 
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1. INTRODUCTION 

Renewable energy sources such as solar energy, wind energy, and others are becoming an important 

option in the energy sector [1], the process of producing green hydrogen starts with these sources that 

generate green electricity. Green hydrogen become an alternative to traditional fossil fuels due to the cleaner 

process of producing energy. The advantage of green hydrogen is that when it's used, it only produces water 

as a byproduct, unlike fossil fuels that produce dangerous gas emission [2], this quality makes it as an 

important element to build greener and sustainable future. Another important aspect is that green hydrogen 

can be stored for long periods with little energy loss [3] makes it a long-term energy solution. 

Producing green hydrogen with electricity, especially using renewable energy sources, is a greener 

choice compared to old ways of making hydrogen. This fits with worldwide goals to use less fossil fuels and 

protect the environment. A great use of green hydrogen is to power electric cars [4], which are cleaner and 

more efficient than traditional vehicles. Other uses include power generation, heating, and various other 

applications [5]. To produce green hydrogen, the following three steps are essential as described in Figure 1. 

Renewable energy: the process begins with the generation of electricity from renewable energy sources [6], 

[7] for example, solar panels [8], wind turbines [9], or hydroelectric plants [10]. The electricity needs to 

come from renewable energy sources to confirm that hydrogen production is sustainable and does not emit 

greenhouse gases. Electrolysis process [11]–[14]: electrolysis involves splitting water (H2O) into its basic 

components, hydrogen (H2) and oxygen (O2). This is achieved by applying an electrical current to water that 

https://creativecommons.org/licenses/by-sa/4.0/
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has an electrolyte added to it, which helps in the conduction of electricity. The hydrogen gas collects at the 

cathode (the negative electrode), and oxygen gas collects at the anode (the positive electrode). Green 

hydrogen output: the result is green hydrogen [15], [16] that can be used in various applications [5]. 

However, the passage to universal use of green hydrogen comes with challenges. Key issues include 

the unpredictability of weather, varying conditions across different areas, and the complexity of modeling 

energy systems [17]. To reduce these challenges and make green hydrogen more practical, we need to 

prepare forecasts in advance. In recent years, artificial intelligence (AI), particularly machine learning (ML), 

and deep learning (DL), has emerged as a tool in addressing these challenges within the renewable energy 

sector. ML and DL models are adept at processing and learning from vast datasets, including time series, 

meteorological, and geographical data. This capability is crucial for developing predictive models for green 

hydrogen production. The novelty of this work lies in its comprehensive presentation of a state-of-art for 

future research on forecasting green hydrogen production. By synthesizing current methodologies and trends 

in the field of ML and DL. We didn’t find any literature review papers specifically addressing forecasting 

green hydrogen production, highlighting the uniqueness and importance of our study in setting the 

groundwork for future investigations in this area. 

The structure of this paper is as follows: section 2 explores in detail statistical methods, ML, and DL 

algorithms, and performance metrics that are commonly used in the field of forecasting green hydrogen 

production. Section 3 presents the methodology of our survey, detailing the strategies and criteria employed 

for selecting and analyzing relevant and comprehensive articles related to the subject. Section 4 combines 

results and discussions for a clearer understanding. The paper concludes by summarizing the main findings 

and implications derived from this survey. 
 

 

 
 

Figure 1. Green hydrogen production pipeline 
 

 

2. BACKGROUND 

2.1.  Machine learning, deep learning, and statistical methods in hydrogen production forecasting 

This section examines the statistical methods, ML and DL models used in the papers reviewed in 

section 3. Table 1 displays the statistical methods. Table 2 outlines the ML and DL models. 
 
 

Table 1. Statistical methods used in the selected studies 
Ref Statistical method Short description 

[18] Arithmetic optimization 

algorithm (AOA) 

An innovative optimization technique inspired by fundamental arithmetic 

operations: addition, subtraction, multiplication, and division. It optimizes model 

hyperparameters, enhances feature selection, and boosts the overall algorithm 

performance. 
[19], [20] Complete ensemble empirical 

mode decomposition with 

adaptive noise (CEEMDAN) 

A sophisticated signal processing technique that builds upon the empirical mode 

decomposition (EMD) method. It decomposes complex signals into simpler, 

constituent components known as intrinsic mode functions (IMFs). This method is 

especially valuable for feature extraction and noise reduction in time series data. By 

breaking down signals into their simpler components, CEEMDAN enables 
algorithms to more effectively identify underlying patterns and trends, thereby 

enhancing predictive accuracy. 

[21], [22] Al-Biruni earth radius (BER) A historical method was created by the Persian scholar Al-Biruni to determine the 

Earth's radius. This innovative approach involves observing the horizon from a high 

vantage point and applying geometric principles and trigonometry to estimate the 
Earth's curvature and, subsequently, its radius. 

[23], [24] Particle swarm optimization 

(PSO) 

An optimization technique inspired by the social behavior of birds and fish. It 

optimizes model hyperparameters, enhances feature selection, and improves overall 

algorithm performance. This is achieved by simulating the collective movement of a 

group of points, referred to as particles, through the solution space. The direction of 
each particle is adjusted based on both individual discoveries and the group's 

collective findings of optimal solutions. 
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Table 2. ML and DL models used in the selected studies 
Ref ML/DL model Short description 

[25]–[27] Extreme learning machine (ELM) A feedforward neural network characterized by the presence of one 

hidden layer with randomly allocated weights offers substantial 

benefits, including accelerated learning speeds and simplified 

implementation. 

[28], [29] Convolutional neural network (CNN) A neural network optimized, primarily designed to process and 
interpret data with a grid-like topology. CNNs can handle time-series 

data for forecasting and anomaly detection in various fields like 

weather prediction. 

[30], [31] Recurrent neural network (RNN) A type of neural network designed for sequential data, such as time-

series data. It’s characterized by its ability to maintain an internal 
memory of previous inputs in a sequence, allowing it to capture 

temporal dependencies and context in data. 

[30], [32] Long short-term memory (LSTM) An advanced version of RNNs, specialized in remembering 

information for extended periods. It’s highly effective in complex 

sequence prediction tasks like time series analysis, where long-term 
context is crucial. 

[33] Gated recurrent unit (GRU) A type of RNN that effectively captures dependencies in sequences, 

with a simpler structure than LSTM, improving efficiency. 

[34] Categorical boosting (CatBoost) A ML algorithm optimized for supervised learning tasks. It’s designed 

to provide high accuracy while requiring minimal data preprocessing 
and parameter tuning. 

[35], [36] Support vector machine (SVM) A ML algorithm is used for classification and regression. It works by 

finding the hyperplane, that separates data points by the largest margin 

possible. 

[37] Prophet A forecasting tool designed for handling time series data. It’s 
particularly effective for data with strong seasonal effects and several 

seasons of historical data. It works well with daily observations and 

can handle missing data and trend changes. 

[38], [39] Linear regression (LR) A ML algorithm is used in regression problems. It models the 
relationship between a dependent variable and independent variables. 

[40] Seasonal auto regressive integrated moving 

average exogenous (SARIMAX) 

An advanced statistical model used for forecasting time series data. 

SARIMAX extends the ARIMA model by incorporating seasonal 

trends and external (exogenous) variables, making it highly effective 

for complex time series with seasonal patterns. 
[41], [42] Stochastic gradient descent regression 

(SGDR) 

A ML algorithm is used for regression tasks. It employs the SGD 

optimization method, making it efficient for large datasets. 

 

 

2.2.  Measurements of forecasting performance 

Performance measurements consist of a variety of statistical tools and methodologies employed to 

evaluate and quantify the effectiveness of a model [43]. Table 3 illustrates the performance metrics used in 

selected research studies, detailing the metrics, their formulas, and the components involved in each formula. 

This helps in directly comparing the quantitative aspects of different regression models. 

 

 

Table 3. Performance metrics used in the selected studies 
Metric Formula Components 

Mean absolute error (MAE) 
1

𝑁
∑|𝑦𝑖 − 𝑦𝑖̂|

𝑁

𝑖=1

 
𝑁 is the number of observations. 

𝑦𝑖 is the actual value. 

𝑦𝑖̂ is the predicted value. 

𝑦̅𝑖 the mean of the actual values. 
Mean squared error (MSE) 

1

𝑁
∑(𝑦𝑖 − 𝑦𝑖̂)

2

𝑁

𝑖=1

 

Root mean squared error (RMSE) √
1

𝑁
∑(𝑦𝑖 − 𝑦𝑖̂)

2

𝑁

𝑖=1

 

Mean absolute percentage error (MAPE) 
100

𝑁
∑

|𝑦𝑖 − 𝑦𝑖̂|

𝑦𝑖

𝑁

𝑖=1

 

R2 score (coefficient of determination) 1 − √
∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑁

𝑖=1

∑ (𝑦𝑖 − 𝑦̅𝑖)
2𝑁

𝑖=1

 

Standard deviation √∑
1

𝑁− 1
(𝑦𝑖 − 𝑦𝑖̂)

2

𝑁

𝑖=1
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2.3.  Forecasting horizons 

Forecasting horizons refer to the time periods for which predictions are made. The accuracy of ML 

and DL algorithms in predicting green hydrogen production from renewable energy sources is dependent on 

the time horizon of the forecasts [44]. Table 4 presents the categories of forecasting horizons. 
 
 

Table 4. Categories of forecasting horizons [44] 
Type Description 

Short-term few minutes or hours up to 72 hours ahead 
Medium-term from around 72 hours to a few weeks ahead 

Long-term from several weeks to several months or even years ahead 
 
 

3. METHODOLOGY 

In our study, we focused on English language papers and selected the Scopus database to find 

articles, as it’s known for offering high-quality data. Scopus includes a diverse array of publications, such as 

journal and conference papers, patents, and various websites in significant fields, as cited in the source [45]. 

Figure 2 presents the papers search process used in our literature review. We used the search terms 

[("forecasting" OR "prediction") AND ("green hydrogen production" OR "hydrogen production")], and found 

approximately 1019 documents, indicating significant research interest in hydrogen production. To narrow 

our focus, we refined our search using [("forecasting" OR "prediction") AND ("green hydrogen production" 

OR ("hydrogen production" AND ("renewable energies" OR "green energy")) AND ("machine learning" OR 

"deep learning"))], relevant to our review topic, and found about 25 documents. These papers were published 

between 2018 and March 2024, as presented in Figure 3. For our analysis, we carefully chose articles that 

specifically focused on green hydrogen production, particularly emphasizing their connection with ML and 

DL algorithms. Table 5 presents the papers selected for this study. 
 
 

 
 

Figure 2. Papers search process 
 

 

 
 

Figure 3. Scopus indexed papers per year using the terms [("forecasting" OR "prediction") AND ("green 

hydrogen production" OR ("hydrogen production" AND ("renewable energies" OR "green energy")) AND 

("machine learning" OR " deep learning"))] 
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Table 5. Papers selected for review 
Year Article Short description 

2024 [46] The study advances the field of hydrogen production powered by wind and solar energy through the 

creation of advanced DL models for weather prediction. Using FCN and CNN models, it forecasts 

weather patterns essential for generating hydrogen from renewable energy sources. Leveraging data 

from 25 weather stations across Latvia, the models achieve significant accuracy in predicting energy 

outputs. 
2024 [47] The study presents a green hydrogen production method using solar energy, optimized by ML. It 

evaluates four ML models for predicting hydrogen output from a solar-powered system, with the 

CatBoost model optimized by AOA showing the best accuracy. 

2024 [48] The study discusses improving green hydrogen production from solar energy by addressing the 

variability in solar power output, which impacts the consistent electricity supply needed for 
electrolysis. The study introduces a forecasting algorithm CEEMDAN-bidirectional long short-term 

memory (BiDLSTM), to predict solar-based hydrogen production potential accurately. 

2024 [49] The study focused on enhancing green hydrogen production forecasting using CEEMDAN-GRU. with 

the energy for electrolysis sourced from wind energy. It introduces a novel method for determining 

green hydrogen production by analyzing the wind patterns across 9 selected provinces, identifying the 
most suitable wind turbine power based on wind speed decomposition. 

2023 [50] The study introduces a forecasting method for solar hydrogen generation using an optimized RNN 

model, combining BER and PSO. This method aims to enhance the accuracy and efficiency of 

predicting solar energy production, showing promising results in comparison to existing forecasting 

techniques. The effectiveness of the BER-PSO-RNN algorithm is validated by statistical tests, 
demonstrating its potential in optimizing the operation of sustainable energy systems. 

2023 [51] This study evaluates the potential of green hydrogen production via photovoltaic-powered water 

electrolysis in China. By forecasting green hydrogen production using a photovoltaic-electrolysis 

system and ML methods, it finds the non-time series algorithm SVM outperforms FbProphet in 

accuracy. Results show high R2 values and varying RMSE across four regions, with significant daily 
production potential in high radiation areas. 

2022 [52] This study investigates the potential of employing wind energy for green hydrogen production in a 

suburban environment. It explores the use of AI techniques, particularly LSTM, support vector 

regression (SVR), and LR algorithms, to predict daily green hydrogen output based on wind data 
collected at a specific site. The findings suggest that LSTM models perform best in predicting green 

hydrogen production, demonstrating the feasibility of this renewable energy approach. 

2021 [53] This study explores forecasting the solar hydrogen production potential in Islamabad, Pakistan, using 

ML algorithms: Prophet, SARIMAX, and SGDR. Focusing on a photovoltaic-electrolytic system. 

Among the three algorithms tested, Prophet was the most accurate, especially for the months 
transitioning into winter. 

 

 

4. RESULTS AND DISCUSSION 

In this section, we elaborate on the papers selected from the previous section. Firstly, we outline the 

criteria used for comparing these results as presented in Table 6. i) Models: models used in the mentioned 

paper to forecast green hydrogen production; ii) Dataset: dataset used to train, test, and evaluate the proposed 

model; iii) Features: inputs used to train the proposed model; iv) Targets: outputs of the proposed model;  

v) Metrics: methods used to evaluate and optimize the performance of the model; and vi) Best model: the 

model that delivered the best performance. 

V1: wind speed, V2: temperature, V3: wind direction, V4: precipitation, V5: atmospheric pressure, 

V6: relative humidity, V7: snow depth, V8: visibilty meteorological, V9: solar irradiance, V10: timestamp, 

V11: global horizontal irradiance, V12: sunshine hours, V13: fixed month, V14: wind gust, V15: diffuse 

horizontal irradiance, V16: direct normal irradiance, V17: difference between measure and calculated diffuse 

horizontal irradiance. The results presented in Table 6 indicate that the studies employ two categories of 

algorithms within ML and DL, hybrid models at 41.2% and standard models at 58.8%. Figure 4 illustrates the 

distribution for each type of algorithm used in the studies. 

An important factor is the variability of algorithms used. Neural network (NN) models are the most 

used, at 52.9% of the total studies reviewed. They are followed by SVM, Prophet, and linear regression 

models (LR, SGDR), each at 11.8%. CatBoost and SARIMAX are each at 5.9%. This explains that neural 

network models can model complex non-linear relationships within large datasets compared to other models. 

Figure 5 illustrates the usage of the models in the studies. 

According to Javaid et al. [52], LSTM, SVM, and LR are used in predicting wind direction, with 

LSTM outperforming SVM and LR. This underscores the potential of NN in capturing patterns over time, 

demonstrating that NNs can outperform traditional ML algorithms in certain scenarios. In opposition the 

study [47] combines statistical methods and standard models, specifically AOA-ELM, AOA-CNN,  

AOA-GRU, and AOA-CatBoost, and demonstrates that AOA-CatBoost outperforms NN algorithms. We 

conclude that it is important to select the appropriate model based on the specific characteristics and 

requirements of the problem. 
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Table 6. Overview of predictive models in the selected papers 
Year Article Models Dataset Features Targets Metrics Best model Horizon 

2024 [46] FCN, CNN Latvian open data portal in 

25 weather stations 

V1, V2, V3, 

V4, V5, V6, 

V7, V8, V10 

Wind speed MSE CNN Short term 

2024 [47] AOA-ELM, 

AOA-CNN, 
AOA-GRU, 

AOA-CatBoost 

Numerical simulations V1, V5, V9, 

V10 

Electrical power, 

thermal power, 
electrical 

efficiency, 

thermal 

efficiency, 

hydrogen 
production 

MSE, 

MAE, R2-
score 

AOA-

CatBoost 

Short term 

2024 [48] CEEMDAN-

BiDLSTM 

National portal of the 

National Institute of Wind 

Energy in India 

V9, V10 Solar irrradiance RMSE, 

MAE, 

R2-score 

CEEMDAN-

BiDLSTM 

Short term 

2024 [49] CEEMDAN-
GRU 

MERRA (Modern Era 
Retrospective-analysis for 

Research and Applications 

- NASA) 

V1, V3, V5, 
V10 

Wind speed RMSE, 
MAPE, 

R2-score 

CEEMDAN-
GRU 

Short-term 

2023 [50] BER-PSO-RNN Meteorological data from 

the HI-SEAS weather 
station in Hawaii 

V2, V5, V6, 

V9, V10 

Solar energy MAE, 

MAPE, 
RMSE, 

R2-score 

BER-PSO-

RNN 

Medium-

term and 
Long-term 

2023 [51] SVM, Prophet National Meteorological 

Information Center of 

China Meteorological 
Administration, rp5.ru 

weather database, Xihe 

Energy Big Data Platform, 

and others 

V2, V3, V4, 

V6, V10 (for 

Prohpet), 
V12, V13 

(for SVM) 

Hydrogen 

production 

MSE, 

RMSE, 

R2-score 

SVM Short-tem 

2022 [52] LSTM, SVM, 

LR 

Collected in Pakistan at 

latitude 33.64° N, 

longitude 72.98° E, and 

elevation 500 meters 

above mean sea level 

V1, V3, 

V10, V14 

Wind speed MAE, 

Standard 

deviation 

LSTM Short-term 

2021 [53] Prophet, 

SARIMAX, 

SGDR 

Custom Weather 

Variables Dataset from 

Islamabad at latitude 

33.64 N, longitude 72.98 

E, 500 meters above mean 
sea level 

V1, V2, V3, 

V5, V6, 

V10, V11, 

V15, V16, 

V17 

Hydrogen 

production 

MAE, 

MSE, 

RMSE, 

MAPE, 

R2-score 

Prophet Short-term 

 
 

 
 

Figure 4. Distribution of model types 
 

 

According to Cheng et al. [51], the SVM outperforms Prophet in predicting hydrogen production. 

Conversely, the success of the Prophet model over SARIMAX and SGDR in forecasting hydrogen 

production is demonstrated in study [53]. This highlights the potential of automated forecasting models in 

effectively handling the seasonal and trend components of time series data. The studies [46], [48]–[50] used 

NN to predict renewable energy targets in order to examine hydrogen production. This underscores the 

effectiveness of NN in the renewable energy sector. 
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In the realm of model evaluation, the R2-score is the most used, at 25%, followed by RMSE and MAE, 

each at 20.8%, MSE at 16.7%, MAPE at 12.5%, and standard deviation at 4.2%. The variability indicates that 

no single metric is universal. Figure 6 illustrates the distribution of performance metrics used in the studies. 

 

 

  
 

Figure 5. Comparative usage of forecasting models 

 

Figure 6. Distribution of performance metrics 

 

 

In the context of targeting, the studies [46], [48]–[50], [52] employed renewable energy targets to 

examine hydrogen production. In opposition, the studies [47], [51], [53] directly focused on hydrogen 

production targets for their investigations. This distinction demonstrates that there is a gap in research 

focusing only on forecasting green hydrogen production. In the same context, the datasets used in these 

studies differ in several aspects, the location of the study, the methodology used to gather the data, and the 

features selected for training, validating, and testing the models.  

We found that the feature V10 (timestamp) is present in all datasets [46]–[53]. This is because the 

objective of the studies is to predict renewable energy targets or green hydrogen production in the future, 

taking time into account. Additionally, the features V1 (wind speed), V3 (wind direction), and  

V5 (atmospheric pressure) are used in five studies. Features V2 (temperature) and V6 (relative humidity) are 

used in four studies. V9 (solar irradiance) is used in three studies, V4 (precipitation) is used in two studies, 

and the rest of the features are used only in one study. Figure 7 present the distribution of features used in the 

studies. We conclude that the important features are timestamp, wind speed, wind direction, atmospheric 

pressure, temperature, relative humidity, solar irradiance, and precipitation. This leads us to research feature 

selection for examining the forecasting of hydrogen production.  

In the realm of forecasting horizons, studies [46]–[53] focus on short-term forecasting, while only study 

[50] focuses on both medium-term and long-term forecasting. These results highlight the gap in medium-term 

and long-term forecasting research. Figure 8 illustrates the distribution of forecasting horizons across the studies. 

 

 

 
 

Figure 7. Distribution of features 
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Figure 8. Distribution of forecasting horizons across the studies 

 

 

5. CONCLUSION 

This literature review demonstrated the role of ML and DL in the realm of green hydrogen 

production. By analyzing studies from 2021 to March 2024, we have captured recent advancements and 

applications of ML and DL for forecasting green hydrogen production, as well as identified the gaps and 

opportunities. The results highlighted the algorithms of ML and DL and performance metrics that are most 

commonly used, the key features and forecasting horizons in the field of forecasting green hydrogen 

production. For future research initiatives, it is important to carefully select algorithms based on the specific 

characteristics of the study, this is crucial when focusing on neural networks, which are effective at 

discovering hidden patterns in time series data. Additionally, the focus on automated forecasting models that 

demonstrated potential in efficiently managing the seasonal and trend components inherent in such data. 

Futhermore the importance of feature selection techniques to improve the forecasting accuracy of hydrogen 

production cannot be overstated. Moreover, a significant research gap exists in medium-term and long-term 

forecasting, which requires efforts to improve the methods for these time scales. 
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