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1. INTRODUCTION

Hyperspectral imagery (HSI) measures reflectance values of the electromagnetic spectra in over a
hundred spectral bands to every spatial region in the image. While these valuable spectral details improve the
capacity to distinguish objects, HSI analysis needs more complex algorithms because of the high dimension
of the pixels, high nonlinearity, and the small-sample problem of HSI data [1], [2]. Therefore, many
researchers, for example in [3], [4] have explored these HSI dimensionality reduction techniques. However,
there is an increase in variation in spatial dimension.

Hyperspectral sensors produce massive volumes of data, resulting in a large volume of bands in the
data, making real-time parameters difficult and laborious to achieve. As a result, it is a desirable strategy to
reduce the data size before starting high-level processing. Therefore, in recent years, a dimensionality
reduction stage has become a significant part of machine learning (ML). Further, the research in [5], [6]
mainly carried out dimensionality reduction using the principal components transformation, which chose and
preserved the most relevant data for classification. As a result, classifiers create efficient models at minimal
computational cost and enhance pixel classification accuracy in HSIs. Nevertheless, there is a challenge in
how to make full use of the spatial-spectral features contained in HSI to improve HSI classification.
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For this reason, the principal component analysis (PCA) has recently been used as a multivariable
approach for dimensionality reduction [5], [7], [8]. It is the most adopted methodology in remote sensing
applications, mainly those applying HSIs. The adjacent bands are highly correlated in this type of image,
hence gaining little additional information. PCA minimizes the amount of data by reducing dependencies
between the various bands. An eigenvector decomposition of the original data's covariance matrix is
computed to achieve this [6]. However, PCA only seeks the best orthogonal vectors, omitting crucial features
essential for HSI classification.

Since its conception, the classification of HSIs has drawn widespread attention and spawned a
plethora of approaches aimed at allocating a pixel (or a spectrum) to one of a set of classes [9], [10]. Several
approaches in the literature have focused on investigating the importance of HSI data spectral signatures in
classification, using only the spectrum of a pixel to establish its class membership. However, two
fundamental difficulties for such pixel-wise techniques benefit from relative conceptual simplicity and
implementation ease: i) the limited training set compared to the high-dimensional spectra and ii) the spectral
variations. The first issue, which has been extensively studied in light of the well-known Hughes
phenomenon [11], causes problems in two ways. First, due to the limited number of labeled samples, the
sample covariance matrix is likely to be singular, resulting in ill-posed difficulties for several classification
algorithms. Second, high-dimensional spectra require numerous free parameters for computation in a
parametric approach, which is inclined to overfit and consequently decreases the generalization capacity of
classifiers. Regarding spectral variation caused by several factors such as incident light, atmospheric effects,
undesirable shade and shadow, natural spectrum fluctuation, and instrument noises [9], [12], two serious
challenges might make categorization difficult.

On the one hand, substantial intra-class spectra variability makes it challenging to identify a specific
class. Besides, low inter-class spectral variation makes distinguishing distinct classes difficult. These issues
make HSI classification complex, resulting in poor classification results when using pixel-wise approaches.
Because HSIs are naturally 3-D and visual, spatial reliance, analogous to spectral behavior, is a natural
complement to spectra. As a result, the inclusion of spatial dependency has the potential to improve
pixel-wise classification. The use of spatial information in HSI classification dates back over a decade, and
some successful research has demonstrated its ability to enhance classification performance [13]. Since then,
there has been a significant increase in interest in spectral-spatial classification. Scholars have utilized
multilayer strategies to solve this challenge. However, these methods only analyze 2D and 3D spectral-spatial
properties independently and take a long time to complete.

To this end, we present a spectral-spatial HSI classification approach based on DenseNet [14],
which we employ as a unique strategy for HSI dataset classification. Furthermore, we incorporated the
DenseNet framework for its standardization technique, which has numerous advantages: i) the reusability of
the information (feature) covered in HSIs, ii) the concatenation of different paths (which reduces the number
of parameters), iii) aided to overcoming problems such as overfitting and the vanishing gradient when few
training samples are available, and iv) strengthen feature propagation. The summary of the main
contributions of our proposed approach is:

— We implemented the PCA technique on the HSI for dimensionality reduction due to the high dimensions
involved in the HSIs.

— Our proposed approach introduced the DenseNet-based mechanism to model the semantic
interdependencies in spatial and channel dimensions to improve feature representation for classification
ability.

— The achieved results demonstrate that our suggested approach can be trained end-to-end and estimated as
the state-of-the-art for both datasets concurrently.

The remaining parts of this study are examined as follows: section 2 discusses related works.
Section 3 discusses our proposed approach. Section 4 presents the experiments, i.e., the dataset and
performance analysis metrics, and compares baseline methods, results, and discussions. Finally, section 5
concludes our study by giving a summary of the content and future recommendations.

2. RELATED WORK

Lately, many researchers have deployed convolutional neural networks (CNNs) in HSI
categorization. They are better suited for HSI analysis and feature extraction [15], [16]. Though these
approaches try to optimize the use of both spectral-spatial features, they usually divide the joint
spatial-spectral features into two independent learning components, ignoring the relation underlying the
spectral-spatial features.

The research in [17], [18] described the few-shot learning technique, in which the model efficiently
discriminated categories in a newly acquired data set using only a small number of labeled samples.
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However, all of these approaches rely on artificially calculated measurement distances, which may only
partially apply to the features retrieved by the neural network when categorizing them. As a result,
Jia et al. [19] proposed an effective transfer learning strategy to address inadequate training HSI samples.
Even though this strategy has achieved significant advances in HSI classification, it performs poorly when
only a few labeled samples are available. This has resulted in a significant issue for deep learning (DL)
models, as addressed in this work. The research in [20], [21] state that optical remote sensing collects
radiation reflected and emitted from the surfaces under study, focusing on the region of the electromagnetic
spectrum with wavelengths spanning from visible to near-infrared to thermal infrared. With a HSI that
captures a variety of precisely calibrated tiny spectral bands of the visible and infrared spectrums. The
enormous amount of spectral data provides important land-cover information that helps precisely classify
surface land use and land cover. Nevertheless, labor and time-intensive procedures are required to extract
tagged training data from HSI. Consequently, based on active learning, a classifier design that uses the fewest
labeled examples as practical for classification was proposed [22]. Remote sensing imagery (RSI) objects and
features frequently have unclear backgrounds and cannot yield helpful information. Identifying the RSI is
more difficult because of the notable intraclass variances.

Guo et al. [23] presented a multi-view-feature-learning network to address this problem and gather three
specific domain features for the scene categorization challenge. On the other hand, Pundir and Akshay [24]
introduced model-agnostic meta-learning and the ensemble of prototype networks to overcome the problems
associated with standard deep-learning networks. This technique tackled the RSI categorization problem by
applying meta-learning. Multiresolution categorization of panchromatic and multispectral pictures is a
popular area of research. The main challenge in this field is assessing data and extracting characteristics to
improve classification accuracy properly.

An adaptive hybrid fusion network that incorporates both data fusion and feature fusion was
presented in [25] to classify multiresolution RSI. However, these methods depend on a large number of
labeled training samples to obtain an excellent classification performance. To solve the classification
problem, Sathyanarayana and Singh [26] designed a multilayer feedforward artificial neural network and
used a histogram technique to extract the pixel density distribution and normalization to make the result
independent from the physical properties of the image. Liu et al. [27] suggested a technigque that combines a
low-resolution HSI with a high-resolution (HR) multi-spectral image (MSI) to extract deep multiscale
properties from an HSI scene. Training data was optional for this strategy. This research aims to reliably
classify HSI into a class or category regardless of source, resolution, or size by developing a spectral-spatial
approach based on the DenseNet network. Thus, it will expedite the process and enhance speed.

3. METHOD

This section covers the details of our proposed approach for spectral-spatial HSI classification.
Figure 1 demonstrates the general framework of the proposed method. The input of our model is
hyperspectral data with the b — spectral band and size of m x n. Thus, we consider it as the matrix of order
m xn X b. The PCA is applied to the HSI for data dimensionality reduction. The 3D spectral-spatial pixels
are convoluted or concatenated. We introduced a DenseNet layer before the full convolutional (FC) layers for
3D spectral-spatial feature learning.
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Figure 1. Proposed scheme for spatial-spectral classification of HSI

3.1. Low-space projections
For the HSI dimensionality reduction through PCA takes the mathematical formulation of (1).

] = pmxnxb (1)
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Let X € R™*™ represent the raw HSI, with r,c, and n indicating the row, column, and band numbers,
respectively. Only the first p principal components are reserved when the PCA is applied to the raw image to
minimize the convolution phase's computational costs. The dimension-reduced image is represented by
X, € R™P_ A neighbor zone with the dimensions w X w X p is extracted around each pixel. Suppose we
take m training samples; then X,,.q;, € R™W*WXP denotes the training set.

3.2. Spectral pixel extraction

HSIs have a lot of spectrum information and spectral resolution; hence, their classification approach
is based on spectral features. Each pixel can extract 1D spectral vectors to classify objects. We deployed the
1D-CNN to extract the spectral features from HSIs and categorize them, as demonstrated in Figure 2.
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Figure 2. The spectral pixel extraction

The convolutional layer is introduced first. The value of neuron v;’; at a position x of the jth feature
map in the ith layer is defined as (2).

Pi_
vij =49 (Zm ZpC0 WhimVictym + i ) @)

Where m indexes the feature map in the previous layer ((i — 1)th layer) connected to the current feature
map, Wiz,)j,m denotes the weight of position p connected to the mth feature map, P; denotes the width of the
kernel toward the spectral dimension, and b; ; denotes the bias of the jth feature map in the ith layer.

3.3. Spatial pixel extraction

Spatial pixels, i.e., context information, which forms part of the HSI images, are used to classify the
HSIs. The spatial pixels extracted from the contiguous of the pixel are utilized instead of the spectral features
derived from a specific pixel. Due to the wide range of hyperspectral data, the standard strategy for obtaining
2D (spatial) features is to condense the dataset first, use a two-dimensional CNN to obtain more detailed
spatial features, and classify using spatial details. Figure 3 depicts the specific procedure. To execute a
convolution operation on 2D data in the 2D convolution procedure, we applied a 2D convolution kernel. In the
2D convolution operation, input data is convolved with 2D kernels, and the process can be formulated as (3).

Yo Hj 1 Wj- (x+h)(y+w)
”i).cjy =9 (Zm nlo Zwlo kl},lymv(z—nm "+ bi.j) ©))

3.4. Spectral-spatial pixel extraction

Sole spectral information is usually employed in traditional HSI for classification purposes. Because
of the influence of the natural atmosphere, identical land features will display different spectral curves. The
so-known alike-object hetero-spectrum and unrelated-object but with similar spectrum phenomena can cause
different ground objects to have the same spectral curve. For example, specific pixels (elements)
interconnected on earth are designated as parking lots; therefore, pixels with spectral features that look highly
similar to metal spectral features are most likely to represent vehicles. If a pixel has many grass pixels
surrounding it, the pixels in the middle are most likely grass. Hyperspectral data has a 3D structure that
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includes 1D (spectral features) and 2D (spatial features). A 3D-CNN may extract both spectral and spatial
information at the same time. Figure 4 depicts the procedure for extracting the spectral-spatial features.
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Figure 3. The spatial pixel extraction
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Figure 4. The spectral-spatial pixel extraction

The concatenation of the 2D and 3D convolutions of the HSI, it's defined through in (4).

xXyz _ -1oDj—-1 I d (x+h)(Y+w)(z+4d)
Viij g(z 0 dlo k " Va-ni +bli) (4)

where D, denotes the spectral depth of the 3-D kernel, i represents the number of feature cubes in the prior
layer, j denotes the number of kernels in this layer. vl’g.’z denotes the output at position (x,y, z), which is
computed by convolving the ith feature cube of the previous layer with the jth kernel of the ith layer, and
kth is the (h,w, d)th value of the kernel connected to the ith feature cube in the preceding layer. As such,
the output data of the Ith convolution layer comprises i x j 3-D feature cubes.

In our model, we found out the expected labels via the FC layers and a SoftMax layer. Then, the loss
function of the entire network is formulated using (5).

L= B[y log(9) + (1= ) log(1 = 3))] 5)

where y; and ¥; denote the label and predicted of the ith data, respectively. m represents the number of
training samples.

Our approach adopted the rectified linear unit (ReLU) function g(x) = mx(0,x). ReLU activation
guarantees the convolutional feature extractors (FE) nonlinearity and aids the quicker training of the network.
In addition, we deployed the mini-batch stochastic gradient descent (SGD) approach to optimize the network
effectively. To train our dataset in the experiments, we set the training epochs to 100, the learning rate (Ir) to
0.001, and the patch size to 25. In addition, all simulations were executed on a MacBook Pro laptop with an
Intel i7-5820K 3.30 GHz processor, 8 GB of RAM, and an NVIDIA GTX1080 graphics card and GPU
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(Colab with 25 GB RAM), all running on Python 3.9. Figure 5, thus depicts the summary of our proposed
model parameters.

Layer (type) Qutput Shape  Param = Layer (type) Output Shape  Param =

input_1 (InputLayer) (25, 25,30, 1) 0 convd_4_0 (Conv2D) (22,22,32) 4128
convl (Conv3D) (25, 25, 30, 8) 512 conv4_1_1 (Conv2D) (22,22,32) 9248
convl_1 (Conv3D)  (24,24,29,1) 144 convd_2_1 (Conv2D) (22,22,32) 9248
conv2_1_0(Conv3D) (24,24,29,4) 68 conv4_3_1 (Conv2D) (22,22,32) 9248
conv2 2 0(Conv3D) (24,24,29,4) 68 conv4_4_1 (Conv2D) (22,22,32) 9248
conv2_3_0(Conv3D) (24,24,29,4) 68 convS_1_0 (Conv2D) (11,11,32) 4128
conv2_4 0 (Conv3D) (24,24,29,4) 68 convS_2_0(Conv2D) (11, 11,32) 4128
conv2_1_1(Conv3D) (24,24,29,4) 724 conv5_2_0 (Conv2D) (11,11,32) 4128
conv2_2_1(Conv3D) (24,24,29,4) 724 conv3_3_0 (Conv2D) (11,11,32) 4128
conv2 3_1(Conv3D) (24,24,29,4) 724 convS_4_0 (Conv2D) (11,11,32) 4128
comv2_4_1(Conv3D) (24,24,29,4) 724 convS_1_1 (Conv2D) (11,11,32) 9248

conv2_2 (Conv3D) (23,23, 14,3) 544
conv3_4_0(Conv3D) (23,23,14,8) 264

2 1(Conv2D) (11,11,32) 9248
1 (Conv2D) (11,11,32) 9248

conv3_2_0(Conv3D) (23,23,14,8) 264 ~4”1(Conv2D) (11,11, 32) 9248
conv3_3_0(Conv3D) (23,23,14,8) 264 conv3_5 (Conv2D) (4,5,32) 4128
conv3_1_0(Conv3D) (23,23,14,8) 264 flatten (Flatten) (800) 0
conv3_4_1(Conv3D) (23,23,14,8) 1736 dense_1 (Dense) (192) 153792
conv3_2_1(Conv3D) (23,23, 14,8) 736 dropout_1 (Dropout) (192) 0
conv3_3_1(Conv3D) (23,23, 14,8) 1736 dense_2 (Dense) (128) 24704
conv3_1_1(Conv3D) (23,23, 14,8) 1736 dropout_2 (Dropout) (128) 0
reshape (Reshape) (22,22,224) 0 classifier (Dense) (16) 2064
conv3_3 (Conv2D) (22,22,128) 28800 Total #Trainable params: 332,864

convd_1_0(Conv2D)  (22,22,32) 4128
convd_2 0(Conv2D)  (22,22,32) 4128
convd_3_0(Conv2D)  (22,22,32) 4128

Figure 5. Summary of the proposed model parameters

4. RESULTS AND DISCUSSION

We conducted experiments to demonstrate how spatial information significantly influences HSI
classification. Two HSI benchmark images, including the Indian Pines (IP) and the University of Pavia
(PaviaU), were studied to evaluate the efficiency of our proposed model, and we compared our findings with
various spectral-spatial HSI baseline approaches to determine the performance of the proposed model.
Table 1 explains the significant features of each dataset used in our experiments, including the number of
pixels, the number of spectral bands, wavelength range, spatial resolution, the number of classes, and the
sensor, respectively. Further, to establish the efficacy of our model, we randomly chose N=5% samples from
each class to form the training data set for the IP and N=1% the training sample size for the PaviaU dataset.
Further, we designated the remaining reference samples as the testing data set. Here, xi denotes the number
of sample set sizes. Each experiment was repeated five times with randomly chosen training samples.

To quantitatively test the effectiveness of the proposed model and validity of the derived
conclusions, three performance analysis metrics, i.e., overall accuracy (OA), average accuracy (AA), and
kappa coefficient, were used. AA is the mean percentage of correctly classified pixels for each class.
The kappa coefficient gives the percentage of correctly classified pixels about classification findings
expected purely by chance.

Table 1. The hyperspectral dataset details [28]
HSI classification #Pixels  Bands Wavelength range (um) Spatial resolution  #Classes  Sensor
Indian Pines 145x145 200 0.4-2.5 20m 16 AVIRIS
University of Pavia  610x340 103 0.43-0.86 1.3m 9 ROSIS

To assess the achievement of our proposed approach, we compared the classification results of our
model using the latest published baseline methods commonly used CNN-based HSI classification methods,
including the 2D-CNN [29] (i.e., spatial approach), multi-scale 3D deep convolutional neural network
(M3D-DCNN) [30], and residual hybrid spectral network (R-HybridSN) [31] (i.e., spectral-spatial methods).
Tables 2 and 3 show the training samples for each dataset and the mean values, confidence interval, and
classification performance for the two datasets. We can attest that our proposed model outperformed baseline
methods from the achieved experimental results. Thus, we attribute this to the introduced DenseNet-based
mechanism to model the semantic interdependencies in spatial and channel dimensions.

Figure 6 illustrates our model's OA against the baseline methods. Our proposed model has the best
OA on the IP data set compared to M3D-DCNN and 2D-CNN methods but is slightly better than the
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R-HybridSN method with a difference of 1.14% (OA =97.60%). Comparing the results of the PaviaU dataset
(i.e., 5% train set) in contrast to the baseline methods, our model achieved excellent OA, i.e., 97.80%,
as indicated in Table 3 and represented in Figure 5. Adopting the DenseNet layer on our model contributed
highly to precise learning of the spatial-spectral classification of HSIs. Further, as evidenced in
Tables 2 and 3, we notice most classes predicted with high accuracy. Table 4 lists the computational
complexity results for various baseline methods. Because this image is roughly 145x145x200 pixels, it costs
26.9 seconds on the IP data set, outperforming the other compared methods.

Table 2. The classes detail information, the training and testing sample size, and the accuracy of different
baseline methods, plus our proposed approach on the IP dataset

# Name #Samples  Train (5%)  Test (95%) 2D-CNN M3D-DCNN R-HybridSN Ours
1 Alfalfa 46 2 44 7.95 275 45 7381
2 Corn-Notill 1428 71 1357 70.69 59.15 95.45 94.14
3 Corn-Mintill 830 42 789 52.84 45,07 97.36 99.74
4 Corn 237 12 225 2751 38.49 94.8 99.08
5 Grass-Pasture 483 24 459 90.44 70.33 98.85 97.3
6 Grass-Trees 730 37 694 98.59 97.2 99.32 99.66
7 Grass-Pasture-Mowed 28 1 27 10.37 18.52 95.56 96.31
8 Hay-Windrowed 478 24 454 99.96 98.04 100 100
9 Oats 20 1 19 16.32 25.79 65.26 88.89
10 Soybean-Notill 972 49 923 67.84 55.85 95.9 97.32
11 Soybean-Mintill 2455 123 2332 78.16 76.2 98.09 98.54
12 Soybean-Clean 593 30 563 42,01 33.89 89.15 95.24
13 Wheat 205 10 195 98.97 91.23 99.74 99.41
14 Woods 1265 63 1202 97.65 94.68 99.26 99.23
15 gu_ildings—Grass—Trees— 386 19 367 62.62 42.37 87.66 98.03

rives
16  Stone-Steel-Towers 93 5 88 76.02 49.32 88.18 91.76

AA (%)  6237:1.64  57.73t652  90.60+153  9515:0.31
OA (%) 7547164  68.88+377  96.46:0.33  97.60+0.34
Kappa (%)  0.718+0.01  0.642+0.045  0.960:0.004  0.973%0.56

Table 3. The classes detail information, the training and testing sample size, and the accuracy of different
baseline methods, plus our proposed approach on the Paviau dataset

# Name #Samples  Train (1%)  Test (99%) 2D-CNN M3D-DCNN  R-HybridSN Ours
1 Asphalt 6631 66 6565 96.88 90.56 96.94 97.4
2 Meadows 18649 186 18463 99.01 89.47 99.69 99.18
3 Gravel 2099 21 2078 75.08 59.11 87.17 88.34
4 Trees 3064 31 3033 87.74 93.25 89.15 89.88
5  Painted metal sheets 1345 13 1332 98.17 93.66 99.51 89.26
6 Bare Soil 5029 50 4979 75.51 69.63 98.44 98.54
7  Bitumen 1330 13 1317 61.32 65.71 95.82 98.25
8  Self-Blocking Bricks 3682 37 3645 80.61 78.35 93.28 93.51
9  Shadows 947 9 938 97.97 94.41 77.82 78.18

OA (%) 91.13+0.55 84.63+1.21 96.59+0.50  97.80+0.09
AA (%) 85.81+1.48 81.57+1.79 93.09+1.20  94.94+0.08
Kappa (%) 0.881+0.008  0.798+0.016  0.955+0.007  0.964+0.31

80

—&— IP (5% Train)
—#— Pavial (1% Train)

Overall Accuracy (%)

75

70

65

T T T T T T
2D-CNN M3D-DCNN R-HybridSN Qurs
Methods

Figure 6. The OA for both IP (5% train set) and PaviaU (1% train set)
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Table 4. The time (s) computation cost of various baseline methods in IP

Method Training time (s) Testing time (s)
2D-CNN 528.3 7.4
M3D-DCNN 660.6 126.3
R-HybridSN 464.3 60.9
Ours 430.8 26.9

5. CONCLUSION

In this study, we proposed a technique for learning high-level spectral-spatial features for HSI
classification with insufficient labeled samples framework that jointly used dimension reduction and transfer
learning techniques for learning the 3D spatial-spectral classification of HSIs. Our proposed framework fused
a DenseNet transfer learning network for spectral-spatial feature learning, the PCA technique for extracting
features from high-dimensional hyperspectral data sets, and the 3D and 2D convolutions. The experiments
were conducted on two datasets, i.e., IP and the PaviaU. The results revealed our model's higher performance
than other baseline methods that we compared our model. Thus, this method has good potential for precise
HSI classification, often containing high dimensions of spectral-spatial features. With potential benefits for
the environmental and agricultural domains, this suggested technique holds significant value in enhancing
precision and efficacy in HSI categorization. We will include spatial information in the model, which was a
limitation in the current work in the future to improve feature classification capability. Furthermore, because
the value of spectral and spatial features differs depending on the material and scenario, it is also worth
looking at how to automatically learn the proper weighting factor.
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