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 The design of a fully integrated adaptive modified complementary metal-

oxide-semiconductor (CMOS) synapse circuit is presented. By using 

multiple-gated transistor configuration in the modified CMOS synapse an 
additional branch provide control where the synaptic output current time-

constant is tuned. The effect of changing the multiple-gated transistor bias 

voltage from 0.25 to 0.45 V tunes the spiking output current exponential 

time-constant range by 200 ms as shown in simulation results. Moreover, a 
fully-integrated adaptive quadratic integrate-and-fire (QIF) CMOS neuron 

circuit is presented as well. A differential pair with variable capacitor 

integrator and a tunable schmitt trigger threshold detector circuit are 

integrated in the CMOS neuron that can be tuned varying its spiking 
frequency. The proposed adaptive quadratic integrate-and-fire (AQIF) neuron 

has the ability to adjust the spiking frequency without changing the input 

current. The simulation results show the proposed CMOS neuron circuit 

spiking frequency can be tuned from 58.4 to 312.5 Hz and its spiking period 
from 17.1 to 3.2 ms with tuning the bias voltage of variable capacitor 

integrator. Having a peak voltage Vpeak=0.95 V, a reset voltage Vreset=-0.75 V 

and a voltage threshold of 0.35 V with a membrane potential range of 1.5 V. 

The proposed CMOS neuron circuit is designed in 130 nm process with a 
supply voltage of 1.8 V and a total power dissipation of 1.8 mW. 
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1. INTRODUCTION 

In this paper, we present a fully integrated adaptive modified complementary metal-oxide-

semiconductor (CMOS) synapse circuit is presented. By using multiple-gated transistor configuration in the 

modified CMOS synapse an additional branch provide control where the synaptic output current time-

constant is tuned. The effect of changing the multiple-gated transistor bias voltage from 0.25 to 0.45 V 

increases the spiking output current exponentially by 0.5 mA and the decaying time-constant by 0.3 s as 

shown in simulation results. By tuning the decaying exponential time-constant with multiple-gated transistor 

configuration, the proposed modified CMOS synapse captures the dynamic nature of biological synapses. 

Merolla et al. [1] synapse design with feedback control achieved a tunable time-constant range is 100 ms.  

Hu et al. [2] design a memristor-based synapse with tunable time-constant range of 100 ms. Kwon et al. [3] 

synapse design with floating-gate has a 1 ms range of time-constant tuning. Tete et al. [4] synapse design 
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with varying capacitors achieved a tunable time-constant range of 10 us to 100 ms. Liu [5] design a 

memristor-based synapse with tunable time-constant range of 1 to 100 ms. Hong et al. [6] design a 

memristor-based synapse with tunable time-constant range of 100 us to 100 ms. Our proposed synapse design 

with multiple-gated transistor configuration achieved a tunable time-constant range of 200 ms compared to 

previously published work with limited tunable time-constant range to 100 ms. Moreover, a fully-integrated 

adaptive quadratic integrate-and-fire (AQIF) CMOS neuron circuit is presented as well. The proposed AQIF 

neuron has the ability to adjust the spiking frequency without changing the input current. The simulation 

results show the proposed CMOS neuron circuit spiking frequency can be tuned from 58.4 to 312.5 Hz and 

its spiking period from 17.1 to 3.2 ms with tuning the bias voltage of variable capacitor integrator. Having a 

peak voltage Vpeak=0.95 V, a reset voltage Vreset=-0.75 V and a voltage threshold of 0.35 V with a membrane 

potential range of 1.5 V. The proposed AQIF neuron has the ability to adjust the spiking frequency without 

changing the input current. The proposed CMOS neuron number of transistors is 26 designed in 130 nm 

process with a supply voltage of 1.8 V and a total power dissipation of 1.8 mW. A spiking integrate-and-fire 

CMOS neuron is a type of artificial neuron that is designed to simulate the behavior of biological neurons 

using complementary CMOS technology [7].  

The integrate-and-fire CMOS neuron circuits can be used in various applications such as neural 

network systems, neuromorphic computing [8]–[13] and brain-inspired computational systems [14]. A 

tunable spiking quadratic integrate-and-fire (QIF) neuron incorporates a quadratic function to model the non-

linear behavior of biological neurons more accurately than integrate-and-fire CMOS neuron. Neuromorphic 

circuits, including QIF CMOS neurons, have gained significant interest in the field of artificial intelligence 

and neuroscience [15]–[18]. Due to their potential for high-speed, low-power, and parallel information 

processing, that makes them more efficient compared with Von Neumann bottleneck architecture [19]–[24]. 

The QIF CMOS neurons are typically implemented using CMOS technology. The QIF CMOS neuron can be 

used in various applications, including spiking neural networks (SNNs), neuromorphic computing and 

parallel computing architectures such as brain-machine interfaces [12], [25]–[28]. By accurately modeling 

the behavior of biological neurons, the spiking integrate-and-fire neuron can enable precise control of 

assistive technologies [3], [29]–[31]. Indiveri and Horiuchi [7] implemented an integrate-and-fire CMOS 

neuron using differential pair topology achieving low power consumption. They implemented his integrate-

and-fire neuron in 800 nm CMOS process using 20 transistors. Srinivasan and Cowan [19] implemented his 

CMOS neuron using current-mode circuit topology with limited tunability capability. Qiao et al. [14] also 

designed his CMOS neuron using current-mode topology. Whereas Yu [29] implemented his neuron design 

using switch-capacitor circuit configuration. Wijekoon and Dudek [32] designed a QIF CMOS neuron in  

350 nm process using 14 transistors. Sourikopoulos et al. [33] implemented an integrate-and-fire CMOS 

neuron in 65 nm process using 10 transistors. Whereas Schaik et al. [34] designed an Izhikevich CMOS 

neuron model in 90 nm process using 17 transistors. Indiveri and Liu [35] implemented his CMOS neuron 

using transconductance amplifier topology however it does not have circuit tunable capability. Moreover, 

Indiveri and Horiuchi [7] designed his integrate-and-fire neuron with membrane potential range of 1.5 V in 

800 nm CMOS process however it does not have a tuning capability. Srinivasan and Cowan [19] designed his 

Izhikevich neuron with membrane potential range of 150 mV in 65 nm CMOS process with a frequency 

tuning range of 200 Hz. Ou and Ferreira [36] designed his Morris-Lecar neuron with membrane potential 

range of 200 mV in 180 nm CMOS process with a frequency tuning range of 290 Hz. Our proposed AQIF 

CMOS neuron has the ability to adjust the spiking frequency without changing the input current.  

The simulation results show that our proposed CMOS neuron spiking frequency can be tuned from 58.4 to 

312.5 Hz and its spiking period from 17.1 to 3.2 ms with tuning the bias voltage of variable capacitor 

integrator. Having a peak voltage Vpeak=0.95 V, a reset voltage Vreset=-0.75 V and a voltage threshold of  

0.35 V with a membrane potential range of 1.5 V. The proposed AQIF neuron number of transistors is 26 

designed in 130 nm CMOS process technology. 

 

 

2. SPIKING NEURAL NETWORKS NEUROMORPHIC COMPUTATIONAL SYSTEM MODELING 

SNN provides a promising solution for low-power hardware for neuromorphic computing. Using 

SNN circuit methods and doing parallel computations can reduce costs. SNN circuit functions with a pre-

trained network’s weights consume less power [7], [15], [37]–[41]. Biological neurons are in a network where 

a neuron receives input from another neuron. The inputs are received as a spike in the synapse. The in turn 

induce an output at the post synaptic. A SSN system consist of the following circuit building blocks as shown 

in Figure 1. The input receives the analog vector input signals [13], [38]. The weighted multiplication multiply 

the input vector elements by corresponding weights in an analog vector matrix multiplication (VMM). The 

analog VMM input is fed to a winner-take-all (WTA) circuit. The output from the WTA circuit is connected to 

a differential-pair integrator (DPI) synapse circuit [42], [43]. The DPI synapse circuit is then connected to an 

integrate-and-fire neuron. The output from the integrate-and-fire neuron is connected to the spike-timing 
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dependent plasticity (STDP) circuit as shown in Figure 1. The DPI synapse integrates the incoming signals [7], 

[37]–[39]. The WTA circuit selects the most active signal among neurons. The integrate-and-fire neuron 

integrates signals over time and generates output spikes. Then the STDP circuit adjusts synaptic weights based 

on the timing of spiking activity for learning and plasticity [13], [15], [40]–[44]. 
 

 

 
 

Figure 1. SSNs system 
 

 

Analog very-large-scale integration (VLSI) is utilized to design SNNs circuits such as silicon 

synapse and CMOS neuron. Because transistors have properties similar to nerve membrane channels. When 

transistors are operated in weak inversion region, they leak a very small current. This transistor region of 

operation is also known as the subthreshold region. This way a large network of thousands of neurons will 

consume very low power. SNN do not fire continuously. SNN fires only when the post-synaptic potential 

reaches a certain threshold value. In the SNNs circuits the transistors are operating at the subthreshold level 

(weak inversion region). At this mode of operation, the current-voltage relationship is exponential and is best 

described by an exponential drain current equation plasticity [15], [40], [41]. Equations of subthreshold nfet 

transistor for a source follower circuit for SNN shown in Figure 2 can be described as (1) [4], [5], [38]. 
 

𝐼 = 𝐼0𝑒
𝜅𝑉𝑔

𝑉𝑇 (𝑒
−

𝑉𝑠
𝑉𝑇 − 𝑒

−
𝑉𝑑
𝑉𝑇) (1) 

 

Where 𝐼0 is the current scale factor, 𝑉𝑇 is the thermal voltage, 𝑉𝑔 is the gate voltage, 𝑉𝑑  is the drain voltage, 

and 𝜅 kappa is the capacitive divider and is given by (2) [4], [5], [38]. 
 

𝜅( kappa ) =
𝜕𝜓𝑠

𝜕𝑉𝑔
=

𝐶ox

𝐶ox+𝐶dep
 (2) 

 

Equations of subthreshold pfet transistor for a source follower circuit for SNNs shown in Figure 2 can be 

described as (3) [4], [5], [38]. 
 

𝐼 = 𝐼0𝑒
−

𝜅𝑉𝑔

𝑉𝑇 (𝑒
𝑉𝑠
𝑉𝑇 − 𝑒

𝑉𝑑
𝑉𝑇) (3) 

 

 

 
 

Figure 2. Source follower circuit for SNNs 
 

 

Synapses are responsible for connecting neurons and communicating spike signals between them. A 

synapse receives spike voltages from the output of its pre-synaptic neuron. It produces a current based on a 

weight value [7], [37]–[40], [45]. Then it feeds this weighted current to its post-synaptic neuron [15], [41], 

[42], [44], [46], [47]. Exponentially decaying Log-domain Pulse Integrator circuit is shown in Figure 3. The 

linear integrator response is of a low-pass filter with a decaying exponential [7], [38], [48]–[50]. 
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Figure 3. Log-domain pulse integrator circuit 
 

 

By changing the bias voltage 𝑉𝑊 shown in Figure 3 the synaptic weight can be varied. The current 

𝐼𝑠𝑦𝑛 can be varied up and down exponentially with time as described in (4) [7], [38], [48]–[50]. 
 

𝐼syn (𝑡) = {
𝐼0𝑒

+
𝑡

𝜏𝑐  (charge phase for increasing current) 

𝐼0𝑒
−

𝑡

𝜏𝑑  (discharge phase for decreasing current) 

 (4) 

 

The 𝐼0 is the initial current level, 𝜏𝑐 is the time-constant that determines how quickly the current rises, 𝜏𝑑 is 

the time-constant that determines how quickly the current falls and t is the time. In (5) and (6) describe the 

currents in sub-threshold mode of operation [5], [7], [13], [38], [42], [44], [51]. 
 

𝐼𝑐 = 𝐶
𝑑

𝑑𝑡
(𝑉𝑑𝑑 − 𝑉𝑠𝑦𝑛) (5) 

 

𝐼syn = 𝐼0𝑒
𝜅(𝑉𝑑𝑑−𝑉𝑠𝑦𝑛)

𝑉𝑇  (6) 
 

Where 𝐼𝑐 is the current through the capacitor and 𝐼𝑠𝑦𝑛 is the synapse output current in Figure 3. The 

derivative of the current through a capacitor can be determined in (7) where the larger the time-constant 𝜏 the 

larger the capacitor [5], [7], [13], [38], [42], [44], [51]. 

The solution for the first-order differential equation is given in (7). For a larger synapse weight we 

have to have a large 𝐼𝑊 weight current [5], [7], [13], [38], [42], [44], [51]. 
 

𝐼𝑤 = 𝐼0𝑒
−

𝜅(𝑉𝑤−𝑉syn )

𝑉𝑇  (7) 
 

Where the 𝐼0 is the initial current level, 𝐼𝑊 is the weight current, 𝑉𝑊 is the bias voltage, 𝑉𝑇 is the thermal voltage, 𝜅 

kappa is the capacitive divider and 𝐼𝑠𝑦𝑛 is the synapse output current. To get a larger synapse weight we can 

implement a DPI synapse circuit. The DPI synapse circuit is shown in Figure 4 [5], [7], [13], [38], [42], [44], [51]. 
 

 

 
 

Figure 4. DPI synapse circuit 
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The DPI synapse integrates incoming signals as shown in the SNN system in Figure 1. It compares 

two input signals and generates an output based on their difference [5], [7], [13], [38], [42], [44], [51]. We 

can implement a DPI synapse by connecting the bulk of the pmos transistor to its source hence isolating its 

well. The capacitor 𝐶𝑠𝑦𝑛 voltage 𝑉𝑠𝑦𝑛 is shown in the circuit in Figure 4. The weighted contribution of a 

synapse can be implemented using a pmos transistor for excitator synapse and nmos for inhibitory synapse. 

In the DPI synapse, 𝑉𝑔 controls the gain of the integration [5], [7], [13], [38], [42], [44], [51]. 

The current 𝐼𝑖𝑛 is based on the assigned weight 𝑉𝑊. Then capacitor 𝐶𝑠𝑦𝑛 integrates current 𝐼𝑖𝑛 and 

produce the gate voltage of transistor M6 shown in Figure 4. Voltage 𝑉𝜏 sets the time constant, and voltage 𝑉𝑔 

controls the gain of the integration as shown in Figure 4. The synapse output current 𝐼𝑜𝑢𝑡 can be given by (8) 

[5], [7], [13], [38], [42], [44], [51]. 
 

𝐼out = 𝐼0𝑒
𝑘𝑉𝐶
𝑉𝑇  (8) 

 

Where the 𝐼0 is the initial current level, 𝑉𝑐 is the capacitor voltage, 𝑉𝑇 is the thermal voltage, and 𝜅 kappa is 

the capacitive divider. 

The DPI synapse circuit shown in Figure 4, to analyze the behavior of these synapses we can 

determine current equations in (9) and (10) [5], [7], [13], [38], [42], [44], [51]. 
 

𝐼𝑡ℎ + 𝐼𝐶 = 𝐼𝑖𝑛 (9) 
 

𝐼𝐶 = 𝐼𝑖𝑛 ×
𝐼𝐶

𝐼𝑖𝑛
= 𝐼𝑖𝑛 ×

𝐼𝐶

𝐼𝐶+𝐼𝑡ℎ
=

𝐼𝑖𝑛

1+
𝐼𝑡ℎ
𝐼𝐶

 (10) 

 

Where 𝐼th and 𝐼c are sub-threshold currents controlled by the gate voltage of transistor M3 voltage 𝑉𝑔 in Figure 4.  

The sub-threshold currents can be described in (11)-(13) [5], [7], [13], [38], [42], [44], [51]. 
 

𝐼𝐶 = 𝐼0𝑒
𝜅𝑉𝐶
𝑉𝑇  (11) 

 

𝐼𝑡ℎ = 𝐼0𝑒
𝜅𝑉𝑔

𝑉𝑇  (12) 
 

𝐼𝐶 =
𝐼𝑖𝑛

1+𝑒

𝜅(𝑉𝑔−𝑉𝐶)

𝑉𝑇

 (13) 

 

Where 𝐼c sub-threshold current of capacitor 𝐶𝑠𝑦𝑛. The output current 𝐼out and 𝐼c sub-threshold current of capacitor 

𝐶𝑠𝑦𝑛 can be defined as a function of output current 𝐼out and 𝐼𝑔 as (14)-(16) [5], [7], [13], [38], [42], [44], [51]. 
 

𝐼out = 𝐼0𝑒
−

𝜅(𝑉𝐶−𝑉𝐷𝐷)

𝑉𝑇  (14) 
 

𝐼𝑔 = 𝐼0𝑒
−

𝜅(𝑉𝑔−𝑉𝐷𝐷)

𝑉𝑇  (15) 
 

𝐼𝐶 =
𝐼in 

1+
𝐼out 
𝐼𝑔

 (16) 

 

Where 𝐼𝑔 is the sub-threshold current of a pmos transistor M3 with the gate voltage 𝑉𝑔 and current 𝐼out of 

transistor M6 is shown in Figure 4. 

The derivative of the output current 𝐼out can be defined as (17)-(19) [5], [7], [13], [38], [42], [44], [51]. 
 

𝐼out = 𝐼0𝑒
−

𝜅(𝑉𝐶−𝑉𝐷𝐷)

𝑉𝑇  (17) 
 

𝑑

𝑑𝑡
𝐼𝑜𝑢𝑡 = 𝐼0𝑒

−
𝜅(𝑉𝐶−𝑉𝐷𝐷)

𝑉𝑇 ×
𝑑

𝑑𝑡
(−

𝜅(𝑉𝐶−𝑉𝐷𝐷)

𝑉𝑇
) (18) 

 
𝑑

𝑑𝑡
𝐼out = 𝐼out × (−

𝜅

𝑉𝑇
)

𝑑

𝑑𝑡
𝑉𝐶  (19) 

 

Where derivative of the capacitor voltage 
𝑑

𝑑𝑡
𝑉𝐶  can be determined from capacitor 𝐶𝑠𝑦𝑛 current in Figure 4 [5], 

[7], [13], [38], [42], [44], [51]. 
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𝐶syn 
𝑑

𝑑𝑡
𝑉𝐶 = 𝐼𝜏 − 𝐼𝐶 ⇒

𝑑

𝑑𝑡
𝑉𝐶 =

𝐼𝐶−𝐼𝜏

𝐶syn 
 (20) 

 

The resulting differential equation is as (21). 
 

𝑑

𝑑𝑡
𝐼out = (

𝜅𝐼𝜏

𝑈𝑇𝐶syn 
)(

𝐼in 
𝐼𝜏

1+
𝐼out 
𝐼𝑔

− 1) × 𝐼out  (21) 

 

Where 𝜏 is the time-constant and if gate voltage 𝑉𝑔 is greater than the capacitor voltage 𝑉𝐶 , the differential 

equation of the filter can be described as a first-order low-pass filter differential equation as (22). The DPI 

synapse with current source circuit as shown in Figure 5. 
 

𝜏
𝑑

𝑑𝑡
𝐼𝑜𝑢𝑡 + 𝐼𝑜𝑢𝑡 =

𝐼𝑖𝑛𝐼𝑔

𝐼𝜏
 (22) 

 

 

 
 

Figure 5. DPI synapse with current source circuit 
 

 

The output current 𝐼out can be determined as (23) and (24). 
 

rise ⇒ 𝐼out (𝑡) =
𝐼in 𝐼𝑔

𝐼𝜏
(1 − 𝑒−

𝑡−𝑡+

𝜏 ) + 𝐼out (𝑡+)𝑒−
𝑡−𝑡+

𝜏  (23) 

 

decay ⇒ 𝐼out (𝑡) = 𝐼out (𝑡+)𝑒−
𝑡−𝑡+

𝜏  (24) 
 

Where 𝐼out (𝑡+) is the output current value in spike arrival time. The time-constant 𝜏 is of this filter depends 

on the value of the capacitor and voltage 𝑉𝜏. In the filter circuit the values of voltage 𝑉𝑔 and voltage 𝑉𝑊  

control the filter gain [5], [7], [13], [38], [42], [44], [51]. 

Combining a WTA circuit with a DPI synapse and a leaky integrate-and-fire (LIF) neuron can create 

a sophisticated neural networks architecture as shown in the SSNs in Figure 1. WTA circuit can be 

implemented with connecting to or more current conveyers as shown in Figure 6. The WTA circuit select the 

synapse with the highest input signal strength wins and suppresses the activity of the other synapse [5], [7], 

[13], [38], [42], [44], [51]. 
 

 

 
 

Figure 6. WTA circuit 
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The input receives the analog vector input signals. The weighted multiplication multiply the input 

vector elements by corresponding weights in the analog VMM. The summation sum up the weighted 

products to get the final output [6], [52], [53]. The analog VMM input is fed to and is connected to the WTA 

circuit. The output provides the result of the VMM for further processing in the neural networks. The analog 

VMM circuits shown in Figure 7 can process multiple elements of the input vector simultaneously enabling 

parallel computation [6], [52], [53]. 
 

 

 
 

Figure 7. Analog VMM circuit 
 

 

The STDP circuit is located in the learning plasticity module of the neural networks system as 

shown in Figure 1 [6], [7], [37], [38], [50]–[53]. The STDP circuit adjust the synaptic weights based on spike 

timing. The capacitor is used for comparing spike timings. The STDP circuit is typically located after the DPI 

synapse, WTA circuit, and LIF neuron in the block diagram as shown in Figure 8. 

The STDP circuit shown in Figure 8 detects spikes from the pre-synaptic neuron. It triggers when 

the pre-synaptic voltage crosses a threshold. The STDP circuit measures the timing difference between the 

pre-synaptic and post-synaptic spikes. Then integrates the synapse current and adjusts the synaptic weight 

based on the timing information [5]–[7], [13], [37], [38], [42], [44], [50]–[53]. 
 

 

 
 

Figure 8. STDP circuit 

 

 

3. A CMOS SYNAPSE CIRCUIT MODEL FOR SSN 

Synapses are responsible for connecting neurons and communicating spike signals between them. A 

synapse receives spike voltages from the output of its pre-synaptic neuron. It produces a current based on a 

weight value. Then it feeds this weighted current to its post-synaptic [5]–[7], [13], [37], [38], [42], [44],  

[50]–[53]. A CMOS synapse circuit model for SSNs is shown in Figure 9. The CMOS synapse circuit design 

ensure that all transistors are working at the subthreshold level [4], [5], [50]. 
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Figure 9. A CMOS synapse circuit model for SNN 

 

 

A CMOS synapse circuit model for SNN time-constant 𝜏𝑑 can be described in (25) [4], [5], [50]. 

 

𝜏𝑑 =
𝐶𝑉𝑇

𝑘𝑛𝐼𝜏
 (25) 

 

Where 𝜏𝑑 is the synapse time-constant and 𝑉𝑇 is the thermal voltage, C is the capacitor C1 in synapse circuit 

shown in Figure 9, 𝑘𝑛 = Wn/Ln is the transistor width to length ratio parameter, and 𝐼𝜏 the sub-threshold 

drains current of transistor M7 in Figure 10.  

 

 

 
 

Figure 10. The CMOS synapse circuit model for SNNs simulation results 

 

 

Figure 9 shows the CMOS synapse circuit model for SSNs. The design ensure that all transistors are 

working at the subthreshold level similar to the model provided by studies [7], [35], [38]. In the circuit shown 

in Figure 9, the current through transistor M7 shown in Figure 9 was the determinant factor to control the 

time-constant parameter. The CMOS synapse circuit model for Spiking simulation results is shown in  

Figure 10. Using multiple-gated transistors configuration M8 and M9 transistors, an additional branch 

parallel to transistor M7 provided additional control where the synaptic output time-constant can be tuned. 

Figure 11 shows the proposed modified adaptive CMOS synapse circuit SNN model with time-constant 

parameter tuning. 
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Figure 11. The proposed modified adaptive CMOS synapse circuit SNN model with time-constant tuning 

 

 

The transistors are operating at the subthreshold level weak inversion region. At this mode of 

operation, the current-voltage relationship is exponential where 𝑉𝑇 is the thermal voltage, 𝑘𝑛 = Wn/Ln is the 

transistor width to length ratio parameter and C1 is the capacitor in synapse circuit shown in Figure 11. 

Using Kirchoff’s current law we get (26) and (27) [4], [5], [50]. 

 

𝑖𝑐 = 𝑖2 − 𝑖𝜏 (26) 

 

knowing that [4], [5], [50]. 

 

𝑖𝑐 = 𝐶
𝑑𝑉𝑐(𝑡)

𝑑𝑡
 (27) 

 

Substituting (26) in (27) we get (28) [4], [5], [50]. 

 

𝐶
𝑑𝑉𝑐(𝑡)

𝑑𝑡
= 𝑆𝐼𝑜𝑒

𝑘𝑝
𝑉𝑇

(𝑉𝑑𝑑−𝑉𝑤)
− 𝐼𝜏 (28) 

 

𝐼𝜏 the sub-threshold drain current of transistor M7 in Figure 11 can be determined by substituting (27) in (28) 

we get (29) and (30) [4], [5], [50]. 

 

𝐼𝜏 = 𝑆7𝐼𝑜𝑒
𝑉𝜏
𝑉𝑇

𝑘𝑛
 (29) 

 

𝑖𝑠𝑦𝑛𝑎𝑝𝑠𝑒(𝑡) = 𝑆8𝐼𝑜𝑒
𝑘𝑛
𝑉𝑡

𝑣𝑐(𝑡)
 (30) 

 

Taking the derivative of 𝑖𝑠𝑦𝑛𝑎𝑝𝑠𝑒 synapse current we get (31) [4], [5], [50]. 

 

𝑑𝑖𝑠𝑦𝑛𝑎𝑝𝑠𝑒 (𝑡)

𝑑𝑡
+

𝑘𝑛𝐼𝜏

𝐶𝑉𝑇
𝑖𝑠𝑦𝑛𝑎𝑝𝑠𝑒(𝑡) =

𝑆8𝑘𝑛𝐼𝑜

𝐶𝑉𝑇
𝑒

𝑘𝑝
𝑉𝑇

(𝑉𝑑𝑑−𝑉𝑤)
 (31) 

 

The synapse time constant τ can be determined by (32) [4], [5], [50]. 

 

𝜏 =
𝐶𝑉𝑇

𝐾𝑛𝐼𝜏
 (32) 

 

Where 𝜏 is the synapse time-constant and 𝑉𝑇 is the thermal voltage, C is the capacitor C1 in synapse circuit 

shown in Figure 9, 𝑘𝑛 = Wn/Ln is the transistor width to length ratio parameter and 𝐼𝜏 the sub-threshold 

drains current of transistor M7 in Figure 11. 
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The modified CMOS synapse circuit shown in Figure 11 time-constant 𝜏𝑟 is given by (33) [4], [5], [50]. 

 

𝜏𝑟 =
𝐶𝑉𝑇

𝑘𝑛(𝐼𝜏𝑟+𝐼𝜏)
 (33) 

 

Where 𝜏𝑟 is the modified synapse circuit time-constant and 𝑉𝑇 is the thermal voltage, C1 is the capacitor in 

synapse circuit shown in Figure 11, 𝑘𝑛 = Wn/Ln is the transistor width to length ratio parameter, 𝐼𝜏 the  

sub-threshold drains current of transistor M7 and (𝐼𝜏𝑟 + 𝐼𝜏) is the total sub-threshold drain current of the 

multiple-gated transistor M8, M9, and M7 shown in Figure 11. By using multiple-gated transistors 

configuration M8 and M9 transistors, an additional branch parallel to transistor M7 provide additional control 

where the synaptic output time-constant is tuned. 

The simulation results shown in Figure 12 illustrate the tuning of the modified CMOS synapse circuit 

time-constant parameter. By using multiple-gated transistors configuration M8 and M9 transistors, an 

additional branch parallel to transistor M7 shown in Figure 11 provide additional control where the synaptic 

output time-constant is tuned. The effect of changing multiple-gated transistors bias voltage on the decaying 

time-constant from 𝑉𝑡1=0.25 V bias voltage to 𝑉𝑡1=0.3 V and to 𝑉𝑡1=0.45 V is shown in Figure 12. By using 

multiple-gated transistor configuration in the modified CMOS synapse the synaptic output current  

time-constant is tuned. The effect of changing the multiple-gated transistor bias voltage from 0.25 to 0.45 V 

tunes the spiking output current exponential time-constant range by 200 ms as shown in simulation results in 

Figure 12. By tuning the decaying exponential time-constant with multiple-gated transistor configuration, the 

proposed modified CMOS synapse captures the dynamic nature of biological synapses. Table 1 shows the 

adaptive modified CMOS synapse circuit transistor dimensions width and length. Table 2 shows the tunable of 

time-constant range of previously published synapse designs in comparison to the proposed synapse design. 

Our proposed synapse design with multiple-gated transistor configuration achieved a tunable time-constant 

range of 200 ms compared to previously published work with limited tunable time-constant range to 100 ms. 

 

 

 
 

Figure 12. The modified adaptive CMOS synapse circuit SNN model with time-constant tuning 

 

 

Table 1. Adaptive modified CMOS synapse transistor dimensions 
Transistor dimensions Length Width 

M1 2 4 

M2 5 10 

M3 5 15 

M4 5 10 

M5 5 10 

M6 5 10 

M7 5 10 

M8 5 15 

M9 5 15 
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Table 2. Synapse design tunable time-constant range comparison 
Synapse design Circuit configuration Time-constant tuning range 

Merolla et al. [1] Feedback control 100 ms 

Hu et al. [2] Memristor-based 100 ms 

Kwon et al. [3] Floating-gate 1 ms 

Tete et al. [4] Varying capacitors 10 us to 100 ms 

Liu [5] Memristor-based 1 ms to 100 ms 

Hong et al. [6] Memristor-based 100 us to 100 ms 

This Work Multiple-gated 200 ms 

 

 

4. SPIKING INTEGRATE-AND-FIRE CMOS NEURON 

A spiking integrate-and-fire CMOS neuron is a type of artificial neuron that is designed to simulate 

the behavior of biological neurons using CMOS technology [7], [38]. The integrate-and-fire CMOS neuron 

circuits can be used in various applications such as neural network systems, neuromorphic computing [8], 

[10]–[12], [34], [44], [54], [55] and brain-inspired computational systems [14]–[16]. A tunable spiking QIF 

neuron incorporates a quadratic function to model the non-linear behavior of biological neurons more 

accurately than integrate-and-fire CMOS neuron. Neuromorphic circuits, including QIF CMOS neurons, 

have gained significant interest in the field of artificial intelligence and neuroscience [17], [56]. Due to their 

potential for high-speed, low-power, and parallel information processing, that makes them more efficient 

compared with Von Neumann bottleneck architecture [20]–[24], [34], [37], [48]–[50]. 

The QIF CMOS neurons are typically implemented using CMOS technology. QIF CMOS neuron 

can be used in various applications, including SNNs, neuromorphic computing and parallel computing 

architectures such as brain-machine interfaces [12], [25]–[28]. By accurately modeling the behavior of 

biological neurons, the spiking integrate-and-fire neuron can enable precise control of assistive technologies 

[3], [29]–[31], [33], [40], [43]. In studies [7], [38] implemented an integrate-and-fire CMOS neuron using 

differential pair topology achieving low power consumption. In studies [7], [38] implemented his integrate-

and-fire neuron in 800 nm CMOS process using 20 transistors. Schaik et al. [34] implemented his CMOS 

neuron using current-mode circuit topology with limited tunability capability. Qiao et al. [14] also designed 

his CMOS neuron using current-mode topology. Whereas in studies [29], [43] implemented his neuron 

design using switch-capacitor circuit configuration. Indiveri et al. [45] designed a QIF CMOS neuron in  

350 nm process using 14 transistors. In studies [31], [33] implemented an integrate-and-fire CMOS neuron in 

65 nm process using 10 transistors. Whereas Schaik et al. [34] designed an Izhikevich CMOS neuron model 

in 90 nm process using 17 transistors. Indiveri and Liu [35] implemented his CMOS neuron using 

transconductance amplifier topology however it does not have circuit tunable capability. Moreover,  

Indiveri et al. [38] designed his integrate-and-fire neuron with membrane potential range of 1.5 V in 800 nm 

CMOS process however it does not have a tuning capability. Van Schaik et al. [34] designed his Izhikevich 

neuron with membrane potential range of 150 mV in 65 nm CMOS process with a frequency tuning range of 

200 Hz. Ou and Ferreira [36] designed his Morris-Lecar neuron with membrane potential range of 200 mV in 

180 nm CMOS process with a frequency tuning range of 290 Hz. 
 

 

5. LEAKY INTEGRATE-AND-FIRE CMOS NEURON MODEL 

A LIF neuron model includes a leak term to the membrane potential that reflects the diffusion of 

ions that occurs through the membrane when some equilibrium is not reached in the cell [57], [58]. The LIF 

neuron model consist of a capacitor C in parallel with a resistor R driven by a current I(t). The driving current 

is split into two components and is described in (34) [54], [57]–[60]. 
 

𝐼(𝑡) = 𝐼𝑅 − 𝐼𝐶  (34) 
 

Where I(t) is the input current injected to the neuron and 𝐼𝑅 is the current that flows through its membrane 

resistor and 𝐼𝐶  is the current that flows through its circuit capacitor representing the neuron membrane capacitor. 

Rearranging (1) with Ohms law and the capacitor current, we get (35). 
 

𝐼(𝑡) =
𝑉𝑚𝑒𝑚

𝑅
+ 𝐶.

𝑑𝑉𝑚𝑒𝑚

𝑑𝑡
 (35) 

 

Multiplying (2) with R and introducing τ neuron membrane time constant, the (35) becomes (36) [57], [58]. 
 

𝜏.
𝑑𝑉𝑚𝑒𝑚

𝑑𝑡
= −𝑉𝑚𝑒𝑚 + 𝑅. 𝐼(𝑡) (36) 

 

Where 𝑉𝑚𝑒𝑚 is the neuron membrane potential. 
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Figure 13 shows a LIF CMOS neuron model including its circuit capacitor representing the neuron 

membrane capacitor. The input current 𝐼𝑖𝑛 injected to the neuron flowing through transistor M1 in Figure 13 

can be described as (37) [54], [57]–[60]. 
 

𝐼𝑖𝑛 = 𝐼𝑡ℎ𝑒
𝐾(𝑉𝑑𝑑−𝑉𝑖𝑛−𝑉𝑇0))

𝑉𝑇 (1 − 𝑒
−(𝑉𝑑𝑑−𝑉𝑚𝑒𝑚)

𝑉𝑇
) (37) 

 

The leak current 𝐼𝑙𝑒𝑎𝑘 injected to the neuron flowing through transistor M2 in Figure 13 can be described as 

(38) [57]–[59]. 
 

𝐼𝑙𝑒𝑎𝑘 = 𝐼𝑡ℎ𝑒𝐾(𝑉𝑡−𝑉1−𝑉𝑇0) (1 − 𝑒
−(𝑉𝑚𝑒𝑚−𝑉1)

𝑉𝑇
) (38) 

 

Adding both currents by taking the current node equation between M1 and M2, the current flowing through 

the membrane capacitance can be described as (39). 
 

(
𝑑𝑉

𝑑𝑡
𝑉𝑚𝑒𝑚) (𝐶𝑚𝑒𝑚 + 𝐶𝑓) = 𝐼𝑖𝑛 − 𝐼𝑙𝑒𝑎𝑘 (39) 

 

 

 
 

Figure 13. Modeling a LIF CMOS neuron 
 

 

In a LIF CMOS neuron model, the neuron will fire when the input current I exceeds the threshold 

current, otherwise it will leak out any potential change. It exhibits periodic spiking T [57]–[59].  
 

𝑇 = 𝜏 𝑙𝑛 (
𝑅𝐼𝑜

𝑅𝐼𝑜−𝑉𝑡ℎ
) (40) 

 

Where τ is the time constant of the circuit and 𝑉𝑡ℎ  is the threshold voltage. Since there is a spike every time 

the capacitance discharges, the spike firing frequency f is the reciprocal of time T and the spike firing 

frequency f can be described as (41). 
 

𝑓 =
1

𝜏 𝑙𝑛(
𝑅𝐼𝑜

𝑅𝐼𝑜−𝑉𝑡ℎ
)
 (41) 

 

Figure 14 shows a MATLAB simulation of a LIF membrane potential with constant input current. 

Figure 15 shows a Tensorflow python simulation of a LIF membrane potential with constant input current. 

Figure 16 shows another implementation of a LIF subthreshold CMOS neuron circuit [61]. 

In Figure 16, the current flowing through membrane capacitance 𝐶𝑣 can be described as (42). 
 

(𝐶𝑣
𝑑𝑉

𝑑𝑡
) = 𝐼𝑀3 − 𝐼𝑀5 + 𝐼𝑠𝑦𝑛 (42) 

 

Whereas the current flowing the circuit capacitance 𝐶𝑈 can be described as (43). 

 

(𝐶𝑈
𝑑𝑉

𝑑𝑡
) = 𝐼𝑀4 − 𝐼𝑀6 (43) 
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Figure 14. MATLAB simulation of a LIF membrane potential with constant input current 

 

 

 
 

Figure 15. Tensorflow python simulation of a LIF membrane potential with constant input current 

 

 

 
 

Figure 16. A LIF subthreshold CMOS neuron implementation [61] 

 

 

6. QIF CMOS NEURON MODEL 

The QIF neuron model is described by the following differential equation in (44) [10], [16], [54], 

[59], [60], [62]. 

 
𝑑𝑉

𝑑𝑡
= (𝑉 − 𝑉𝑟𝑒𝑠𝑒𝑡)(𝑉 − 𝑉𝑡ℎ) + 𝐼 (44) 

 

Where dV/dt is the rate of change of the membrane potential and V is the membrane potential. Vreset is the 

reset potential. Vth is the threshold potential, and I is the input current [10], [16], [54], [59], [60], [62]. 

The QIF neuron model can be rearranged into (45). R and C being the resistance and capacitance 

respectively of the QIF neuron circuit integrator [54], [59], [60], [62].  
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𝑅𝐶
𝑑

𝑑𝑡
𝑉 = 𝑉2 + 𝐼 (45) 

 

The quadratic term captures the neuron firing rate nonlinear quadratic behavior. The QIF neuron model can 

be implemented as an analog circuit implementation where V is the voltage across the cell membrane and I is 

the input current with a given reset condition described as (46) [15], [58], [60], [62], [63]. 

 

𝑉 =
1

𝑅𝐶
∫ 𝑉2 + 𝐼 When V>Vpeak then V=Vreset (46) 

 

The QIF neuron model exhibits a periodic spiking T that can be described as (47) [54], [59], [60], [62], [64]. 

 

𝑇 =
1

2√𝐼
ln (

(𝑉𝑝𝑒𝑎𝑘−√𝐼)(𝑉𝑟𝑒𝑠𝑒𝑡+√𝐼)

(𝑉𝑝𝑒𝑎𝑘+√𝐼)(𝑉𝑟𝑒𝑠𝑒𝑡−√𝐼)
) (47) 

 

Where the Vpeak is the peak membrane potential and Vreset is the reset potential, and I is the input current. 

 

log(𝜆) =
2𝑟𝑎

𝜎𝑛
2  (48) 

 

 

7. PROPOSED ADAPTIVE QUADRATIC INTEGRATE-AND-FIRE CMOS NEURON  

The proposed AQIF CMOS neuron is shown in Figure 17. A differential pair with variable capacitor 

integrator (Figure 17(a)), voltage amplifier (Figure 17(b)), variable diode capacitor (Figure 17(c)), a tunable 

schmitt trigger threshold detector circuit (Figure 17(d)) and a switch metal oxide semiconductor field effect 

transistor (MOSFET) transistor are integrated in the AQIF CMOS neuron which models the quadratic neuron 

behavior. The proposed AQIF CMOS neuron has the ability to adjust the spiking frequency without changing 

the input current. 

The QIF CMOS neuron dynamics is represented in the form of a differential equation describing the 

action potential of the neuron as (49) [39], [40], [51], [60], [62], [64], [65]. 

 

𝐶𝑚
𝑑𝑉

𝑑𝑡
= 𝑔𝐿

(𝑉−𝑉𝑡ℎ)(𝑉−𝑉𝑟𝑒𝑠𝑒𝑡)

(𝑉𝑡ℎ−𝑉𝑟𝑒𝑠𝑒𝑡)
+ 𝐼 (49) 

 

Where 𝐶𝑚 is the membrane capacitance, 𝑉𝑡ℎ  is the threshold potential, 𝑉𝑟𝑒𝑠𝑒𝑡 is the reset potential, I is the 

input current, and 𝑔𝐿 is the leak conductance. The rate of change of the membrane potential 
𝑑𝑉

𝑑𝑡
 is determined 

by the input current I, leak conductance 𝑔𝐿, and the equation quadratic term 
(𝑉−𝑉𝑡ℎ)(𝑉−𝑉𝑟𝑒𝑠𝑒𝑡)

(𝑉𝑡ℎ−𝑉𝑟𝑒𝑠𝑒𝑡)
. This quadratic 

term introduces nonlinearity into the neuron's dynamics resulting in its spiking behavior. 

The AQIF CMOS neuron membrane time constant τ, near threshold voltage, can be described as 

(50) [39], [40], [45], [62], [65]–[67]. 

 

𝜏 =
𝐶(𝑉𝑡ℎ−𝑉𝑟𝑒𝑠𝑒𝑡)

𝑔𝐿(𝑉𝑡ℎ+𝑉𝑟𝑒𝑠𝑒𝑡)
 (50) 

 

The AQIF CMOS neuron exhibits firing rate f as a function of input current I to the neuron [9], [41], [55], 

[57], [60], [68]–[71]. 

 

𝑓 =
2√𝐼

𝜏.(𝑉𝑡ℎ−𝑉𝑟𝑒𝑠𝑒𝑡).ln(
(𝑉𝑡ℎ−𝑉𝑚𝑒𝑚)+√𝐼)

(𝑉𝑟𝑒𝑠𝑒𝑡−𝑉𝑚𝑒𝑚)+√𝐼))
)

 (51) 

 

Where τ is the neuron membrane time constant and R is the membrane resistance and C is the neuron 

membrane capacitance. 𝑉𝑚𝑒𝑚 represents the membrane potential of the AQIF CMOS neuron, 𝑉𝑡ℎ  is the 

threshold potential at which the neuron fires an action potential, 𝑉𝑟𝑒𝑠𝑒𝑡 is the reset potential after a spike 

occurs, I is the input current to the neuron, and τ is the time constant associated with the neuron membrane 

potential [37], [38], [72]–[75]. 

The proposed AQIF CMOS neuron shares the ability to adjust its parameters to control its behavior 

and response characteristics. The differential amplifier integrator (M4-M8) circuit is coupled with a variable 

diode capacitor (M13-M18) circuit as shown in Figure 17. The variable diode capacitor is placed between the 

integration stage and the tunable Schmitt trigger (M19-M26) circuit. The positive feedback occurs through 
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the quadratic nonlinearity introduced by the nonlinear element switch MOSFET M2 operating in the 

saturation region to implement the quadratic dynamics of the CMOS neuron. 

 

 

 
 

Figure 17. Proposed AQIF CMOS neuron of (a) differential pair integrator, (b) voltage amplifier,  

(c) variable diode capacitor, and (d) tunable schmitt trigger 

 

 

The integrated output voltage, which represents the membrane potential, is fed into the variable 

diode capacitor. The variable diode capacitor is a circuit that uses a diode transistor M15 and a capacitor C3 

of 1nF in conjunction. The diode transistor M15 acts as a variable resistor, allowing the time constant to be 

changed by varying the diode transistor bias voltage. 

The membrane time constant 𝜏 =
𝐶(𝑉𝑡ℎ−𝑉𝑟𝑒𝑠𝑒𝑡)

𝑔𝐿(𝑉𝑡ℎ+𝑉𝑟𝑒𝑠𝑒𝑡)
 in (14) the parameter that can be varied by the 

variable diode capacitor is the leak conductance 𝑔𝐿. The variable diode capacitor circuit allows for the 

adjustment of the time constant τ by changing the bias voltage of the diode transistor M15. In the (14), the 

membrane time constant τ is inversely proportional to the leak conductance 𝑔𝐿. 

By adjusting the bias voltage of the diode in the variable diode capacitor integrator circuit, the 

effective leak conductance can be adjusted, resulting in a corresponding change in the time constant of the 

circuit. Therefore, by varying the diode bias voltage 𝑉𝑏𝑖𝑎𝑠 in the variable diode capacitor integrator, the time 

constant τ can be tuned to achieve the desired spike frequency behavior of the circuit as shown in (52). 

 

𝑉𝑏𝑖𝑎𝑠 =
𝜏𝑔𝐿(𝑉𝑡ℎ+𝑉𝑟𝑒𝑠𝑒𝑡)

𝐶+𝑉𝑡ℎ−𝑉𝑟𝑒𝑠𝑒𝑡
 (52) 

 

Therefore, to achieve a time constant of 3.2 ms corresponding to spike frequency 312.5 Hz, the variable 

diode capacitor bias voltage in the circuit is adjusted to 1.1 V as shown in Table 3. To achieve a time 

constant of 17.1 ms corresponding to spike frequency 58.4, the variable diode capacitor bias voltage in the 

circuit is adjusted to 0.9 V as shown in Table 4. 

 

 

Table 3. Variable capacitor integrator bias voltage 

tuning for spike frequency 312.5 Hz 
Parameter Value 

Membrane time constant 𝜏 3.2 ms  

Leak conductance 𝑔𝐿 100 µS  

Threshold potential 𝑉𝑡ℎ 0.35 V 

Reset potential 𝑉𝑟𝑒𝑠𝑒𝑡 -0.75 V 

Bias Voltage 𝑉𝑏𝑖𝑎𝑠 1.1 V 
 

Table 4. Variable capacitor integrator bias voltage 

tuning for spike frequency 58.4 Hz 
Parameter Value 

Membrane time constant 𝜏 17.1 ms  

Leak conductance 𝑔𝐿 100 µS  

Threshold potential 𝑉𝑡ℎ 0.35 V 

Reset potential 𝑉𝑟𝑒𝑠𝑒𝑡 -0.75 V 

Bias Voltage 𝑉𝑏𝑖𝑎𝑠 0.9 V 
 

 

 

The output of the variable diode capacitor is passed to the tunable Schmitt trigger (M19-M26) 

circuit, which compares the voltage with adjustable threshold levels to generate the output spike when the 

upper threshold is reached. The tunable Schmitt trigger circuit is set with the upper threshold 𝑉𝑡ℎℎ𝑖𝑔ℎ
 to  

 

(a) 

 
(b) 

 
(c) 

(d) 
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0.35 V and the lower threshold 𝑉𝑡ℎ𝑙𝑜𝑤
 is set to -0.2 V as shown in Table 5. The membrane potential gradually 

increases due to the injected current. It continues to rise until it reaches the upper threshold 𝑉𝑡ℎℎ𝑖𝑔ℎ
. When the 

membrane potential V exceeds the upper threshold 𝑉𝑡ℎℎ𝑖𝑔ℎ
 of 0.35 V, the Schmitt trigger CMOS circuit 

detects this and generates a positive spike or action potential. After generating the spike, the membrane 

potential is reset to the reset potential 𝑉𝑟𝑒𝑠𝑒𝑡 of -0.75 V to simulate the refractory period of the neuron. 

The membrane potential starts to integrate incoming currents again until it reaches the lower 

threshold 𝑉𝑡ℎ𝑙𝑜𝑤
 of -0.2 V. As the membrane potential gradually increases, the Schmitt trigger circuit detects 

the crossing of 𝑉𝑡ℎ𝑙𝑜𝑤
 of -0.2 V and generates another positive spike indicating another action potential. As 

the membrane potential crosses, the upper threshold, this process repeats generating action potentials at 

regular intervals as shown in Figures 18 and 19. 

 

 

Table 5. Tunable CMOS Schmitt trigger parameters 
Parameter Value 

Upper threshold potential 𝑉𝑡ℎℎ𝑖𝑔ℎ
 0.35 V  

Lower threshold potential 𝑉𝑡ℎ𝑙𝑜𝑤
 -0.2 V  

Reset potential 𝑉𝑟𝑒𝑠𝑒𝑡 -0.75 V  

 

 

 
 

Figure 18. Simulation results for the AQIF CMOS neuron circuit quadratic voltage behavior 

 

 

 
 

Figure 19. Simulation results for the AQIF CMOS neuron circuit spiking voltage with 58.4 Hz spiking 

frequency and 17.1 ms spiking period 

 

 

8. AQIF CMOS NEURON SIMULATION PERFORMANCE 

Figure 18 shows the simulation results for the AQIF CMOS neuron circuit quadratic voltage 

behavior. Figure 19 shows simulation results for the AQIF CMOS neuron circuit spiking voltage and with 

58.4 Hz spiking with the Vpeak=0.95 V and Vreset=-0.75 V and a switching threshold of 0.35 V. The tunability 

of the AQIF CMOS neuron circuit refers to the ability to adjust its parameters to control its behavior 

characteristics. Figure 19 shows simulation results for the AQIF CMOS neuron circuit spiking voltage with 
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58.4 Hz spiking frequency and 17.1 ms spiking period. Figure 20 shows simulation results for the AQIF 

CMOS neuron circuit spiking behavior fast Fourier transform (FFT) with 58.4 Hz spiking frequency.  

Figure 21 shows simulation results for the AQIF CMOS neuron circuit spiking voltage with 312.5 Hz spiking 

frequency and 3.2 ms spiking period. Figure 22 shows simulation results for the AQIF CMOS neuron circuit 

spiking behavior FFT with 312.5 Hz spiking frequency. 

 

 

 
 

Figure 20. Simulation results for the AQIF CMOS neuron circuit spiking behavior FFT with 58.4 Hz spiking 

frequency 

 

 

 
 

Figure 21. Simulation results for the AQIF CMOS neuron circuit spiking behavior FFT with 312.5 Hz 

spiking frequency 
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Figure 22. Simulation results for the AQIF CMOS neuron circuit spiking behavior FFT with 312.5 Hz 

spiking frequency 
 

 

The fully integrated AQIF CMOS neuron circuit number of transistors is 26 transistors as shown in 

Table 6. Table 6 shows some of the previously published work was design with less number of transistors. 

Circuits techniques that may lead to less number of transistors implementation are good to explore in future 

designs. Fully-integrated CMOS neuron comparison with the AQIF CMOS neuron is shown in Table 7. The 

tunable spiking frequency CMOS neuron comparison with the proposed AQIF CMOS neuron is shown in 

Table 7. Tunability is defined as the ability to adjust spiking frequency without changing the input current I. 

As shown in Table 6, Indiveri and Horiuchi [7] designed his integrate-and-fire neuron with total of 20 

transistors and with membrane potential range of 1.5 V in 800 nm CMOS process however it does not have a 

tuning capability. Indiveri and Horiuchi [7] implemented his integrate-and-fire CMOS neuron using 

differential pair topology and achieved low power consumption. Srinivasan and Cowan [19] designed his 

Izhikevich neuron with limited membrane potential range of 150 mV in 65 nm CMOS process with a 

frequency tuning range of 200 Hz. Srinivasan and Cowan [19] did his CMOS neuron using current-mode 

circuit topology with total of 18 transistors as shown in Table 5 and with limited tunability capability. Van 

Schaik et al. [34] designed his Izhikevich neuron with total of 17 transistors. Indiveri et al. [45] did his QIF 

neuron with 14 transistors however with no tuning capability. Whereas Ou and Ferreira [36] designed a 

Morris-Lecar neuron with limited membrane potential range of 200 mV in 180 nm CMOS process with a 

frequency tuning range of 290 Hz as shown in Table 7. 
 

 

Table 6. Fully-integrated CMOS neuron comparison with AQIF neuron 
 Neuron Model Transistor Count Energy/Spike [p] CMOS Process  

Indiveri and Horiuchi [7] Integrate-and-Fire 20 900 800 nm  

Indiveri et al. [45] Quadratic I and F 14 790 350 nm  

Srinivasan and Cowan [19] Izhikevich 18 1060 65 nm 

Sourikopoulos et al. [33] Integrate-and-Fire 10 720 65 nm 

Van Schaik et al. [34] Izhikevich 17 700 90 nm 

This work AQIF 26 860 130 nm 

 

 

Table 7. Tunable spiking frequency CMOS neuron comparison with AQIF CMOS neuron 
 Configuration Frequency tuning range Membrane potential range Tunability Process 

Indiveri and Horiuchi [7] Integrate-and-Fire 0 Hz 1.5 V None 800 nm  

Srinivasan and Cowan [19] Izhikevich 200 Hz 150 mV Tunable 65 nm 

Ou and Ferreira [36] Morris-Lecar 290 Hz 200 mV Tunable 180 nm 

This Work Adaptive Quadratic 255 Hz 1.7 V Tunable 130 nm 
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9. CONCLUSION 

The design of a fully integrated adaptive modified CMOS synapse circuit is presented. By using 

multiple-gated transistor configuration in the modified CMOS synapse an additional branch provide control 

where the synaptic output current time-constant is tuned. The effect of changing the multiple-gated transistor 

bias voltage from 0.25 to 0.45 V tunes the spiking output current exponential time-constant range as shown 

in simulation results. Our proposed synapse design with multiple-gated transistor configuration achieved a 

tunable time-constant range of 200 ms compared to previously published work with limited tunable time-

constant range to 100 ms. By tuning the decaying exponential time-constant with multiple-gated transistor 

configuration, the proposed modified CMOS synapse captures the dynamic nature of biological synapses. 

Moreover, the design of a fully integrated AQIF CMOS neuron was presented as well. A differential pair 

with variable capacitor integrator and a tunable schmitt trigger threshold detector circuit are integrated in the 

CMOS neuron that can be tuned varying its spiking frequency. The proposed AQIF CMOS neuron has the 

ability to adjust the spiking frequency without changing the input current. The simulation results show the 

proposed AQIF CMOS neuron circuit spiking frequency can be tuned from 58.4 to 312.5 Hz and its spiking 

period from 17.1 to 3.2 ms with tuning the bias voltage of variable capacitor integrator. Having a peak 

voltage Vpeak=0.95 V, a reset voltage Vreset=-0.75 V and a voltage threshold of 0.35 V with a membrane 

potential range of 1.5 V. The proposed CMOS neuron number of transistors is 26 designed in 130 nm process 

with a supply voltage of 1.8 V and a total power dissipation of 1.8 mW. 
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