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 Autism spectrum disorder (ASD) is gender biased neurodevelopmental 

condition consisting of a triad of physiological symptoms. Neural images 

and neurobiology of cognitive disorders are complex but provide significant 

information and accurate visualization of developmental changes. The 

diagnosis is time-consuming and necessitates sufficient evidence to 

distinguish the disorder from other concomitant diseases. The most recent 

area of interest for cognitive research is neuroimaging, which is used to 

study the disorder's impact, affected region, and functional connectivity 

between the regions of interest. The challenges in the domain are the 

availability of data, the modalities of data, the selection of the correct 

processing strategies, and the result assessment complications. The study 

employed machine learning (ML) methods to process the autism data in both 

structural and functional data formats collected from the autism brain 

imaging data exchange (ABIDE) consortium. A comparative analysis among 

image processing methodologies with both data formats was successfully 

implemented. The variations in the processing pipeline and the outputs 

strongly suggest an emerging need for 3D/4D images to visualize better, 

accurate feature extraction and classification. The study aims to support the 

researchers in identifying the correct image format for specific objectives 

and the ML techniques, such as Gaussian median filters, segmentation 

methodologies for 2D data, or a well-defined preprocessing pipeline for 3D 

data, to achieve reliable and generalized results. 
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1. INTRODUCTION 

Automated real-time object identification is crucial for accurate decision-making in numerous 

domains using multimedia data. Image processing is the most preferred method for object identification in 

various application fields, including academics, product development, e-commerce, and healthcare [1]. The 

core applications of image analysis are feature extraction, security and surveillance, image recognition, and 

medical image analysis. Image analysis tends to image enhancement for standard images (images other than 

medical scans) [2], but for the medical image data, there is a predefined process including enhancements and 

segmentation for accurate classification [3]. Processing complexity with medical images for segmentation, 

classification, and localization of regions of interest associated with an anomaly can be resolved by 

implementing artificial intelligence (AI) strategies [4], [5]. Neuroimages in brain science are vital in the 

https://creativecommons.org/licenses/by-sa/4.0/
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current scenario of a higher prevalence rate of cognitive disorders. Neuroimaging study provides insight into 

the brain in two main aspects: structural and functional. The discipline of neuroimaging has been enhanced by 

neuroimaging techniques such as structural magnetic resonance imaging (sMRI) and functional magnetic 

resonance imaging (fMRI), which provide information in multiple forms. The high-resolution images are 

visually scannable and interpretable by experts but have not yet been explored thoroughly. Extensive use of 

neuroimages in multiple formats such as structural scan slices-2D and the functional scans for temporal studies 

-3D- need specific strategies to process the individual format. Neural images and neurobiology of cognitive 

disorders like autism spectrum disorder (ASD) is complex to understand but provide significant information 

and visualization of developmental variations. ASD is gender biased neurodevelopmental condition consisting 

of a triad of physiological symptoms: repetitive behavior, communication impairment-verbal/nonverbal, and 

social interaction. The heterogeneous nature and symptom comorbidity are the prime challenges to diagnosing 

ASD. AI with neuroimaging produced great results in various classification research works. 

The imaging dataset collected from distinct sites and in different forms needs to be standardized and 

cleaned for further analysis for accurate and reliable results. The preprocessing pipeline for 2D and 3D 

images contains multiple steps. Hence, it is important to explore the difference in the process and understand 

the output quality measurement units for both formats. The challenges are addressed and explained to 

improve the quality of the image analysis results. 

Various imaging modalities and formats need to be in a standard format to be implemented with AI 

strategies. Medical image processing with multidimensional image formats is complicated due to the 

additional information added as the additional dimension. The primary obstacles with multidimensional 

images are large volumes, data complexity, and spatial and temporal information that need advanced methods 

over traditional image processing methods. Another complication is the interpretation and correct analysis of 

large-volume data. An experimental analysis was performed on the structural and functional data collected 

for autism disorder. The data slices extracted from the scans as 2D images and the magnetic resonance 

imaging (MRI) as 3D and 4D format (time is the fourth dimension) are processed using various AI methods. 

The preprocessing pipeline for 2D images consists of filters, resizing, and resampling, and the 3D MRI 

preprocessed using realignment, reslicing, segmentation, normalization, and smoothing. The combination of 

two complicated fields, which are autism classification and multidimensionality of medical images, makes it 

more significant. A comparative analysis is presented to help the neuroimaging research select the 

preprocessing pipeline based on the data format for effective and reliable analysis. 

 

 

2. DOMAIN STUDY 

2.1.  Autism spectrum disorder 

High heterogeneity in clinical implications and underlying neurobiology of ASD is the prime reason 

for not yet achieving consistent biomarkers [6]. Identifying consistent biomarkers or specific patterns for 

classification as whole or subcategories of ASD using neuroimaging techniques is the main objective of 

current studies worldwide. The challenges with autism neuroimaging analysis and studies are a lack of 

dataset availability, heterogeneous nature of data as collected from multiple sources and sites, data 

complexity, and dimensionality. Autism imaging data is complex due to the detailed anatomical structures it 

contains. To elaborate on the complications in ASD diagnosis with AI tools, the characteristics and features 

are discussed in this session. Autism is a neurodevelopmental impairment. The associated behavioral and 

brain changes are subject to vary across various stages of age. Autism is frequently associated with other 

diseases such as attention deficit hyperactivity disorder (ADHD), intellectual disability, or anxiety problems 

[7], [8]. Atomizing the complicated connections between the comorbidities and their impact on brain 

structure require a huge dataset and expert systems [9]. Autism brain imaging data repositories are available 

globally, but very few are available on open-source platforms. To generalize the findings, sufficient data 

must be available to establish robust and reliable neuroimaging markers and perform more statistical 

analysis. To ensure the standardization and reproducibility of neuroimaging analysis, feature fusion from 

multimodal datasets such as structural and functional images is applied in recent autism diagnosis research; 

the structural images for morphometric features and functional images for functional connectivity and region 

of interest (ROI) analysis. A new multimodality fusion classification approach to explore the uniqueness of 

schizophrenia and ASD [10]. Due to the methodological variations in the processing pipelines, interpretation 

and clinical implementation of findings are yet to be achieved. 

 

2.2.  Neuroimaging 

Medical images are essential for anatomical studies and helpful in disease diagnosis. The images 

collected from various source are sensitive to different types of quality attenuations known as noise. Some of 

the common noises are salt and pepper, Gaussian noise, speckle noise, poisson noise, and blurred noise removal 
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and filtering techniques used in medical images [11]. Noise in the scans exists due to the mechanical issues, 

technical settings or patient related chages such as the subject’s position, physiological artifacts, image quality, 

and protocols applied at the time of scanning [12]. Dimensionality and data volume are two of the major criteria 

that need to be considered when selecting suitable strategies to process neuroimages. Removing noise artefacts 

is an essential process for imaging datasets. It can be performed using external recordings–electrode arrays, 

shielding and grounding, or data-driven methods such as statistical filtering–Gaussian, filter, median filter, 

wiener filter implemented with machine learning (ML) methods [13]. To apply the data for developing 

computer added solutions, require to be converted into standard format. A single 3D scan consisting of hundreds 

of slices which in turn stored in digital form. The volumes are likely to be increased with the increase of count 

of scans, which is difficult to store and handle. Such voluminous data need more computational resources, 

storage capacity, and time. Medical images typically available in three-dimensional and four-dimensional 

(neuroimaging informatics technology initiative (NifTI)) format, that is, 3D scans with a time parameter. 

Algorithms need to account for spatial relationships, anatomical structures across slices, and temporal changes. 

The preprocessing of 2D neuroimaging contains the methodology to perform data cleansing, 

enhancement, and interpretation. Some of the most common types of noise present in the images are 

Gaussian noise [14], salt-and-pepper noise, speckle noise, beam hardening artifacts, motion artifacts, and 

geometric distortions, in addition with some compression artifacts like blurring, blockiness, intensity 

variations due to magnetic effects. The noise exists in 3D images is similar to the 2D images but contains 

some additional types of noise, such as spike noise, susceptibility artifacts, and ghosting artifacts. Specific to 

fMRI images, patient movment variation, head motion artifact, and hardware limitations also cause image 

quality degradation. The artifacts need to be addressed carefully and processed correctly for consistent and 

reliable results. Spatial and temporal are the two types of MRI need to be processed for artefact removal. 

Some of the most common artifacts present in the NIfTI format are: 

‒ Thermal noise (Gaussian noise) – random electric fluctuations within the scanner. 

‒ Motion artifacts – blurring, ghosting, or misalignment due to patien movement. 

‒ Physiological noise – periodic signal fluctuations due to cardiac pulsation and respiration. 

‒ Scanner drift – low-frequency intensity in image due to magnetic field or sensitive over a time span. 

‒ Susceptibility artifacts – geometric distortions and signal loss due to air tissue interfaces like sinuses. 

‒ Partial volume effects – averaging the signal, reduction in contrast, and spatial resolution. 

‒ Spike noise – sudden transient in the time series due to hardware issues. 

‒ RF interference, gibbs ringing, chemical shift, gradient nonlinearities, and eddy current artifacts. 

The 2D image is a set of pixels, whereas the 3D and 4D images are known as a set of voxels. 

Significant variation was observed in the artifacts and noises present in both image formats. JPEG images 

contain compression noise, and the NIfTI images consist of motion, physiological, and scanner-related 

inconsistencies. Normalization processes the JPEG images for intensity correction and NIfTI images for 

spatial and temporal corrections. Based on the difference in both image formats, the study presented some 

highly recommended methods to enhance the image quality, with experimental analysis and results. 

 

2.3.  Pre-processing 

In medical imaging, 2D and 3D scans refer to different methods of capturing and visualizing 

medical images. The key differences between the scans are discussed in this section. First-image 

representation, where 2D images are flat images containing structural information in a single-plane form at 

the other hand a more comprehensive view of the anatomy or pathology scanned with the volume added as 

the third dimension, allowing visualization of structures in multiple planes, is known as a 3D image. 

Pre-processing extracts detailed information to provide a better vision and interpretation of the 

imaging datasets [15]. The pre-processing pipeline for medical images contains predefined steps, including 

noise removal, artifact removal, contrast enhancement, registration, and spatial normalization. As discussed 

above, 3D images have additional and intense information in the voxel form, a pixel with volume. The 

significance of these images is in the higher resolution, detailed information, and more clarity and 

consistency. 3D images are expensive and complex due to mechanical requirements, machine size, expert 

supervision, and larger volumes. Data alignment to a single slice is easy, but a set of multiple slices scanned 

at different time intervals is complicated and needs to be monitored carefully. Data segmentation in JPEG 

images defines the ROI and helps in masking, but in NIfTI images, it is a tedious task because the images are 

segmented into five fundamental segments known as grey matter (GM), white matter (WM), cerebrospinal 

fluid (CSF), bone, and soft tissues. Segmentation is crucial to accurately achieving the ROI analysis. 

Normalization involves transforming the data images to template coordinates to compare the brain activities 

within a subject or a group of subjects in a common standard anatomical space. Smoothing is a blurring 

effect performed by applying a three-dimensional Gaussian kernel to the normalized images to increase the 

signal-to-noise-ratio (SNR) and adjust the spatial variability. The study performed all the preprocessing steps 
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with the resting state functional magnetic resonance imaging (rs-fMRI) images to achieve noise free 

standanrdized form of data. 

 

 

3. METHOD 

This section consists of dataset description, the ML algorithms applied with 2D and 3D datasets for 

data cleaning, and quality measurements for quality analysis, and results after performing denoising. The 

two-dimensional data applied to the convolutional neural network (CNN) model before and after denoinsing, 

for classification and achieved higher accuracy with the denoised data. The preprocessing pipeline 

implemented with fMRI, achieved high contrast images and images segments for volumetric, surface based, 

and functional connectivity findings. 

 

3.1.  Dataset description 

The dataset applied for the analysis is taken from autism brain imaging data exchange (ABIDE II), an 

open-source repository of neuroimaging scans in various modalities, and clinical findings and demographic 

facts collected from multi-site global collaboration to support the researchers [16]. Structural, functional, and 

diffusion are various modalities of MRI, where sMRI is used for T1-weighted (T1-W) and T2-weighted  

(T2-W) high-resolution spatial and static information. Diffusion tensor imaging (DTI) illustrates the WM fiber 

tract using two parameters: functional anisotropy and mean diffusivity. The data consists of 23 sMRI and  

rs-fMRI scans with a segregation of 13 (autism) and 10 (normal control); all the images are in NIfTI (4D) 

format. The jpg (2D) slices are extracted using Python (nibabel package) and stored as a 2D dataset. 

 

3.2.  Denoising 

Two datasets were created using the jpg slices and blood oxygen level dependent (BOLD) data for 

analysis. The jpg provides the structural information, and the fMRI data provides physiological information 

and functional network attenuation-related features, which are useful for classification [17]. NIfTI is a 

preferred file format that consists of MRI scans with a header file and BOLD signals. The BOLD signals are 

extracted from the raw images and processed using the preprocessing pipeline, where each step refines the 

signals for denoising [18]. The process begins with slice-time correction, followed by realignment, 

registration, and segmentation into grey, WM, CSF, and normalization as the final step. High-quality brain 

images are essential to achieve high contrast and lower noise rates [19]. AI algorithms are equipped with the 

capacity to analyze the quality of an image, enhance the quality, and produce mathematical evidence for the 

classification of the given image. 

An experimental analysis compared the image quality generated post-application of various filters and 

the related peak signal-to-noise ratio (PSNR) metric values [20]. The 2D images are processed with Python 

image processing packages such as OpenCV, scikit-image, NumPy, SciPy, Pillow, and TensorFlow. Two 

fundamental metrics, PSNR and SNR are applied for quality measurement in various image-based studies. SNR 

is calculated by dividing the signal’s power by the noise’s power, but it does not consider the human visual 

system. The image quality for this analysis is calculated PSNR. PSNR is a logarithmic measure calculated by 

taking the square root of the mean squared error between the original and reconstructed images; the metric is 

more accurate as it considers the human visual system. The mathematical expression for PSNR as in (1). 

 

𝑃𝑆𝑁𝑅 = 10 × 𝑙𝑜𝑔10 (
𝑀𝐴𝑋𝑉𝐴𝐿𝑈𝐸

2

𝑀𝑆𝐸
) (1) 

 

Where, MAXVALUE is the maximum possible value for a pixel (255 for an 8-bit image); MSE is mean squared 

error between the original image and the reconstructed image. A PSNR of 30 dB or higher is considered good 

quality, and a PSNR of 40 dB or higher is considered excellent quality. 

The NIfTI scans are processed with the CONN toolbox [21]. The process was assessed using statistical 

parametric mapping (SPM), check registration module, visual analysis using the overlay functions on the 

segmented images, and the denoising results were examined using the histogram quality control–functional 

connectivity (QC-FC) charts. The aim of study is to present a result-oriented denoising strategies to prepare the 

data for reliable and accurate classification of images. 

 

3.3.  Experimental analysis 

Filters can be defined on the neighboring elements and used to observe the prominent features to 

discriminate the structure of the brain [22]. Table 1 is an empirical analysis of image quality measures for 

autistic brains when applied 2D images with specific filters. Each slice was deflated at an average rate of 5% 
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during the image conversion, and the header information could not be interpreted for the data. Figure 1 shows 

the output slices acquired after adding Gaussian noise to the images. 

 

 

Table 1. An empirical analysis of various filters 
Filters Image before adding noise Image after adding noise .gif image 

Gausian filter 20.00 22.0 33.58 

Median filter 19.93 22.34 38.13 

 

 

 
 

Figure 1. The sliced image scans of autistic brain MRI 

 

 

The Gaussian and median filters are the most recommended for medical images applied for 

denoising [23]. Gaussian filter with different sizes of kernels, such as 3×3, 5×5, and 7×7, was applied as trial 

and test. The smaller kernel size produced maximum accuracy with higher processing time. The PSNR was 

calculated for the filtered images using a 5×5 kernel size. Figure 2, row 2, shows the filtered images without 

adding the noise, and row 3, after adding the noise. The images display the implemented filter and PSNR. 

 

 

 
 

Figure 2. Denoised image slices of the brain MRI 

 

 

Second, the image snapshots, taken from the dataset, were in .gif format. The visuals of the image 

are more evident than the sliced images. The median filter removes noise from the scans and preserves the 

WM-GM contrast at a larger scale for further analysis [24]. Several segmentation algorithms are available for 

segmentation and edge detection to divide the image into meaningful regions for further processing. 

The current work aims to denoise the images and, hence, the band-pass filters applied. Figure 3(a) displayed 

visual differences between original and filtered images and PSNR measures. The band-pass filter helps 

emphasize the edges and texture considered features, which are achieved by isolating the frequency range. 

Band-pass filters yielded better-quality images, where brain regions were segmented as edges and texture 

[25], as shown in Figure 3(b). However, it is seen that images are still noisy and may cause biased decisions. 

The denoising was performed successfully, and based on the SNR scale, results can be recommended for 

further analysis, such as segmentation, feature extraction, or classification. 

The denoising performed on the other 3D format, recommending the 3D images for further analysis, 

depends on multiple preprocessing stages with specific parameters, such as realignment for motion 

correction, registration of all the slices belonging to the image to the origin (0 0 0), registration of the images 

to the standard Montreal Neurological Institute template (MNI) space, brain extraction by removing the 

nonbrain regions, segmentation, and smoothing [26]. The realignment results are stored as the regressors for 
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quality analysis to accept and reject the images. The translation range for accepted scans was set to (<2 mm), 

and the rotation at (<0.5 degrees) and framewise displacement to choose the image with a significant rate of 

motion. Gaussian kernel with 8 mm full width at half maximum (FWHM) applied for smoothing; the kernel 

size varies–4 mm, 8 mm, and 12 mm for the hypothesis set. Figure 4(a) depicts the original image with the 

MNI template overlay, clearly showing that the image is noisy. Figure 4(b) is the resulting image 

preprocessed with the skull stripping, registration, and normalization. 

 

 

  
(a) (b) 

 

Figure 3. Filtered images using (a) Gaussian and median filters and (b) low-pass, high-pass filter 

 

 

   
(a)  (b) 

 

Figure 4. The NIfTI images (a) raw brain scan and (b) preprocessed brain scan 

 

 

The resulting images in Figure 5 are the segmented images that help to explore each individual brain 

region to extract the values, coordinates, and volume of a voxel belonging to the particular region.  

In cognitive disorder research using neuroimaging, grey and whiter matter segments are considered 

significant regions of volumetric and surface-based analysis. The segmentation quality differs with the 

implementation of filters, Gaussian kernel provides better result for sMRI segmentations and volumetric 

analysis [27]. 

 

 

 
 

Figure 5. The segmented images into 5 basic tissue classes of brain 

 

 

The physiological and motion signals in the scans need to be corrected for each voxel in time series 

extracted from the temporal data. Component correction (CompCor), and image transformation using rigid 

body transformation with 6-parameters (translation and rotation for x,y,z dimensions), 12-parameters 

(translation, rotation, scaling and shearing for x,y,z) applied for observing the impact of denoising [28].  

After completion of the process, temporal artifacts are refined using bandpass filters. The time series 

extraction for temporal data is crucial. The data denoising was implemented using the Bandpass filters, with 

the range starting with 0.001 Hz and ending with 0.09 Hz using trial and error methods. The best results were 

achieved between 0.008 Hz for the high pass and 0.09 Hz for the low pass filter. 

The denoising produces the results concerning functional connectivity analysis and needs to be 

assessed for noise effects on functional connectivity. The quality analysis scatter plot after denoising,  
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in Figure 6, presents a relationship between the valid scans and the mean motion. The dots in the graph are 

the data points, the horizontal axis scale is valid scans, and the vertical axis scale is the MeanMotion 

measures. The quartiles depict the invalid scan. The plot is a quality analysis after denoising performed to 

check the effect of noise on the functional connectivity; the correlation between QC-FC is an artifact impact 

that should be flattened or minimized by denoising the current result, S1 depicts the outlier scan. 
 

 

 
 

Figure 6. Quality analysis denoinsing: distribution of QC-FC association 
 

 

The graph in Figure 7 shows the distribution of functional connectivity values before (the gray 

shaded area) and after denoising the yellow shaded area). Where all the twenty-three images are seen 

smoother after denoising, and the accuracy is observed as 88.4%. The next quality analysis performed on 

single images in the form of scatter plot, displayed in Figure 8 depicts the pre (the gray shaded area) and 

post-denoising (the yellow shaded area) effects on the connectivity measures, the deviations suggest the 

correction of noise. 
 

 

 
 

Figure 7. Quality analysis after denoising for the functional connectivity distribution (FC-QC) 



                ISSN: 2252-8938 

Int J Artif Intell, Vol. 14, No. 2, April 2025: 1201-1210 

1208 

 
 

 
 

Figure 8. Voxel-wise distribution-scatter plot and histogram before and after denoising 

 

 

The preprocessing results shown in the Figures 7 and 8, are the quality analysis results for jpg, gif, 

anatomic, and functional images. The results helps to eliminate the volumes that can effect the classification 

accuracy. Multiple tools are suggested for MRI processing in various neuroimaging research works, such as 

FMRIB Software Library (FSL), analysis of functional neuroimages (AFNI) [29], SPM [30], advanced 

normalization tools (ANTs), FreeSurfer [31], 3D slicer, neuroimaging in Python (NiPy), neuroimaging in 

Python-pipelines and interfaces (Nipype), and CONN for resting state and task-based connectivity analysis. 

 

 

4. RESULTS AND DISCUSSION 

Advancements in the automated classification model using medical images also require an update in 

the preprocessing pipeline. Although neuroimaging research in ASD produces a huge amount of information, 

it is challenging to achieve high-quality MRI images. The selection of the image processing pipeline is 

equally important as the selection of the correct imaging modality for accurate classification. The study 

presented modality-based denoising approaches to increase image quality. The denoising results proved that 

the jpg images are lossy and contain static information but are helpful for structure-based classification. The 

high-resolution 3D images are a source of temporal information, but the denoising is comparatively  

time-consuming and complicated, useful for event-based, resting state connectivity analysis such as cognitive 

disorders. Visual check and quality assurance parameters were observed successfully for both modalities. 

The MRI modalities are preferred for multiple cognitive disorder diagnosis using structural information, 

functional connectivity analysis, and the fusion of the features. Measurement consistency is crucial for 

parcellation and brain segmentation quality. Quality control ensures the detection of inaccuracies and 

correcting or excluding if required. The image quality for JPEG images was assessed using the CNN model 

with the raw images and filtered images; the classification rate was found to be higher after denoising.  

The functional images were applied for ROI analysis, and a significant difference in the connectivity 

measures before and after preprocessing was found. The study highlighted the neuroimaging modality 

variations and the appropriate denoising strategies to achieve reliable, generalized, and accurate 

classification. The study also emphasized the ROI analysis using the segmented images, which is crucial for 

future analysis. The work was implemented with a limited number of images and can be performed with a 

larger dataset. The study is not applied to medical images of injury or tumor, and we believe structural 

modalities are useful for such classification. The challenge for researchers currently consists of critical issues 

such as multisite and multimodal datasets, multiple tools and techniques, and the selection of preprocessing 

steps. The current study offers extensive comparative results, aiming to guide neuroimaging researchers in 

choosing suitable modalities and preprocessing for a particular problem. 
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5. CONCLUSION 

Due to the complex interactions and comorbidities with other impairments, the information 

observed using imaging data needs to be standardized and generalized globally. Dealing with the complexity 

effectively and extracting significant information from these images requires advanced techniques and 

algorithms. The results observed using 2D image denoising motivated using 3D images in further research to 

improve the process and achieve more discriminative results. Clear and intense information is crucial to 

achieving higher accuracy, which is only possible with 3D images. The future work is to implement more 

images with AI methods to prove the importance of MRI images for cognitive research. The methodological 

improvement also depends on the quality and dimensionality of the dataset. We tried some autistic MRI 

images in the single-layer format and found that the images were not as visually clear as in the 3D format and 

did not execute well with the applied filters. The need for present AI methodologies is a huge, intense, and 

more informative dataset to produce computer-added solutions for disorders like autism. There exists a 

magnificent diversity in the functional connectivity in the brain, which directly correlates with the 

heterogeneous nature of autism. The study suggests MRI images produce extensive information for 

underlying disorders. To address the challenges of autism, collective efforts in data repository initiatives, 

quality control, and standard tools and methodology for analysis are required. 
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