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 This paper proposes a new approach to soft decoding for linear block codes 

called dual simulated annealing soft decoder (DSASD) which utilizes the 

dual code instead of the original code, using the simulated annealing 
algorithm as presented in a previously developed work. The DSASD 

algorithm demonstrates superior decoding performance across a wide range 

of codes, outperforming classical simulated annealing and several other 

tested decoders. We conduct a comprehensive evaluation of the proposed 
algorithm's performance, optimizing its parameters to achieve the best 

possible results. Additionally, we compare its decoding performance and 

algorithmic complexity with other decoding algorithms in its category. Our 

results demonstrate a gain in performance of approximately 2.5 dB at a bit 
error rate (BER) of 6×10⁻⁶ for the LDPC (60,30) code. 
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1. INTRODUCTION 

In digital communication systems, ensuring reliable information transmission over noisy channels is 

a paramount concern. Error correction techniques [1] play a vital role in addressing this challenge. Among 

these techniques, linear block codes [2] are particularly noteworthy. These codes add redundant bits to the 

original message, forming codewords, which enable error detection and correction during transmission. 

Decoding algorithms are designed to determine the most probable transmitted codeword from the received 

signal, as shown in Figure 1. 

Traditionally, hard-decision decoding algorithms have been employed. However, these algorithms 

can be computationally intensive and may discard valuable soft information present in the received signal.  

To address these limitations, researchers have increasingly turned to soft decision decoding algorithms that 

incorporate the continuous nature of the received signal's amplitude. Soft decision decoding algorithms 

leverage advanced techniques from information theory, linear algebra, and signal processing to decode 

received signals with high accuracy. These algorithms are particularly effective in noisy channels, where the 

reliability of individual bits is uncertain and requires probabilistic treatment. The performance optimization 

of such algorithms is also a concern to be addressed.  

Performance optimization of soft decision decoding algorithms is crucial for achieving improved 

error correction capabilities. In recent years, metaheuristic and optimization techniques have gained attention 

for their potential to enhance the performance of these algorithms. Among these techniques, simulated 

annealing has emerged as a prominent method. 

Simulated annealing [3], a technique modeled after the metallurgical annealing process, is well suited 

for finding near-optimal solutions in complex search spaces. For example, authors in [4], [5] have demonstrated 

the effectiveness of simulated annealing in improving error correction performance. Additionally, Chen et al. [6] 
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have combined simulated annealing with genetic algorithms, while Niharmine et al. [7] introduced a simulated 

annealing-based algorithm designed for soft decision decoding of linear block codes.  

Furthermore, Azouaoui et al. [8] developed a new effective technique using the dual code to reduce 

the complexity of decoding high-rate codes. This approach simplifies the decoding process while maintaining 

high accuracy. Despite these advancements, the integration of simulated annealing with dual decoding 

techniques remains underexplored in the literature. 

This paper aims to combine the simulated annealing decoder developed by Niharmine et al. [7] with 

the dual decoding technique used by Azouaoui et al. [8] to create an efficient and effective error correction 

method for linear block codes. By integrating these techniques, we seek to enhance decoding performance 

and improve the data transmission reliability over noisy channels. Surprisingly, this new algorithm gives 

nearly the same performance as in [7].  

The following sections of this paper are organized as follows: section 2 discusses the fundamentals of 

the simulated annealing algorithm. Section 3 presents our proposed decoder based on the simulated annealing 

process and duality property. Section 4 examines parameter tuning to find the optimal values to work with, 

simulation results, and comparisons with main competitors' decoders. Finally, we conclude the paper. 

 

 

 
 

Figure 1. Communication system model 

 

 

2. COMPREHENSIVE THEORETICAL BASIS 

2.1.  Basic notations 

For the rest of this article, C(n, k, d) will denote a linear code with parameters length n, dimension k, 

error correction capability t and minimum distance d over the field F2. This code is representable by a k×n 

matrix G known as the generator matrix. For the simulated annealing algorithms, Ni is the number of 

iterations, Ts the starting temperature, Tf the final temperature, α the cooling ratio, S0 the start solution and  

Nc the number of iterations required to reach the final temperature Tf. For genetic algorithms, Ni, Ne, and Ng 

represent the size of the population, the total of elite members, and the generations total, respectively. For the 

compact genetic algorithm decoder (CGAD) algorithm [9], Tc represents the average number of generations. 

 

2.2.  Simulated annealing 

Simulated annealing is a versatile metaheuristic algorithm widely used for solving optimization 

problems. Leveraging the understanding of annealing from the field of metallurgy, it was first introduced by 

Kirkpatrick et al. [3]. The algorithm is particularly effective in finding approximate solutions to both 

combinatorial and continuous optimization problems. It is also known for its ability to escape local optima, a 

common issue in optimization algorithms, especially in gradient-based methods. Local optima occur when an 

algorithm converges to a solution that is optimal within a limited region but not necessarily the global 

optimum. Simulated annealing addresses this by probabilistically accepting worse solutions, allowing it to 

explore the solution space more thoroughly. Due to these properties, simulated annealing algorithm has a 

significant impact in various fields, with applications to combinatorial optimization problems, including but 

not limited to the traveling salesman problem (TSP) [10]–[12] and the quadratic assignment problem (QAP) 

[13], [14], very large-scale integration (VLSI) circuit design [15]–[17], to name a few. Here is a description 

of the simulated annealing algorithm: 

a) Initialization: start with an initial solution and set an initial temperature (T) along with a cooling 

schedule to decrease T over time. 

b) Iteration: repeat until a stopping criterion is met (e.g., max iterations or low temperature): 

i) Neighborhood generation: apply a perturbation to the current solution, yielding a neighboring solution. 
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ii) Objective function evaluation: the objective function value of the new solution is calculated to assess its 

quality. Optimization problems typically aim to minimize this value. 

iii) Acceptance or rejection: 

‒ A better new solution is accepted as the current one. 

‒ A worse solution is accepted with a probability exp(-ΔE / T), where ΔE is the difference in objective 

function values. 

c) Cooling: decrease the temperature according to the cooling schedule, which controls the balance 

between exploration (higher temperature, more acceptance of worse solutions) and exploitation (lower 

temperature, less acceptance of worse solutions). 

d) Termination: stop based on reaching a maximum number of iterations, a specific temperature, or a 

satisfactory solution quality. 

e) Output: return the best solution found. 

The subsequent pseudocode illustrates a basic implementation of the simulated annealing algorithm, 

with all the previous steps: 

 
Initialization of parameters (Ni, Ts, Tf, S0) 

Set T←Ts   and   S←S0 

While (T >Tf) 

{ 

  While (iteration < Ni) 

   {  

     Select an adjacent solution at random (sn); 

     Evaluate ΔEnergy = Energy(sn) – Energy(s); 

     If ΔEnergy ≤ 0 then s←sn ; 

     else if  random(0,1)  ≤  Exp(-ΔEnergy/T) )  then 

      s←sn ; end if;  

     end if; 

     iteration←iteration+1; 

   } 

T←cooling(T); 

} 

 

Key components and parameters of the simulated annealing algorithm include the initial temperature, cooling 

schedule, neighborhood generation strategy, and acceptance probability calculation. Properly tuning these 

parameters is crucial to the algorithm's effectiveness in finding high-quality solutions to optimization 

problems. The approach is explained in more detail in section 3.2. 

 

2.3.  Duality property for decoding 

To encode a message m = {mi}1
k, we can use (1): 

 

𝑐 =  𝑚𝐺 (1) 

 

Where c is the codeword. Additionally, in order to determine whether a specific vector is a valid codeword, 

we introduce a (n-k)×n matrix denoted by H (parity-check matrix (PCM)). This particular matrix has the 

following property: 

 

∀ 𝑣 𝜖 𝐹2
𝑛, v is a codeword if and only if: 𝐻𝑣ᵀ =  0 (2) 

 

Consider the scenario where we transmit a codeword c={ci}1
n using BPSK modulation. Let's denote 

z={zi}1
n as the modulated signal transmitted over a Gaussian channel, subject to independent noise 

components n={ni}1
n. Here, both z and n are sequences that are statistically independent. Specifically,  

each ni is normally distributed with mean 0 and variance N0 (𝑛𝑖  ∼  (Ɲ(0,
𝑁0

2
))) where N0 represents the 

noise power density. 

The received signal, denoted as r={ri}1
n, is given by the equation r=z+n. We introduce v={vi}1

n as 

the binary hard decisions derived from r (quantization of r). Furthermore, we express the error syndrome 

s={si}1
n-k as in (3): 

 

𝑠 = 𝑣𝐻𝑇 (3) 

 

In the latter expression the syndrome s is obtained based on the hard decisions made from the 

received signal r. “s=0” means that the received signal corresponds to a valid codeword, indicating an  

error-free transmission. However, in the presence of transmission errors, our decoder endeavors to 
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determine the codeword ĉ that maximizes the probability P(c|r) within the code space C. Given that all 

codewords have an equal likelihood of being transmitted, we can write: 
 

𝑃(ĉ|𝑟)  =  𝑚𝑎𝑥𝐶 𝑃(𝑐|𝑟)  =  𝑚𝑎𝑥 𝑐 𝑖𝑛 𝐶 𝑃(𝑟|𝑐) 𝑃(𝑐) / 𝑃(𝑟) (4) 
 

Considering a discrete memoryless channel with additive white Gaussian noise, where binary 

antipodal signals are transmitted, with each symbol being independently affected by noise, the maximization 

of P(r|ĉ) occurs when we minimize the squared norm of the difference between r and ĉ (∑ (𝑟𝑖 − 𝑐𝑖)
2𝑛

𝑛=1 )  

(or squared Euclidean distance between r and ĉ) as explained in [18], [19]. Consequently, the complex task of 

maximum-likelihood decoding simplifies to the more straightforward nearest neighbor decoding, using the 

Euclidean metric. To formalize this reduction, we can express the soft-decision decoding problem as (5) [20]: 
 

𝐺𝑖𝑣𝑒𝑛 𝑎 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑤𝑜𝑟𝑑 𝑟 = {𝑟𝑖}1
𝑛 ; 

𝑓𝑖𝑛𝑑 𝑎 𝑐𝑜𝑑𝑒𝑤𝑜𝑟𝑑 𝑐 𝑖𝑛 𝐶 𝑤ℎ𝑖𝑐ℎ 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑠 ∑ (𝑟𝑖 − 𝑐𝑖)
2𝑛

𝑛=1  (5) 
 

This optimization problem involves n variables, with only k variables as generator base (k most independent 

and reliable bits). 

Instead of solving this optimization problem on the code space, our approach is to search for the 

error vector, denoted as e, that optimizes the solution. To this end, we will construct the error vector e 

through a heuristic method that leverages the dual property [8]. The error e has n variables, with only k being 

independent. By using these k variables and leveraging the algebraic structure of the code, we can deduce the 

k remaining variables. By doing so, we can deduce, to a certain degree, what was originally sent using (6): 
 

𝑐 =  𝑣 +  𝑒 (6) 
 

Since the PCM can be written as H=[A In-k], where A is a binary matrix of size (n–k)×k, we can write:  
 

(𝑣 + 𝑒)𝐻𝑇 =  0 ⇔    𝑒𝐻𝑇  =  𝑠 (7) 
 

We define the reliable information set as the collection of the k most reliable positions within the received 

signal r={ri}1
n. Using this reliability information set, the error vector can be represented as e = (eX, eY), where 

X represents the reliable information set, and Y = {1 n}\X. Consequently, relation (7) can be expressed as (8): 
 

(𝑒𝑋, 𝑒𝑌)(𝐴𝑇, 𝐼𝑛−𝑘) =  𝑠 ⇔ 𝑒𝑌 = 𝑒𝑋𝐴𝑇 + 𝑠  (8) 
 

Having the first part of the error vector (eX), and using the equation above, we can deduce the 

second part of the error eY and complete the whole error vector e = (eX, eY). We can then verify that (v+e) is a 

valid codeword. 

Our endeavor is to search, amongst all the error set Err(s) with syndrome s, for the error vector e 

which minimizes the squared norm of the difference between the received signal r and the related codeword 

c=(v+e) which is given by (9): 
 

The squared norm of the difference between r and c: ∑ (𝑟𝑖 − 𝑐𝑖)2𝑛
𝑛=1  (9) 

 

Taking into account the analysis provided earlier, the algorithm's description and steps are outlined in the 

following section. 
 

 

3. THE DUAL SIMULATED ANNEALING SOFT DECODER ALGORITHM 

3.1.  Construction of the DSASD algorithm 

Building on the previous section, where we outlined the two fundamental components of our 

proposed algorithm, the next section presents the dual simulated annealing soft decoder (DSASD). Table 1 

outlines the complete mapping between the proposed algorithm and the physical simulated annealing. The 

energy is represented as the Euclidean distance between the received word and a codeword, and the state is 

represented as a k-bit vector. The lowest energy state corresponds to the nearest codeword.  
 
 

Table 1. Mapping between the proposed algorithm (DSASD) and physical simulated annealing algorithm 
Physical simulated annealing DSASD 

Energy The Euclidean distance between a codeword and the received word  

State k-bit vector 

Final state The decoded word 
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The DSASD algorithm is described as follows: 

i) Step 1: randomly generate and encode k binary information bits using the code's matrix G, resulting in 

an n-bit vector. After transforming each 0 to a 1 and each 1 to a -1, introduce simulated Gaussian noise 

to produce a received vector, denoted as r, where r belongs to ℝn.  

ii) Step 2: after receiving the sequence r={ri}1
n, make a binary hard decision for this received signal 

r={ri}1
n to obtain v={vi}1

n: 

 

𝑣𝑖 = {
1, 𝑟𝑖 < 0
0, 𝑟𝑖 ≥ 0

  

 

iii) Step 3: compute the syndrome as s=vHᵀ. If s equals zero, output v and terminate; otherwise, proceed 

further. 

iv) Step 4: apply a permutation to the coordinates of the received vector r, ensuring that the last (n-k) 

positions hold the least reliable linearly independent components of r. 

‒ ri is considered more reliable than rj if |ri| > |rj| based on the assumption that the data is corrupted by 

additive white Gaussian noise during transmission. 

‒ Sort the sequences r={ri }1
n in descending order of reliability, then apply a second permutation that 

lets the last n-k elements of r be the least linearly independent elements, to create new sequences 

r’={r’i}1
n. Let's denote π as the permutation mapping r’=π(r). 

‒ Apply this permutation π to H to obtain H’ (H’=π(H)) and v’(v’=π(v)). 

‒ Use Gaussian elimination on H’ to derive a systematic matrix. 

v) Step 5: Generate an error vector of k-bits with s as syndrome: 

‒ The first generated error vector can be the zero vector. 

‒ Randomly generate an error vector eX of k-bits. 

‒ The second part of the vector is eY=eXAT+s 

‒ The error vector e is formed as (eX , eY) 

vi) Step 6: apply the simulated annealing algorithm and use (8) to get the best error candidate ebest.  

This algorithm is depicted afterwards. 

vii) Step 7: Obtain the codeword: 

‒ The obtained codeword c’=v'+ebest is associated with the matrix H’, hence we estimate the 

codeword ĉ to be: 

 

ĉ = 𝜋−1(𝑐’) (10) 

 

A simulated annealing algorithm, using squared Euclidean distance as its objective function, finds the 

closest codeword. Our simulated annealing method, used in step 6, differs from classical simulated annealing 

by using reliability information to guide solution generation, rather than random bit flipping as follows: 

 
select_neighbor() { 

For each bit i = 1 to k 

If (Random (between 0 and 1) > 
1

1+exp(−2
ri

′

N0
)

   ) then (switch the 

bit r’i) 

 End for    } 

 

Finally, the DSASD algorithm can be represented with the following pseudocode: 

 
Set the parameters {Ni ,Ts ,Tf, α, S0}; Set   T  = T0   and   S  = S0 

While (T >Tf) { 

 While (iteration < Ni) { 

 Sn = select_neighbor(); 

 ΔEnergy = Energy(Sn) - Energy(S); 

 error = EvaluateCorrectedError(); 

 if (error < T) then break; 

 if ΔEnergy ≤ 0 then S = Sn; 

 else if random(0,1) ≤ Exp(-ΔEnergy/T) then  

S = Sn ; end if 

 end if 

 iteration = iteration + 1; 

} 

T = α * T  

} 
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where energy(s)=∑ (𝑟′𝑖 − 𝑐𝑖)
2𝑛

𝑛=1 , and c={ci}1
n is the related codeword. 

 

3.2.  DSASD algorithm parameter tuning 

Optimizing our algorithm's parameters {αi, Ni, Ts, Tf} is a key challenge. While probabilistic models 

like MacKay's [21] could be used, we instead conduct multiple simulations due to our assumption of 

parameter independence. We evaluate bit error rate (BER) against signal to noise ratio (SNR), varying one 

parameter at a time while holding the others at their default values, as outlined in Table 2. The variations of 

parameters α and Ni are illustrated in Figure 2, which consists of two sub-figures: 

‒ Parameter α: analyzing Figure 2(a) shows that choosing α=0.95 is an effective option for the cooling 

ratio, approaching the best performance. In practical applications, a deliberate slow cooling mechanism 

is beneficial, as it helps in identifying and utilizing codewords with low Euclidean distance. 

‒ Parameter Ni: we typically determine the optimal number of iterations experimentally. Our simulations, 

shown in Figure 2(b), indicate that setting Ni to 250 yields near-optimal results. 

The effects of parameters Ts and Tf on system performance are depicted in Figure 3, comprising two  

sub-figures: 

‒ Parameter Ts: examining the simulation results presented in Figure 3(a), it is evident that the optimal 

initial temperature Ts is 0.2. Given the significant impact of this parameter on accuracy, various 

methods for estimating Ts effectively have been proposed, such as those introduced in [22]. 

‒ Parameter Tf: in the context of physics, the concept of a freezing temperature is intuitively used to  

achieve equilibrium. Our simulations, as shown in Figure 3(b), confirm this idea, demonstrating that  

optimal performance is consistently attained across various SNR values when the temperature decreases to 

Tf=0.001. 

 

 

Table 2. Parameter values of the DSASD algorithm 
Parameter Value 

Default code BCH(63,45,7) 

Channel AWGN 

Modulation BPSK 

Minimum number of bit errors 200 

Minimum number of blocks 1000 

Ni 250 

Ts 0.2 

Tf 0.001 

α 0.95 

 

 

  
(a) (b) 

 

Figure 2. Variation of (a) parameter α and (b) number of iterations 
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(a) (b) 

 

Figure 3. Evolution of (a) parameter Ts and (b) parameter Tf 

 

 

3.3.  Complexity analysis 

DSASD algorithm's step 4 has O(k²n) time complexity [23]. However, parallelization can reduce the 

time complexity to O(kn), a cost negligible compared to step 6’s (NiNc nk) time complexity. As shown in 

Table 3, the computational cost of the Chase-2 [24] and soft decoding based genetic algorithm (SDGA) [25] 

algorithms scales exponentially with t. Therefore, codes with high error correction capabilities present the 

most challenging computational complexity and tend to exhibit suboptimal performance as n increases. 

Conversely, the DSASD, simulated annealing soft decoder (SASD) [7], dual domain decoding genetic 

algorithm (DDGA) [8], CGAD [9], Maini [20], and genetic algorithm for decoding systematic block codes 

(AutDAG) [26] algorithms exhibit linear complexity, with respect to either n or k. 

 

 

Table 3. Comparison of the DSASD algorithm complexity with others 
Parameter Value 

Chase-2 O(2t n²log2(n)) 

DDGA O(NiNg [k(n − k) + log(Ni)]) 

Maini O(NiNg [kn + log(Ni)]) 

AutDAG O(NiNg kn) 

SDGA O(2t (NiNg [kn² + kn + log(Ni)])) 

CGAD O(Tc k(n-k)) 

SASD O(NiNc kn) 

DSASD O(NiNc nk) 

 

 

4. RESULTS AND DISCUSSION 

This study examines the impact of combining the dual property with simulated annealing in the 

DSASD algorithm. Although previous research has applied the dual property with various decoders, this 

specific combination has not been previously explored. The DSASD algorithm was implemented in C, with 

figures generated using octave [27]. Our simulations were performed on a workstation with an Intel 

Core(TM) i7-6920HQ processor with 16 GB of memory clocked at 2.90 GHz, running Ubuntu 18.04.6 LTS 

x86_64 operating system. Optimal values for algorithm parameters were selected as outlined in section 3.2. 

Performance was assessed based on BER as a function of SNR (Eb/N0). 

We conducted a comparative analysis of the proposed DSASD algorithm against classical simulated 

annealing, SASD [7], and other decoders in the same category. The simulations were performed using the 

default parameters specified in Table 2. Starting from the next paragraph, we detail the performance of 
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DSASD compared to a set of other decoders, including SASD [7], classical simulated annealing, Chase-2 

[24], DDGA [8], CGAD [9], Maini [20], compact genetic algorithm with high selection pressure (cGA-HSP) 

[28], AutDAG [26], compact genetic algorithm with memory (cGA-M) [29], genetic algorithm meta-decision 

decoder (GAMD) [30], SDGA [25], and classical binary phase shift keying (BPSK) decoding algorithms. 

The comparison of DSASD, SASD, and classical simulated annealing for BCH(31,21,5), 

BCH(63,45,7), and LDPC(60,30) codes is shown in Figure 4. This comparison underscores the superior 

efficacy of both the DSASD and SASD algorithms over the classical method for these codes. Specifically, 

Figure 4(a) illustrates the results for BCH(31,21,5), Figure 4(b) for BCH(63,45,7), and Figure 4(c) for 

LDPC(60,30). 

 
 

  
(a) (b) 

 

 
(c) 

 
Figure 4. Comparison of DSASD, SASD, and classical simulated annealing for the (a) BCH(31,21,5),  

(b) BCH(63,45,7), and (c) LDPC(60,30) 

 
 

The evaluation of DSASD decoding performance against various competitor algorithms is presented 

in Figure 5. Figure 5(a) demonstrates that the DSASD algorithm outperforms other algorithms by 1 dB at 

10⁻³ over the GAMD [30] algorithm for the LDPC(60,30) code, and Figure 5(b) shows that DSASD achieves 

a 0.25 dB gain over SDGA at 10⁻⁴ and about a 1.83 dB gain at 10⁻³ over BPSK decoding for the RM(32,16,8) 

code. The performance comparison of DSASD and other competing algorithms on BCH codes is presented in 
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Figure 6. For BCH(31,21,5), as shown in Figure 6(a), the DSASD algorithm surpasses classical simulated 

annealing (by 1 dB starting from 10⁻³), Chase-2 and CGAD by 0.5 dB at 10⁻⁴, and produces results nearly 

identical to those of SASD and Maini, except for Maini with a 0.31 dB difference at 10⁻⁵. Similar superior 

performance is observed for the BCH(63,45,7) code in Figure 6(b), where DSASD outperforms SDGA, 

Chase-2, cGA-M, cGA-HSP, and AutDAG, with comparable performance to DDGA [8] and SASD [7]. 

 

 

  
(a) (b) 

 
Figure 5. Evaluation of DSASD decoding performance against competitor algorithms applied to:  

(a) LDPC(60,30) and (b) RM(32,16,8) 

 

 

  
(a) (b) 

 
Figure 6. Performance comparison of DSASD and competing algorithms on BCH codes: (a) BCH(31,21,5) 

and (b) BCH(63,45,7). 

 

 

The simulation results clearly indicate that the proposed DSASD algorithm offers superior 

performance compared to classical simulated annealing and many other decoders tested across various codes. 

Notably, the DSASD achieves significant gains, such as up to 2 dB for BCH(63,45,7) and LDPC(60,30), 

demonstrating consistent improvement over other methods. Additionally, the close alignment in outcomes 

between SASD and DSASD further validates the robustness and effectiveness of the proposed algorithm. The 

superior performance of the DSASD algorithm can be attributed to the effective integration of the dual 

property with simulated annealing, which can be noticed on large codes. The consistency of results across 
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different codes indicates that the proposed method is robust and adaptable to a range of error correction 

scenarios. 

This study demonstrated the successful integration of simulated annealing with the dual property of 

linear block codes. While promising, further research is required to confirm its applicability to other codes 

and to improve convergence. Specifically, optimizing the cooling schedule could address slow convergence 

issues, and adapting the decoder for broader code compatibility could enhance the algorithm’s overall 

effectiveness and versatility. These efforts will be key to overcoming the current limitations and expanding 

the DSASD algorithm's potential. 

Finally, this study highlights the DSASD algorithm's superior performance, achieving up to 2 dB 

improvement over classical simulated annealing and other decoders, particularly for large codes like 

BCH(63,45,7) and LDPC(60,30). The successful integration of simulated annealing with the dual property 

underscores its robustness. However, further research is needed to improve convergence and extend its 

applicability to a wider range of codes, ensuring the DSASD algorithm reaches its full potential. 

 

 

5. CONCLUSION 

In this paper, we introduced a new soft decoder for linear block codes by integrating the simulated 

annealing process with the duality property of linear block codes. The simulated annealing algorithm uses a 

probabilistic approach to explore the solution space, drawing inspiration from the annealing process. 

Suboptimal solutions are accepted according to a temperature schedule. Our proposed DSASD surpasses 

classical simulated annealing and other decoders such as SDGA, AutDAG, Chase-2, and CGAD for specific 

codes, achieving gains of up to 2.5 dB at a BER of 6×10-6 for the LDPC(60, 30) code. A key advantage of 

DSASD is its ability to leverage reliability information from received data to initiate the search and generate 

neighboring solutions. Additionally, we conducted a comparative analysis of algorithmic complexity, 

highlighting DSASD's efficiency. Future work should focus on enhancing the convergence of the cooling 

mechanism and extending the algorithm’s applicability to a broader range of codes. 

 

 

FUNDING INFORMATION 

Authors state no funding involved. 

 

 

AUTHOR CONTRIBUTIONS STATEMENT 

This journal uses the Contributor Roles Taxonomy (CRediT) to recognize individual author 

contributions, reduce authorship disputes, and facilitate collaboration.  

 

Name of Author C M So Va Fo I R D O E Vi Su P Fu 

Hicham Tahiri Alaoui ✓ ✓ ✓ ✓ ✓ ✓  ✓ ✓ ✓ ✓  ✓  

Ahmed Azouaoui ✓ ✓ ✓ ✓  ✓ ✓  ✓ ✓ ✓ ✓ ✓  

Jamal El Kafi  ✓  ✓   ✓ ✓  ✓ ✓ ✓ ✓  

 

C :  Conceptualization 

M :  Methodology 

So :  Software 

Va :  Validation 

Fo :  Formal analysis 

I :  Investigation 

R :  Resources 

D : Data Curation 

O : Writing - Original Draft 

E : Writing - Review & Editing 

Vi :  Visualization 

Su :  Supervision 

P :  Project administration 

Fu :  Funding acquisition 

 

 

 

CONFLICT OF INTEREST STATEMENT 

Authors state no conflict of interest. 

 

 

INFORMED CONSENT 

Not applicable. No personal information was included in this study. 

 

 

ETHICAL APPROVAL 

Not applicable. No research related to human use has been done in this paper. 

 



                ISSN: 2252-8938 

Int J Artif Intell, Vol. 14, No. 4, August 2025: 2776-2787 

2786 

DATA AVAILABILITY 

Data availability is not applicable to this study, as the data analyzed consist solely of randomly 

generated binary message sequences used for codeword simulation. These can be reproduced by any 

researcher using the described algorithm. 

 

 

REFERENCES 
[1] D. J. Costello, J. Hagenauer, H. Imai, and S. B. Wicker, “Applications of error-control coding,” IEEE Transactions on 

Information Theory, vol. 44, no. 6, pp. 2531–2560, 1998, doi: 10.1109/18.720548. 

[2] B. Sklar and F. J. Harris, “The ABCs of linear block codes,” IEEE Signal Processing Magazine, vol. 21, no. 4, pp. 14–35, 2004, 

doi: 10.1109/MSP.2004.1311137. 

[3] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science, vol. 220, no. 4598, pp. 671–680, 

1983, doi: 10.1126/science.220.4598.671. 

[4] A. E. Gamal, L. Hemachandra, I. Shperling, and V. Wei, “Using simulated annealing to design good codes,” IEEE Transactions 

on Information Theory, vol. 33, no. 1, pp. 116–123, 1987, doi: 10.1109/TIT.1987.1057277. 

[5] B. Aylaj and M. Belkasmi, “Simulated annealing decoding of linear block codes,” in Proceedings of the Mediterranean 

Conference on Information & Communication Technologies 2015, Apr. 2016, vol. 380, pp. 175–183, doi: 10.1007/978-3-319-

30301-7_19. 

[6] H. Chen, N. S. Flann, and D. W. Watson, “Parallel genetic simulated annealing: a massively parallel SIMD algorithm,” IEEE 

Transactions on Parallel and Distributed Systems, vol. 9, no. 2, pp. 126–136, 1998, doi: 10.1109/71.663870. 

[7] L. Niharmine, H. Bouzkraoui, A. Azouaoui, and Y. Hadi, “Simulated annealing decoder for linear block codes,” Journal of 

Computer Science, vol. 14, no. 8, pp. 1174–1189, 2018, doi: 10.3844/jcssp.2018.1174.1189. 

[8] A. Azouaoui, M. Belkasmi, and A. Farchane, “Efficient dual domain decoding of linear block codes using genetic algorithms,” 

Journal of Electrical and Computer Engineering, vol. 2012, no. 1, 2012, doi: 10.1155/2012/503834. 

[9] A. Azouaoui, A. Berkani, and P. M. Belkasmi, “An efficient soft decoder of block codes based on compact genetic algorithm,” 

arXiv-Computer Science, pp. 1–8, 2012. 

[10] X. Geng, Z. Chen, W. Yang, D. Shi, and K. Zhao, “Solving the traveling salesman problem based on an adaptive simulated 

annealing algorithm with greedy search,” Applied Soft Computing Journal, vol. 11, no. 4, pp. 3680–3689, 2011, doi: 

10.1016/j.asoc.2011.01.039. 

[11] E. H. L. Aarts, J. H. M. Korst, and P. J. M. van Laarhoven, “A quantitative analysis of the simulated annealing algorithm: A case 

study for the traveling salesman problem,” Journal of Statistical Physics, vol. 50, no. 1–2, pp. 187–206, 1988, doi: 

10.1007/BF01022991. 

[12] S. Zhan, J. Lin, Z. Zhang, and Y. Zhong, “List-based simulated annealing algorithm for traveling salesman problem,” 

Computational Intelligence and Neuroscience, vol. 2016, pp. 1–12, 2016, doi: 10.1155/2016/1712630. 

[13] A. Misevičius, “A modified simulated annealing algorithm for the quadratic assignment problem,” Informatica, vol. 14, no. 4, pp. 

497–514, 2003, doi: 10.15388/Informatica.2003.037. 

[14] M. R. Wilhelm and T. L. Ward, “Solving quadratic assignment problems by ‘simulated annealing,’” IIE Transactions, vol. 19, no. 

1, pp. 107–119, 1987, doi: 10.1080/07408178708975376. 

[15] J. A. Chandy and P. Banerjee, “Parallel simulated annealing strategies for VLSI cell placement,” in Proceedings of 9th 

International Conference on VLSI Design, 1996, pp. 37–42, doi: 10.1109/ICVD.1996.489451. 

[16] J. Chen, W. Zhu, and M. M. Ali, “A hybrid simulated annealing algorithm for nonslicing VLSI floorplanning,” IEEE 

Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews, vol. 41, no. 4, pp. 544–553, 2011, doi: 

10.1109/TSMCC.2010.2066560. 

[17] D. Kolar, J. D. Puksec, and I. Branica, “VLSI circuit partition using simulated annealing algorithm,” in Proceedings of the 12th 

IEEE Mediterranean Electrotechnical Conference (IEEE Cat. No.04CH37521), 2004, pp. 205–208, doi: 

10.1109/MELCON.2004.1346809. 

[18] K. Farrell, L. Rudolph, C. Hartmann, and L. Nielsen, “Decoding by local optimization (Corresp.),” IEEE Transactions on 

Information Theory, vol. 29, no. 5, pp. 740–743, 1983, doi: 10.1109/TIT.1983.1056724. 

[19] G. C. Clark and J. B. Cain, Error-correction coding for digital communications. Boston, MA: Springer United States, 1981, doi: 

10.1007/978-1-4899-2174-1. 

[20] H. Maini, K. Mehrotra, C. Mohan, and S. Ranka, “Genetic algorithms for soft-decision decoding of linear block codes,” 

Evolutionary Computation, vol. 2, no. 2, pp. 145–164, 1994, doi: 10.1162/evco.1994.2.2.145. 

[21] D. J. C. MacKay, Information theory, inference and learning algorithms. Cambridge, United Kingdom: Cambridge University 

Press, 2003, doi: 10.1017/S026357470426043X. 

[22] W. Ben-Ameur, “Computing the initial temperature of simulated annealing,” Computational Optimization and Applications, vol. 

29, no. 3, pp. 369–385, 2004, doi: 10.1023/B:COAP.0000044187.23143.bd. 

[23] Y. S. Han, C. R. P. Hartmann, and C.-C. Chen, “Efficient maximum-likelihood soft-decision decoding of linear block codes using 

algorithm A*,” in IEEE International Symposium on Information Theory, San Antonio, United States, 1993, pp. 27–27, doi: 

10.1109/ISIT.1993.748342. 

[24] D. Chase, “Class of algorithms for decoding block codes with channel measurement information,” IEEE Transactions on 

Information Theory, vol. 18, no. 1, pp. 170–182, 1972, doi: 10.1109/TIT.1972.1054746. 

[25] A. Azouaoui and M. Belkasmi, “A new genetic decoding of linear block codes,” in 2012 International Conference on Multimedia 

Computing and Systems, 2012, pp. 1176–1182, doi: 10.1109/ICMCS.2012.6320254. 

[26] S. Nouh, I. Chana, and M. Belkasmi, “Decoding of block codes by using genetic algorithms and permutations set,” International 

Journal of Communication Networks and Information Security, vol. 5, no. 3, pp. 201–209, Dec. 2013, doi: 

10.17762/ijcnis.v5i3.428. 

[27] J. W. Eaton, D. Bateman, S. Hauberg, and R. Wehbrin, “GNU Octave version 5.2.0 manual: a high-level interactive language for 

numerical computations,” Octave. 2020. [Online]. Available: https://www.octave.org/ 

[28] A. Berkani, A. Azouaoui, and M. Belkasmi, “Soft-decision decoding by a compact genetic algorithm using higher selection 

pressure,” in 2015 International Conference on Wireless Networks and Mobile Communications (WINCOM), 2015, pp. 1–6, doi: 

10.1109/WINCOM.2015.7381308. 

 



Int J Artif Intell  ISSN: 2252-8938  

 

Dual simulated annealing soft decoder for linear block codes (Hicham Tahiri Alaoui) 

2787 

[29] A. Berkani, A. Azouaoui, M. Belkasmi, and B. Aylaj, “Improved decoding of linear block codes using compact genetic 

algorithms with larger tournament size,” International Journal of Computer Science Issues, vol. 14, no. 1, pp. 15–24, 2017, doi: 

10.20943/01201701.1524. 

[30] A. G. Scandurra, A. L. Dai Pra, L. Arnone, L. Passoni, and J. C. Moreira, “A genetic-algorithm based decoder for low density 

parity check codes,” Latin American Applied Research, vol. 36, no. 3, pp. 169–172, 2006. 
 

 

 

BIOGRAPHIES OF AUTHORS 

 

 

Hicham Tahiri Alaoui     holds an engineering degree from Ecole Nationale 
Supérieure d’Informatique et d’Analyse des Systèmes (ENSIAS), Morocco in 2006. He is 

currently pursuing a Ph.D. degree at the Faculty of Science, Chouaib Doukkali University, 

Morocco. His research includes information theory, information security, cryptanalysis, deep 
learning, and machine learning. He can be contacted at email: hicham.ta@gmail.com or 

tahiri-alaoui.h@ucd.ac.ma. 

  

 

Ahmed Azouaoui     received his license in computer science and engineering in 
June-2001 and master in computer science and telecommunication from University of 

Mohammed V - Agdal, Rabat, Morocco in 2003. He received his Ph.D. in computer science 
in 2014 and engineering at Department of Computer Science, National School of Computer 

Science and Systems Analysis (ENSIAS), Rabat, Morocco. Currently, he is a professor at 

Higher School of Technology, Ibn Tofail University, Morocco. His areas of interest are 

information systems, coding theory, and artificial intelligence. He can be contacted at email: 
a.azouaoui@uit.ac.ma. 

  

 

Jamal El Kafi     seasoned academic with a Ph.D. in robotics and certifications in 

quality auditing and coaching. As a full professor at Chouaib Doukkali University, he has 
established himself as a leading expert in artificial intelligence, ICT, and educational 

technologies. He heads the DIS research team, focusing on decision support systems, and is 

an associate member of the ELITES laboratory. He is the founder and president of TENORS, 

an association dedicated to promoting new technologies and scientific research. With 
extensive experience in AI, IS, quality management, and international education systems, he 

has authored numerous scientific articles, evaluated research papers, and supervised multiple 

Ph.D. theses. He can be contacted at email: elkafi.j@ucd.ac.ma or jelkafi@gmail.com. 

 

https://orcid.org/0009-0002-4803-1394
https://scholar.google.com/citations?user=UA5P4RwAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=58476542500
https://orcid.org/0000-0002-0411-3884
https://scholar.google.fr/citations?user=1mutV84AAAAJ&hl=fr
https://www.scopus.com/authid/detail.uri?authorId=46160910900
https://orcid.org/0009-0004-1938-6393
https://scholar.google.com/citations?user=REsvehYAAAAJ&hl=fr
https://www.scopus.com/authid/detail.uri?authorId=6506166416

