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 Hyperspectral image (HSI) classification research is a hot area, with a mass 

of new methods being developed to improve performance for specific 

applications that use spatial and spectral image material. However, the main 

obstacle for scientists is determining how to identify HSIs effectively. These 

obstacles include an increased presence of redundant spectral information, 

high dimensionality in observed data, and limited spatial features in a 

classification model. To this end, we, therefore, proposed a novel approach 

for learning high-level spectral-spatial features for HSI classification with 

insufficient labeled samples. First, we implemented the principal component 

analysis (PCA) technique to reduce the high dimensionalities experienced. 

Second, a fusion of 2D and 3D convolutions and DenseNet, a transfer 

learning network for feature learning of both spatial-spectral pixels. The 

achieved experimental results are comparatively satisfactory to contrasted 

approaches on the widely used HSI images, i.e., the University of Pavia and 

Indian Pines, with an overall classification accuracy of 97.80% and 97.60%, 

respectively. 
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1. INTRODUCTION 

Hyperspectral imagery (HSI) measures reflectance values of the electromagnetic spectra in over a 

hundred spectral bands to every spatial region in the image. While these valuable spectral details improve the 

capacity to distinguish objects, HSI analysis needs more complex algorithms because of the high dimension 

of the pixels, high nonlinearity, and the small-sample problem of HSI data [1], [2]. Therefore, many 

researchers, for example in [3], [4] have explored these HSI dimensionality reduction techniques. However, 

there is an increase in variation in spatial dimension. 

Hyperspectral sensors produce massive volumes of data, resulting in a large volume of bands in the 

data, making real-time parameters difficult and laborious to achieve. As a result, it is a desirable strategy to 

reduce the data size before starting high-level processing. Therefore, in recent years, a dimensionality 

reduction stage has become a significant part of machine learning (ML). Further, the research in [5], [6] 

mainly carried out dimensionality reduction using the principal components transformation, which chose and 

preserved the most relevant data for classification. As a result, classifiers create efficient models at minimal 

computational cost and enhance pixel classification accuracy in HSIs. Nevertheless, there is a challenge in 

how to make full use of the spatial-spectral features contained in HSI to improve HSI classification. 

https://creativecommons.org/licenses/by-sa/4.0/
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For this reason, the principal component analysis (PCA) has recently been used as a multivariable 

approach for dimensionality reduction [5], [7], [8]. It is the most adopted methodology in remote sensing 

applications, mainly those applying HSIs. The adjacent bands are highly correlated in this type of image, 

hence gaining little additional information. PCA minimizes the amount of data by reducing dependencies 

between the various bands. An eigenvector decomposition of the original data's covariance matrix is 

computed to achieve this [6]. However, PCA only seeks the best orthogonal vectors, omitting crucial features 

essential for HSI classification. 

Since its conception, the classification of HSIs has drawn widespread attention and spawned a 

plethora of approaches aimed at allocating a pixel (or a spectrum) to one of a set of classes [9], [10]. Several 

approaches in the literature have focused on investigating the importance of HSI data spectral signatures in 

classification, using only the spectrum of a pixel to establish its class membership. However, two 

fundamental difficulties for such pixel-wise techniques benefit from relative conceptual simplicity and 

implementation ease: i) the limited training set compared to the high-dimensional spectra and ii) the spectral 

variations. The first issue, which has been extensively studied in light of the well-known Hughes 

phenomenon [11], causes problems in two ways. First, due to the limited number of labeled samples, the 

sample covariance matrix is likely to be singular, resulting in ill-posed difficulties for several classification 

algorithms. Second, high-dimensional spectra require numerous free parameters for computation in a 

parametric approach, which is inclined to overfit and consequently decreases the generalization capacity of 

classifiers. Regarding spectral variation caused by several factors such as incident light, atmospheric effects, 

undesirable shade and shadow, natural spectrum fluctuation, and instrument noises [9], [12], two serious 

challenges might make categorization difficult. 

On the one hand, substantial intra-class spectra variability makes it challenging to identify a specific 

class. Besides, low inter-class spectral variation makes distinguishing distinct classes difficult. These issues 

make HSI classification complex, resulting in poor classification results when using pixel-wise approaches. 

Because HSIs are naturally 3-D and visual, spatial reliance, analogous to spectral behavior, is a natural 

complement to spectra. As a result, the inclusion of spatial dependency has the potential to improve  

pixel-wise classification. The use of spatial information in HSI classification dates back over a decade, and 

some successful research has demonstrated its ability to enhance classification performance [13]. Since then, 

there has been a significant increase in interest in spectral-spatial classification. Scholars have utilized 

multilayer strategies to solve this challenge. However, these methods only analyze 2D and 3D spectral-spatial 

properties independently and take a long time to complete. 

To this end, we present a spectral-spatial HSI classification approach based on DenseNet [14], 

which we employ as a unique strategy for HSI dataset classification. Furthermore, we incorporated the 

DenseNet framework for its standardization technique, which has numerous advantages: i) the reusability of 

the information (feature) covered in HSIs, ii) the concatenation of different paths (which reduces the number 

of parameters), iii) aided to overcoming problems such as overfitting and the vanishing gradient when few 

training samples are available, and iv) strengthen feature propagation. The summary of the main 

contributions of our proposed approach is: 

‒ We implemented the PCA technique on the HSI for dimensionality reduction due to the high dimensions 

involved in the HSIs. 

‒ Our proposed approach introduced the DenseNet-based mechanism to model the semantic 

interdependencies in spatial and channel dimensions to improve feature representation for classification 

ability. 

‒ The achieved results demonstrate that our suggested approach can be trained end-to-end and estimated as 

the state-of-the-art for both datasets concurrently. 

The remaining parts of this study are examined as follows: section 2 discusses related works. 

Section 3 discusses our proposed approach. Section 4 presents the experiments, i.e., the dataset and 

performance analysis metrics, and compares baseline methods, results, and discussions. Finally, section 5 

concludes our study by giving a summary of the content and future recommendations. 

 

 

2. RELATED WORK 

Lately, many researchers have deployed convolutional neural networks (CNNs) in HSI 

categorization. They are better suited for HSI analysis and feature extraction [15], [16]. Though these 

approaches try to optimize the use of both spectral-spatial features, they usually divide the joint  

spatial-spectral features into two independent learning components, ignoring the relation underlying the 

spectral-spatial features. 

The research in [17], [18] described the few-shot learning technique, in which the model efficiently 

discriminated categories in a newly acquired data set using only a small number of labeled samples. 
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However, all of these approaches rely on artificially calculated measurement distances, which may only 

partially apply to the features retrieved by the neural network when categorizing them. As a result,  

Jia et al. [19] proposed an effective transfer learning strategy to address inadequate training HSI samples. 

Even though this strategy has achieved significant advances in HSI classification, it performs poorly when 

only a few labeled samples are available. This has resulted in a significant issue for deep learning (DL) 

models, as addressed in this work. The research in [20], [21] state that optical remote sensing collects 

radiation reflected and emitted from the surfaces under study, focusing on the region of the electromagnetic 

spectrum with wavelengths spanning from visible to near-infrared to thermal infrared. With a HSI that 

captures a variety of precisely calibrated tiny spectral bands of the visible and infrared spectrums. The 

enormous amount of spectral data provides important land-cover information that helps precisely classify 

surface land use and land cover. Nevertheless, labor and time-intensive procedures are required to extract 

tagged training data from HSI. Consequently, based on active learning, a classifier design that uses the fewest 

labeled examples as practical for classification was proposed [22]. Remote sensing imagery (RSI) objects and 

features frequently have unclear backgrounds and cannot yield helpful information. Identifying the RSI is 

more difficult because of the notable intraclass variances. 

Guo et al. [23] presented a multi-view-feature-learning network to address this problem and gather three 

specific domain features for the scene categorization challenge. On the other hand, Pundir and Akshay [24] 

introduced model-agnostic meta-learning and the ensemble of prototype networks to overcome the problems 

associated with standard deep-learning networks. This technique tackled the RSI categorization problem by 

applying meta-learning. Multiresolution categorization of panchromatic and multispectral pictures is a 

popular area of research. The main challenge in this field is assessing data and extracting characteristics to 

improve classification accuracy properly. 

An adaptive hybrid fusion network that incorporates both data fusion and feature fusion was 

presented in [25] to classify multiresolution RSI. However, these methods depend on a large number of 

labeled training samples to obtain an excellent classification performance. To solve the classification 

problem, Sathyanarayana and Singh [26] designed a multilayer feedforward artificial neural network and 

used a histogram technique to extract the pixel density distribution and normalization to make the result 

independent from the physical properties of the image. Liu et al. [27] suggested a technique that combines a 

low-resolution HSI with a high-resolution (HR) multi-spectral image (MSI) to extract deep multiscale 

properties from an HSI scene. Training data was optional for this strategy. This research aims to reliably 

classify HSI into a class or category regardless of source, resolution, or size by developing a spectral-spatial 

approach based on the DenseNet network. Thus, it will expedite the process and enhance speed. 

 

 

3. METHOD 

This section covers the details of our proposed approach for spectral-spatial HSI classification. 

Figure 1 demonstrates the general framework of the proposed method. The input of our model is 

hyperspectral data with the 𝑏 − spectral band and size of 𝑚 × 𝑛. Thus, we consider it as the matrix of order 

𝑚 × 𝑛 × 𝑏. The PCA is applied to the HSI for data dimensionality reduction. The 3D spectral-spatial pixels 

are convoluted or concatenated. We introduced a DenseNet layer before the full convolutional (FC) layers for 

3D spectral-spatial feature learning. 

 

 

 
 

Figure 1. Proposed scheme for spatial-spectral classification of HSI 

 

 

3.1.  Low-space projections 

For the HSI dimensionality reduction through PCA takes the mathematical formulation of (1). 

 

𝐼 = 𝑃𝑚×𝑛×𝑏 (1) 
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Let 𝑋 ∈ ℝ𝑟𝑐×𝑛 represent the raw HSI, with 𝑟, 𝑐, and 𝑛 indicating the row, column, and band numbers, 

respectively. Only the first 𝑝 principal components are reserved when the PCA is applied to the raw image to 

minimize the convolution phase's computational costs. The dimension-reduced image is represented by  

𝑋𝑝 ∈ ℝ𝑟𝑐×𝑝. A neighbor zone with the dimensions 𝑤 × 𝑤 × 𝑝 is extracted around each pixel. Suppose we 

take 𝑚 training samples; then 𝑋𝑡𝑟𝑎𝑖𝑛 ∈ ℝ𝑚×𝑤×𝑤×𝑝 denotes the training set. 

 

3.2.  Spectral pixel extraction 

HSIs have a lot of spectrum information and spectral resolution; hence, their classification approach 

is based on spectral features. Each pixel can extract 1D spectral vectors to classify objects. We deployed the 

1D-CNN to extract the spectral features from HSIs and categorize them, as demonstrated in Figure 2. 

 

 

 
 

Figure 2. The spectral pixel extraction 

 

 

The convolutional layer is introduced first. The value of neuron 𝑣𝑖,𝑗
𝑥  at a position 𝑥 of the 𝑗𝑡ℎ feature 

map in the 𝑖𝑡ℎ layer is defined as (2). 

 

𝑣𝑖,𝑗
𝑥 = 𝑔 (∑ ∑ 𝑤𝑖,𝑗,𝑚

𝑝
𝑣(𝑖−1)𝑚
𝑥+𝑝

+ 𝑏𝑖,𝑗
𝑃𝑖−1
𝑝=0𝑚 ) (2) 

 

Where 𝑚 indexes the feature map in the previous layer ((𝑖 − 1)𝑡ℎ layer) connected to the current feature 

map, 𝑤𝑖,𝑗,𝑚
𝑝

 denotes the weight of position 𝑝 connected to the 𝑚𝑡ℎ feature map, 𝑃𝑖  denotes the width of the 

kernel toward the spectral dimension, and 𝑏𝑖,𝑗 denotes the bias of the 𝑗𝑡ℎ feature map in the 𝑖𝑡ℎ layer. 

 

3.3.  Spatial pixel extraction 

Spatial pixels, i.e., context information, which forms part of the HSI images, are used to classify the 

HSIs. The spatial pixels extracted from the contiguous of the pixel are utilized instead of the spectral features 

derived from a specific pixel. Due to the wide range of hyperspectral data, the standard strategy for obtaining 

2D (spatial) features is to condense the dataset first, use a two-dimensional CNN to obtain more detailed 

spatial features, and classify using spatial details. Figure 3 depicts the specific procedure. To execute a 

convolution operation on 2D data in the 2D convolution procedure, we applied a 2D convolution kernel. In the 

2D convolution operation, input data is convolved with 2D kernels, and the process can be formulated as (3). 

 

𝑣𝑖,𝑗
𝑥,𝑦

= 𝑔 (∑ ∑ ∑ 𝑘𝑙,𝑗,𝑚
ℎ𝑤 𝑣(𝑙−1)𝑚

(𝑥+ℎ)(𝑦+𝑤)
+ 𝑏𝑖,𝑗

𝑊𝑗−1

𝑤=0

𝐻𝑗−1

ℎ=0𝑚 ) (3) 

 

3.4.  Spectral-spatial pixel extraction 

Sole spectral information is usually employed in traditional HSI for classification purposes. Because 

of the influence of the natural atmosphere, identical land features will display different spectral curves. The 

so-known alike-object hetero-spectrum and unrelated-object but with similar spectrum phenomena can cause 

different ground objects to have the same spectral curve. For example, specific pixels (elements) 

interconnected on earth are designated as parking lots; therefore, pixels with spectral features that look highly 

similar to metal spectral features are most likely to represent vehicles. If a pixel has many grass pixels 

surrounding it, the pixels in the middle are most likely grass. Hyperspectral data has a 3D structure that 
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includes 1D (spectral features) and 2D (spatial features). A 3D-CNN may extract both spectral and spatial 

information at the same time. Figure 4 depicts the procedure for extracting the spectral-spatial features. 

 

 

 
 

Figure 3. The spatial pixel extraction 

 

 

 
 

Figure 4. The spectral-spatial pixel extraction 

 

 

The concatenation of the 2D and 3D convolutions of the HSI, it's defined through in (4). 

 

𝑣𝑙𝑖𝑗
𝑥𝑦𝑧

= 𝑔 (∑ ∑ ∑ 𝑘𝑙𝑗
ℎ𝑤𝑑𝑣(𝑙−1)𝑖

(𝑥+ℎ)(𝑦+𝑤)(𝑧+𝑑)
+ 𝑏𝑙𝑗

𝐷𝑙−1
𝑑=0

𝑊𝑙−1
𝑤=0

𝐻𝑙−1
ℎ=0 ) (4) 

 

where 𝐷𝑙  denotes the spectral depth of the 3-D kernel, 𝑖 represents the number of feature cubes in the prior 

layer, 𝑗 denotes the number of kernels in this layer. 𝑣𝑙𝑖𝑗
𝑥𝑦𝑧

 denotes the output at position (𝑥, 𝑦, 𝑧), which is 

computed by convolving the 𝑖𝑡ℎ feature cube of the previous layer with the 𝑗𝑡ℎ kernel of the 𝑙𝑡ℎ layer, and 

𝑘𝑙𝑗
ℎ𝑤𝑑  is the (ℎ, 𝑤, 𝑑)𝑡ℎ value of the kernel connected to the 𝑖𝑡ℎ feature cube in the preceding layer. As such, 

the output data of the 𝑙𝑡ℎ convolution layer comprises 𝑖 × 𝑗 3-D feature cubes. 

In our model, we found out the expected labels via the FC layers and a SoftMax layer. Then, the loss 

function of the entire network is formulated using (5). 

 

𝐿 =
1

𝑚
∑ [𝑦𝑖 𝑙𝑜𝑔( 𝑦̂𝑖) + (1 − 𝑦𝑖) 𝑙𝑜𝑔( 1 − 𝑦̂𝑖)]
𝑚
𝑖=1  (5) 

 

where 𝑦𝑖 and  𝑦̂𝑖 denote the label and predicted of the 𝑖𝑡ℎ data, respectively. 𝑚 represents the number of 

training samples. 

Our approach adopted the rectified linear unit (ReLU) function 𝑔(𝑥) = 𝑚𝑥(0, 𝑥). ReLU activation 

guarantees the convolutional feature extractors (FE) nonlinearity and aids the quicker training of the network. 

In addition, we deployed the mini-batch stochastic gradient descent (SGD) approach to optimize the network 

effectively. To train our dataset in the experiments, we set the training epochs to 100, the learning rate (lr) to 

0.001, and the patch size to 25. In addition, all simulations were executed on a MacBook Pro laptop with an 

Intel i7-5820K 3.30 GHz processor, 8 GB of RAM, and an NVIDIA GTX1080 graphics card and GPU 
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(Colab with 25 GB RAM), all running on Python 3.9. Figure 5, thus depicts the summary of our proposed 

model parameters. 

 

 

 
 

Figure 5. Summary of the proposed model parameters 

 

 

4. RESULTS AND DISCUSSION 

We conducted experiments to demonstrate how spatial information significantly influences HSI 

classification. Two HSI benchmark images, including the Indian Pines (IP) and the University of Pavia 

(PaviaU), were studied to evaluate the efficiency of our proposed model, and we compared our findings with 

various spectral-spatial HSI baseline approaches to determine the performance of the proposed model.  

Table 1 explains the significant features of each dataset used in our experiments, including the number of 

pixels, the number of spectral bands, wavelength range, spatial resolution, the number of classes, and the 

sensor, respectively. Further, to establish the efficacy of our model, we randomly chose N=5% samples from 

each class to form the training data set for the IP and N=1% the training sample size for the PaviaU dataset. 

Further, we designated the remaining reference samples as the testing data set. Here, xi denotes the number 

of sample set sizes. Each experiment was repeated five times with randomly chosen training samples. 

To quantitatively test the effectiveness of the proposed model and validity of the derived 

conclusions, three performance analysis metrics, i.e., overall accuracy (OA), average accuracy (AA), and 

kappa coefficient, were used. AA is the mean percentage of correctly classified pixels for each class.  

The kappa coefficient gives the percentage of correctly classified pixels about classification findings 

expected purely by chance. 

 

 

Table 1. The hyperspectral dataset details [28] 
HSI classification #Pixels Bands Wavelength range (µm) Spatial resolution #Classes Sensor 

Indian Pines 145×145 200 0.4-2.5 20 m 16 AVIRIS 

University of Pavia 610×340 103 0.43-0.86 1.3 m 9 ROSIS 

 

 

To assess the achievement of our proposed approach, we compared the classification results of our 

model using the latest published baseline methods commonly used CNN-based HSI classification methods, 

including the 2D-CNN [29] (i.e., spatial approach), multi-scale 3D deep convolutional neural network  

(M3D-DCNN) [30], and residual hybrid spectral network (R-HybridSN) [31] (i.e., spectral-spatial methods). 

Tables 2 and 3 show the training samples for each dataset and the mean values, confidence interval, and 

classification performance for the two datasets. We can attest that our proposed model outperformed baseline 

methods from the achieved experimental results. Thus, we attribute this to the introduced DenseNet-based 

mechanism to model the semantic interdependencies in spatial and channel dimensions. 

Figure 6 illustrates our model's OA against the baseline methods. Our proposed model has the best 

OA on the IP data set compared to M3D-DCNN and 2D-CNN methods but is slightly better than the  



Int J Artif Intell  ISSN: 2252-8938  

 

Learning high-level spectral-spatial features for hyperspectral image … (Douglas Omwenga Nyabuga) 

1217 

R-HybridSN method with a difference of 1.14% (OA =97.60%). Comparing the results of the PaviaU dataset 

(i.e., 5% train set) in contrast to the baseline methods, our model achieved excellent OA, i.e., 97.80%,  

as indicated in Table 3 and represented in Figure 5. Adopting the DenseNet layer on our model contributed 

highly to precise learning of the spatial-spectral classification of HSIs. Further, as evidenced in  

Tables 2 and 3, we notice most classes predicted with high accuracy. Table 4 lists the computational 

complexity results for various baseline methods. Because this image is roughly 145×145×200 pixels, it costs 

26.9 seconds on the IP data set, outperforming the other compared methods. 

 

 

Table 2. The classes detail information, the training and testing sample size, and the accuracy of different 

baseline methods, plus our proposed approach on the IP dataset 
# Name #Samples Train (5%) Test (95%) 2D-CNN M3D-DCNN R-HybridSN Ours 

1 Alfalfa 46 2 44 7.95 27.5 45 73.81 

2 Corn-Notill 1428 71 1357 70.69 59.15 95.45 94.14 

3 Corn-Mintill 830 42 789 52.84 45.07 97.36 99.74 

4 Corn 237 12 225 27.51 38.49 94.8 99.08 

5 Grass-Pasture 483 24 459 90.44 70.33 98.85 97.3 

6 Grass-Trees 730 37 694 98.59 97.2 99.32 99.66 

7 Grass-Pasture-Mowed 28 1 27 10.37 18.52 95.56 96.31 
8 Hay-Windrowed 478 24 454 99.96 98.04 100 100 

9 Oats 20 1 19 16.32 25.79 65.26 88.89 

10 Soybean-Notill 972 49 923 67.84 55.85 95.9 97.32 

11 Soybean-Mintill 2455 123 2332 78.16 76.2 98.09 98.54 

12 Soybean-Clean 593 30 563 42.01 33.89 89.15 95.24 

13 Wheat 205 10 195 98.97 91.23 99.74 99.41 

14 Woods 1265 63 1202 97.65 94.68 99.26 99.23 

15 
Buildings-Grass-Trees-

Drives 

386 19 367 62.62 42.37 87.66 98.03 

16 Stone-Steel-Towers 93 5 88 76.02 49.32 88.18 91.76 

    AA (%) 62.37±1.64 57.73±6.52 90.60±1.53 95.15±0.31 

    OA (%) 75.47±1.64 68.88±3.77 96.46±0.33 97.60±0.34 

    Kappa (%) 0.718±0.01 0.642±0.045 0.960±0.004 0.973±0.56 

 

 

Table 3. The classes detail information, the training and testing sample size, and the accuracy of different 

baseline methods, plus our proposed approach on the Paviau dataset 
# Name #Samples Train (1%) Test (99%) 2D-CNN M3D-DCNN R-HybridSN Ours 

1 Asphalt 6631 66 6565 96.88 90.56 96.94 97.4 

2 Meadows 18649 186 18463 99.01 89.47 99.69 99.18 
3 Gravel 2099 21 2078 75.08 59.11 87.17 88.34 

4 Trees 3064 31 3033 87.74 93.25 89.15 89.88 

5 Painted metal sheets 1345 13 1332 98.17 93.66 99.51 89.26 
6 Bare Soil 5029 50 4979 75.51 69.63 98.44 98.54 

7 Bitumen 1330 13 1317 61.32 65.71 95.82 98.25 

8 Self-Blocking Bricks 3682 37 3645 80.61 78.35 93.28 93.51 
9 Shadows 947 9 938 97.97 94.41 77.82 78.18 
    OA (%) 91.13±0.55 84.63±1.21 96.59±0.50 97.80±0.09 
    AA (%) 85.81±1.48 81.57±1.79 93.09±1.20 94.94±0.08 
    Kappa (%) 0.881±0.008 0.798±0.016 0.955±0.007 0.964±0.31 

 

 

 
 

Figure 6. The OA for both IP (5% train set) and PaviaU (1% train set) 
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Table 4. The time (s) computation cost of various baseline methods in IP 
Method Training time (s) Testing time (s) 

2D-CNN 528.3 7.4 
M3D-DCNN 660.6 126.3 

R-HybridSN 464.3 60.9 

Ours 430.8 26.9 

 

 

5. CONCLUSION 

In this study, we proposed a technique for learning high-level spectral-spatial features for HSI 

classification with insufficient labeled samples framework that jointly used dimension reduction and transfer 

learning techniques for learning the 3D spatial-spectral classification of HSIs. Our proposed framework fused 

a DenseNet transfer learning network for spectral-spatial feature learning, the PCA technique for extracting 

features from high-dimensional hyperspectral data sets, and the 3D and 2D convolutions. The experiments 

were conducted on two datasets, i.e., IP and the PaviaU. The results revealed our model's higher performance 

than other baseline methods that we compared our model. Thus, this method has good potential for precise 

HSI classification, often containing high dimensions of spectral-spatial features. With potential benefits for 

the environmental and agricultural domains, this suggested technique holds significant value in enhancing 

precision and efficacy in HSI categorization. We will include spatial information in the model, which was a 

limitation in the current work in the future to improve feature classification capability. Furthermore, because 

the value of spectral and spatial features differs depending on the material and scenario, it is also worth 

looking at how to automatically learn the proper weighting factor. 
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