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1. INTRODUCTION

Skin cancer is the most prevalent form of cancer, surpassing all other types combined in terms of
diagnosis rates annually. In the United States alone, there are approximately 9,500 fresh cases identified
daily, as reported by the Skin Cancer Foundation in 2017 [1]. By 2040, there will likely be close to half a
million occurrences of skin cancer, with melanoma being the deadliest type, marking a staggering 62% surge
since 2018. The severity of the situation is emphasized by the alarming fact that one person loses their life to
skin cancer every four minutes, prompting dermatologists worldwide to classify its rising incidence as a
global epidemic, as noted by Melanoma UK in 2020 [2].

Early detection and intervention, especially for melanoma, emerge as pivotal factors in improving
the survival rates amid the mounting cases [3]. Excessive contact to ultraviolet (UV) radiation stands out as
the primary identifiable culprit behind skin cancer [4]. Natural sunshine or other UV sources, such as indoor
tanning machines, may be the source of this exposure (Cancer Research UK) [5]. Significantly, reduced
ozone levels raise the risk of exposure to natural sunshine by increasing ground-level UV radiation
(Department for Environment Food & Rural Affairs, 2020) [6]. Furthermore, regions situated closer to the
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equator witness an uptick in non-melanoma skin cancer cases due to clevated UV radiation levels.
Furthermore, lifestyle factors such as poor dietary choices, alcohol consumption, and smoking also contribute
to the modifiable risk profile associated with skin cancer. Therefore, early detection and prevention of these
cancers is studied widely.

Several methods have been introduced for melanoma detection; however, imaging-based methods
have been widely adopted in various biomedical applications. Dermatologists can diagnose malignant lesions
through dermoscopic visual examinations. The diverse textures and wounds present on the skin surface can
make detecting skin cancer challenging using dermoscopy. Yet, accurately diagnosing skin cancer through
manual examination of dermoscopic images is difficult. The accuracy of lesion diagnosis is heavily
influenced by the dermatologist's experience. The only alternative techniques for detecting skin cancer that
are now available are dermoscopy, biopsy, and macroscopic inspection. Because skin lesions are complex,
they require more time and care. The dermatologists perform the observation with naked eyes, dermoscopy
mechanisms and biopsy. Therefore, the accuracy of these systems relies on clinician’s skill. A significant
amount of research has been dedicated to developing computer-based image analysis algorithms for the early
and rapid diagnosis of skin cancer, aiming to overcome the previously mentioned challenges, Primarily, these
algorithms have been parametric, relying on normally distributed data for operation. However, due to the
uncontrollable nature of the data, these methods often fail to provide accurate diagnoses.

Numerous medical imaging researchers have introduced computer-aided design (CAD) techniques.
This four-step CAD process encompasses image pre-processing, identification of affected areas, feature
extraction, and classification. Several methods have been introduced using computer vision approach such as
artificial neural networks (ANN), decision trees (DT), and support vector machines (SVM). The research in
[7], [8] provides a thorough analysis of various techniques. Nevertheless, there are a number of data
processing limitations with machine learning techniques, including the need for better contrast, noise-free,
and cleaned images. Moreover, a number of criteria, including structural traits, color attributes, and texture
attributes, are used to classify skin [9], [10]. However, classification based on inadequate feature sets can
result in erroneous outcomes due to the high inter-class homogeneity and intra-class heterogeneity of skin
lesions [11]. Conventional parametric methods require training data to be normally distributed, which is not
the case for uncontrolled skin cancer data. Since every lesion has a different pattern, these traditional
approaches are insufficient. As a result, deep learning methods have shown to be quite successful at
classifying skin, helping dermatologists diagnose lesions with high precision. The application of deep
learning in medicine has been widely explored through various detailed surveys. The most recent research on
deep learning-based methods for melanoma detection and classification is covered in section 2.

Deep learning techniques based on transfer learning have gained widespread traction at the moment.
With this method, large-scale datasets from one domain (like natural photographs) are used to train deep
learning models, which are then used to transfer their learned representations to a target domain (biomedical
images). By fine-tuning these pre-trained models on smaller biomedical datasets, researchers can effectively
classify biomedical images with high accuracy. Transfer learning in biomedical image classification offers
several advantages. Firstly, it allows researchers to overcome the challenge of limited annotated data in the
biomedical domain by leveraging knowledge learned from larger datasets in related domains. Secondly,
pre-trained models capture generic image features like textures, shapes, and edges, which can typically
transferable across different image domains. This allows the model to learn important features for biomedical
image classification tasks without requiring extensive retraining from scratch. Several models have been
presented using this concept of transfer learning such as Zunair and Hamza [12] presented a model composed
of two stages, combining adversarial training with transfer learning, Qureshi ef al. [13] used Google Xception
model to develop the transfer learning architecture, Hosny et al. [14] used Alexnet. However, the transfer
learning-based models suffer from different issues such as domain transfer between source and target domain
where resolution, noise level, and tissue variability affects the transferability of learned attributes. As a result,
the pre-trained model is unable to capture the pertinent characteristics. Furthermore, a significant quantity of
data is needed to refine the previously trained models. In this reserach, our main objective is to develop a
deep learning-based melanoma categorization through the use of transfer learning strategy.

As discussed before, skin cancer occurs more commonly than any other form of cancer, with diagnosis
rates surpassing all other types combined, and approximately 9,500 new cases are diagnosed each day in the
United States alone. By 2040, skin cancer cases are projected to approach half a million, with melanoma being
the deadliest type, marking a staggering 62% increase since 2018. Skin cancer is primarily caused by
overexposure to UV radiation from sunlight or artificial sources like tanning machines, compounded by factors
such as reduced ozone levels, geographical proximity to the equator, poor dietary habits, alcohol consumption,
and smoking. Despite the urgency of the situation, current diagnostic methods like dermoscopy, biopsy, and
macroscopic inspection are highly dependent on the clinician's skill, making accurate diagnosis challenging and
time-consuming. Traditional computer image analysis algorithms and machine learning techniques have
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attempted to assist in early diagnosis, but these methods often fall short due to the uncontrolled nature of skin
cancer data and issues like inadequate feature sets, high inter-class homogeneity, and intra-class heterogeneity.
Deep learning, especially transfer learning, offers a promising solution by leveraging large-scale datasets from
related domains to enhance classification accuracy in biomedical images. However, transfer learning models
face challenges such as domain transfer issues and the need for significant amounts of data to fine-tune pre-
trained models effectively. This work focuses on developing a robust deep learning model for melanoma
classification through transfer learning, aiming to overcome the limitations of existing approaches and improve
the accuracy and reliability of early skin cancer detection.

The key contributions of this work are as follows: The pre-processing phase performs several tasks
such as improving the image quality, hair removal and label encoding to process the efficiently. The
proposed model uses transfer learning approach for feature extraction where VGG, InceptionResNet, ResNet
and MobileNet modules are used to obtain the significant attributes. The obtained features are fused together
to attain the final feature vector. In next step, deep ensemble model is constructed by using the concept of
transfer learning where EfficientNet, Xception, and DenseNet transfer learning models are used to obtain the
probability vector for predicting the skin cancer. Finally, FC and sigmoid layers are used to obtain the
concluding classification.

This work introduces several key innovations that significantly enhance the performance of
melanoma image classification systems. A comprehensive multi-stage pre-processing pipeline is
implemented to address common dermatological imaging challenges. This pipeline improves contrast to
highlight critical features and applies noise reduction to ensure cleaner and more reliable input for further
analysis. To counteract dataset imbalance—a frequent issue in melanoma detection. Various data
augmentation techniques are employed to synthetically expand the minority classes, enhancing the model’s
robustness and ability to generalize effectively. The approach also leverages pre-trained deep learning models
like VGG, ResNet, MobileNet and Inception ResNet, for feature extraction. These models capture rich
hierarchical representations, and by fusing their feature vectors, the system achieves a more comprehensive
and discriminative understanding of the input images. Finally, ensemble classification using transfer learning
is employed, combining the strengths of multiple architectures. This ensemble approach captures complex
patterns and subtle distinctions within melanoma images, resulting in improved classification accuracy and
overall system performance.

The subsequent sections of the article are structured as follows: section 2 provides a comprehensive
literature review of current melanoma classification techniques. Section 3 presents an in-depth overview of
the proposed model. Section 4 outlines the results of the proposed model along with a comparative analysis
with current techniques. Lastly, section 5 offers closing thoughts and future directions for the research.

2. LITERATURE SURVEY

This section gives in detailed analysis of the current approaches for classifying melanoma with the
help of deep learning and transfer learning methods. Lu and Zadeh [15] presented an automated method for
utilizing dermoscopy images to diagnose skin cancer. To increase classification accuracy, the model used
depth-wise separable convolution and the swish activation function, with XceptionNet serving as the base
network. Jain et al. [16] presented a deep transfer learning model was introduced. To address the issue of
data imbalance, the method included image data augmentation. Moreover, feature extraction and
classification tasks were performed using transfer learning techniques such as VGGI19, InceptionV3, and
MobileNet, among others. Following these architectures, the task was completed by incorporating max
pooling, flattening, a dense layer, and the sigmoid function.

Ali et al. [17] discussed the challenges associated with the current computerized skin lesion
malignancy detection system due to various variables, such as uneven lesion sizes and shapes, different color
illuminations, and varying light conditions. In the preprocessing stage, filters or kernels are employed to
eliminate artifacts and noise, following which robust features are extracted using the feature extraction
procedure. Finally, data augmentation is used to increase the size of the image collection and improve
classification accuracy. The performance of this method is compared with that of other transfer learning
models, including AlexNet and ReNet.

Balaha and Hassan [18] presented an automated melanoma classification and segmentation
approach by using the sparrow search algorithm (SpaSA) and meta-heuristic optimization tool. The
segmentation method involves employing 5 different U-Net models—U-Net, U-Net++, attention-based
UNet, and several others—each with a unique configuration. Additionally, eight pre-trained convolutional
neural network (CNN) models, including MobileNet with VGG (small, big), are utilized to optimize
hyperparameters using the meta-heuristic SpaSA optimizer. Meswal et al. [19] introduced an ensemble
strategy for classifying skin lesions using weighted averages. They obtained the weighted sum of transfer
learning models including InceptionV3, VGG16, Xception, and ResNet50 to create the ensemble models.
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Sadik et al. [20] proposed a CNN-based architecture that combines Xception and MobileNet.
Specifically, they utilized CNN architectures commonly applied in computer vision applications, namely
MobileNet and Xception, to develop a system to detect skin cancer. Karri et al. [21] introduced a novel
strategy to address the issue with current deep learning techniques, namely the challenge of generalizing data
from various sources, leading to domain shift even in well-trained deep learning models. To overcome this,
they proposed a transfer learning methodology which involves two-phase cross-domain. This method utilizes
the ImageNet and MoleMap datasets to construct and enhance data-level and model-level transfer learning
models. Additionally, they introduced SknRSUNet for segmentation, which incorporates spatial attention
features merging.

Shekar and Hailu [22] presented a deep transfer learning approach that combines six specially
designed algorithms with the DenseNet-169 model to gather more detailed and richer features. Subsequently,
the classification task is performed using the gradient boosting machine (GBM) classification model.
Deng [23] highlighted the significance of challenging samples, suggesting that they contain crucial
information. In their paper, they introduced a novel method called limited examples network (LSNet) aimed
at recognizing and enhancing the learning of such difficult examples. LSNet utilizes a pseudo-inverse
learning autoencoder with a patch-based structured input to quickly determine position-sensitive loss. By
efficiently identifying position-sensitive loss, LSNet can recognize challenging samples -effectively.
Moreover, when dealing with skin lesion datasets with few samples, data augmentation is employed in
conjunction with transfer learning to improve the accuracy of classification in deep learning models.
Remya et al. [24] proposed a deep learning-based architecture integrating vision transformer, which
combines channel attention and transfer learning techniques to deliver accurate region of interest (ROI)
segmentation and classification.

3. PROPOSED MODEL

This section gives detail about the suggested deep transfer learning-based strategy to classify skin
cancer. Several steps comprise the entire model, including feature extraction, augmentation, pre-processing,
and classification. Figure 1 illustrates the general architecture of the proposed transfer learning-based
methodology for categorizing skin cancer.

—  Step 1: collection and loading the dataset. In this step, we consider the melanoma related publically
available dataset for processing. The dataset consists of images, their corresponding ground truth for
segmentation and labels for classes.

—  Step 2: data pre-processing, normalization and label encoding. Generally, the skin cancer images have
varied illumination which affects the image analysis tasks. Therefore, we apply contrast enhancement to
obtain the refined dermoscopy image. Moreover, during capturing these images, the quality of images is
degraded due to noise factor. To overcome this issue, we adopt image filtering modelto remove the
noise. The melanoma affected data is imbalanced data therefore we also incorporate data augmentation
methods to address the data imbalance issue. Finally, we apply label encoding mechanism to make it
compatible with deep learning processing modules.

—  Step 3: feature extraction and feature vector. Once the image data is pre-processed and labels are encoded
appropriately, we perform feature extraction task by using pre-trained deep learning models. In this work,
we have used VGG, ResNet, InceptionResNet, andMobileNetfor feature extraction by using their
pre-trained weights. The obtained feature vectors of each models are fused together to formulate the
final vector.

—  Step 4: ensemble using transfer learning models for classification. In this step the resultant feature
vector is processed through the training process which uses EfficientNet, Xception and DenseNet
mocels are used to classify the image data.

3.1. Feature extraction
3.1.1. VGG

The VGG model is a deep CNN. The VGG architecture is constructed by using pooling layer,
convolution layer, and fully connected layer. Consider / as the input image, and VGG (I) as the features extracted
from the VGG model. The convolution operation of this model can be articulated as shown in (1) and (2):

zW = Conv(Al-1, wlH, pl) (D

AW = ReLU(ZzW) )
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Where [ depicts the index of the layer, A'~1 represents the activation from the previous layer, W and bl
are the weights and biases of [® convolutional layer, respectively and ZI!l represents the output of
convolution operation. The MaxPooling operation can be performed as shown in (3):

P = MaxPool(AW) 3)

Finally, in (4) to (6) shows the operation of the fully connected layer:

F = Flatten(P!") 4)
ZU+1] = p oyl 4 pli+al 5)
VGG(I) = ReLU(Z!"*1] (6)

Image
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Hair Data
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Augmentation

EfficientNet -
Malignant VGG Inception
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DenseNet
Transfer Learming
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!
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Figure 1. Architecture of proposed model

3.1.2. ResNet model

A deep CNN architecture called residual network (ResNet) was created to solve the issue of
vanishing gradients. Instead of teaching the network the underlying mappings directly, it introduces skip
connections, which enable the network to learn residual functions. This enables training of much deeper
networks with improved performance. In order to perform the feature extraction task for melanoma images,
let us consider that input image is denoted as I/ and the features extracted from the ResNet model as
ResNet(I). For feature extraction, this model uses convolution, residual block, pooling layer, and fully
connected layer. The (7) and (8) express ResNet's convolution layer action as:

ZW = Conv(Al-1, wl, pl) (7)
Al = BatchNorm (ReLu(Z[l])) (8)

Where [ represents layer’s index, Al'""1 represents the activation from the previous layer, W denotes
Ith weight convolution layer, b!Y denotes biases of 1" convolutional layer, and ZIY depicts output of
convolution operation. In next phase, it performs residual block operation which can be written as (9):

Al = glt-1] 4 F(A[l_l],W[l]) 9)

Where F represents the residual function to be learned by the residual block, A1 represents the input
activation to the residual block. The addition operation denotes the skip connection, allowing the network to

learn residual functions. Later, pooling operation is performed as (10):
P = MaxPool(AM) (10)

Where Pl is the outcome of max pooling operation. Finally, the fully connected layer operations are
performed as (11) to (13):

Melanoma classification using ensemble deep transfer learning (Soumya Gadag)
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F = Flatten(PY) (11)
ZU+1 — p oyl o pli+] (12)
VGG(I) = SoftMax(z!+1) (13)

3.1.3. Inception ResNet

The Inception ResNet architecture combines Inception modules and residual connections from
ResNet, resulting accurate and efficient CNN. It intends to use the advantages of both architectures to
achieve improved performance on various computer vision tasks. This model consists of inception module,
residual connection, pooling layer, and fully connected layer. The Inception module has various parallel
convolutional branches with different kernel sizes and pooling operations. Each branch captures features at
different scales and resolutions. It can be represented as (14):

Inception(Al'=Y) = [Branch,, Branch,, ..., Branch,,] (14)
Where A" is activation from previous layer. Similar to ResNet, InceptionResNet incorporates residual
connections within its architecture to facilitate training of very deep networks. This operation can be
expressed as (15):

AL = A1 4 FAl-Y) (15)

Where F represents the residual function to be learned by the residual connection. In next step, we apply
pooling operation similar to ResNet and VGG model as shown in (16):

P = MaxPool(AY) (16)

Finally, it uses fully connected layer operations as discussed in VGG and ResNet models which is expressed
as (17) to (19):

F = Flatten(P") (17)

z+1] — g oy lt+1] 4 pli+1] (18)

VGG(I) = SoftMax(z"+1) (19)
3.1.4. MobileNet

MobileNet is a lightweight CNN architecture that utilizes depth wise separable convolutions.
It helps to minimize the required number of parameters for training resulting in reduced computation time
and maintaining high accuracy. Let's denote the input image as I, and the features extracted from the
MobileNet model as MobileNet(I). The feature extraction process includes depth wise and point wise
convolution operations. The depth wise convolution can be articulated as (20) and (21):

zW = pepthwiseConv(Al-1, W, pIt) 20
Al = BatchNorm (ReLU(Z[l])) o

Where [ represents layer’s index, AU represents the activation from the previous layer, W denotes
Ith weight convolution layer, b!) denotes biases of It" convolutional layer, and Z!!l represents the output of
depthwise convolution operation. The next step performs, Pointwise convolution operation which is
expressed as (22) and (23):

ZH = pointwiseConv (A, wi+1l pli+1l) (22)

MobileNet(I) = Softmax(Z!"+1) (23)
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The final feature vector can be obtained by concatenating these attributes and normalizing the concatenated
feature vector. It can be expressed as (24):

F = normalize[Concatenate(VGG (1), ResNet(1l), InceptionResNet(l), MobileNet(I) (24)

3.2. Ensemble deep transfer learning model

This section presents the ensemble model of deep transfer learning models for melanoma
classification. The proposed model uses stacked ensemble of EfficientNetB0, Xception, and DenseNet121 to
obtain he classification probability vector. Finally, the fully connected and sigmoid layers are used to obtain
the final classification based on the concatenation of initial probability vector. In Figure 2 depicts the stacked
ensemble classification model.

EfficientNet
7

Weight Update

Adam Optimizer
o Malignant
5] e
E p=3 &) Prediction
5 3 Combination
. ) »
Adam Optimizer

Xception
Ed

H@H OO0 DOoO

Weight Update

Adam Optimizer

Figure 2. Proposed deep transfer learning module for melanoma classification

Efficient Net is a family of CNN architectures that have been designed to achieve the improved
performance with less computational parameters compared to other architectures. In this work, we have used
EfficientNetB0 which is the baseline model in the EfficientNet family. It performs convolution operations,
depth wise separable convolution, global average pooling and fully connected operation. The feature
extraction model can be articulated as (25) and (26):

zW = Conv(Al-1, Wi, pi) (25)
Al = Swish (BatchNorm(ZUl)) (26)

Where [ represents layer’s index, A" represents the activation after applying batch normalization and the
swish activation function, WU is weights, bW is biases of I" convolutional layer, and Z!Y denotes the output
of convolution operation. Next step, it performs global average pooling (GAP) as in (27):

G = GAP(AY) (27)
Finally, the fully connected layer is applied as (28) and (29):

zI+1] = g owl+ 4 plit1] (28)

Melanoma classification using ensemble deep transfer learning (Soumya Gadag)
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EfficientNetBO(I) = Softmax(z*+1) (29)

Here, Softmax denotes the softmax activation function, which converts the raw scores into class probabilities.
Similarly, Xception and Densenet models also used to construct the classifier where Softmax function
converts the raw score into class probabilities.

4. RESULTS AND DISCUSSION

A detailed study of the recommended approach is given in this section. The dataset utilised in this
work is described in depth in the first subsection. The next subsection explains the metrics that were used to
assess the proposed work's performance. Finally, a comparison analysis of proposed work with existing
techniques is done.

4.1. Dataset details
Research on the classification of melanoma has advanced significantly due to the attention from

International Skin Imaging Collaboration (ISIC) challenges. High resolution skin lesion picture collections

with expert annotation, biopsy-proven, and global information are made available by the ISIC. The

organisation has conducted annual skin lesion challenges in an effort to boost researcher engagement and

improve CAD algorithm detection. Table 1 provides an overview of the ISIC datasets from 2016 to 2020.

—  ISIC 2016 dataset: there are 1279 photos in total in this dataset, 900 samples are used for training and
379 are used for testing. Both the training and testing sets have access to the ground truth data.

—  ISIC 2017 dataset: in this dataset 2600 images are available of which 2000 are usesd for network testing
and 600 for training. This dataset contains the groundtruths for four different class groups: melanoma,
seborrhoeic keratosis, nevus, and melanoma nevus

— ISIC 2018 dataset: this large dataset has a total of 11,527 photos, of which 10,015 were used for
network training and the remaining 1512 for network testing and performance evaluation.

—  ISIC 2019 dataset: of the 33,569 photos in the ISIC 2019 dataset, there are 8,238 images in the testing
set and 25,331 images in the training set. But just the labels for the training set photos, which represent
eight classes, are included in this dataset. The information about the training and testing photos is
contained in the metadata. The training metadata contains all pertinent patient information, whereas the
testing metadata contains the age, gender, anatomical site, and lesion ID of the patient.

—  ISIC 2020 dataset: there are 44108 photos in total in this dataset; 33126 are used for training and 10982
are used for testing. The ground truth data, which includes lesion ID, gender, age, patient ID, diagnosis,
anatomical place, and benign or malignant status, is supplied for the training set, just like it was the year
before.

— ISIC Kaggle: in this work, Kaggle dataset of skin lesions which is publicly available from the ISIC
library, is used to train and validate our stacking ensemble model. There are 1800 benign and 1497
malignant mole photos in the collection [14]. Upon closer inspection, sounds and artefacts were
discovered in the gathered skin lesion photos. We used, standard pre-processing methods like scaling,
normalisation, noise reduction, and contrast enhancement, to address this.

The pixel intensity value range of evey image is normalized set to [0,1]. The images are then
uniformly enlarged to 224 by 224 dimensions. The sample image of Benign and Malignant melanoma cases
is shown in Figures 3(a) and 3(b) respectively, these images are obtained from ISIC challenge datasets.

Table 1. Summary of ISIC 2016-2020 dataset

Dataset Train Test Total
ISIC 2016 900 379 1279
ISIC 2017 2000 600 2600
ISIC 2018 10015 1512 11527
ISIC 2019 25331 8238 33569
ISIC 2020 33126 10982 44108

4.2. Performance measurement parameters

This subsection describes the performance measurement parameters that were used to analyze the
overall performance of the proposed model. The classifier's performance is evaluated using the confusion
matrix, which displays the quantity of true negatives (TN), and false negatives (FN), true positives (TP) and
false positives (FP). Figure 4 provides a basic illustration of a confusion matrix.
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(b)

Figure 3. The sample image of melanoma cases for (a) benign samples (b) malignant samples
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Figure 4. Representation of confusion matrix

To evaluate the effectiveness of our proposed method, we employ established metrics including
accuracy, F-measure, precision, false positive rate, true positive rate. These measures depend on true positive,
true negative, false positive, and false negative being distinguished. In the context of this study, TP, TN, FP,
and FN represent properly recognized malignant images, correctly classed benign images, wrongly categorized
benign images, and incorrectly classified malignant images, respectively.

The ratio of TP to the total number of pictures classified as malignant is used to calculate precision
is shown in (30).

TP

Precision = (30)
TP+FP
Divide the total number of harmful pictures by the true positive rate (TPR) as in (31):
TPR = —~ €10
TP+FN
The false positive rate (FPR) is calculated as in (32):
FPR =2 (32)

FP+TN

The definition of accuracy is the product of TN and TP divided by overall pictures, as written in (33):

TP+TN
Accuracy = ———— (33)
TP+FP+TN+FN

F-measure in (34) represents the harmonic mean of precision and recall:

PrecisionxRecall
F —measure = 2 X —— (34)
(Precision+Recall)

Melanoma classification using ensemble deep transfer learning (Soumya Gadag)
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4.3. Comparative performance analysis

This subsection shows result of the proposed model along with a performance comparison between
the obtained results and current systems. Table 2 displays the comparison analysis using several deep
learning-based techniques and datasets. Table 2 shows hows well the proposed model performs alongside
cutting-edge melanoma classifiers. A deep learning model was presented in [25] with a classification
accuracy of 0.92. A new VGG-13 model for skin cancer diagnosis was given by Gilani ef al. [26], and it
achieved an 89.57% detection accuracy. Based on Inception-V3, the ConvNet model introduced in [27]
focuses on binary classification of skin conditions and successfully differentiates between benign and
malignant types of skin cancer. Malik et al. [28] showcased the multi-classification of skin lesions using 2D
superpixels with ResNet-50, achieving an accuracy of 85.50%. Ling ef al. [29] achieved a precision of
88.10% in the multi-classification of skin cancer. Zhou et al. [30] presented SCDNet and achived accuracy of
92.89% in classification of skin cancer. In contrast to established well known methods, our proposed model
demonstrates an improved accuracy for ISIC 2016-2020 datasets.

Table 2. Dataset comparative analysis with different datasets

Article  Year Model Dataset Accuracy  Recall  Precision  Fl-score
[25] 2023 CNN ISIC-2017 92.01 91.91 91.66 91.99
[26] 2023 VGG-13 ISIS-2019 89.58 90.69 89.65 89.63
[27] 2021 ConvNet ISIC-2018 86.89 86.15 87.50 -
[28] 2022  RCNN + 2Dsuperpixel HAM-10000 85.49 83.39 84.49 85.30
[29] 2021 ResetXt101 ISIC-2019 88.49 87.39 88.10 88.30
[30] 2022 SCDNet ISIC-2019 92.89 92.20 92.19 92.20

Proposed ISIC 2016 96.10 95.15 96.25 95.20
ISIC 2017 97.23 96.20 96.30 95.55
ISIC 2018 97.50 97.88 97.50 98.20
ISIC 2019 98.33 98.50 98.30 98.15
ISIC 2020 98.60 98.90 98.50 97.30

In the following experiment, we compared the accuracy of the proposed approach to the most
advanced deep learning, machine learning, and transfer learning techniques. The Table 3, shows the
comparative analysis for HAM-10000. As discussed before, the transfer learning models have gained huge
attention in this biomedical imaging domain therefore several transfer learning-based models have been
introduced. To assess the efficiency of these transfer learning models, we evaluated the performance for
Kaggle ISIC dataset. Table 4 demonstrates the outcome of mostly used transfer learning models for image
classification tasks.

Table 3. Comparative analysis for HAM 10000 dataset

Article  Year Model Dataset Accuracy (%)
[31] 2020 AlexNet HAM-10000 84
[32] 2019 MobileNet HAM-10000 83.9
[33] 2020  MobileNet, VGG-16  HAM-10000 80.61
[34] 2019 SVM HAM-10000 74.75
[35] 2020 ResNet HAM-10000 78

2020 Xception 82

2020 DenseNet 82

[36] 2020 CNN HAM-10000 77

[37] 2021 MobileNetand LSTM  HAM-10000 85
[38] 2021 Inception-V3 HAM-10000 89.73
[39] 2023 InceptionResnet-V2 HAM-10000 91.26
Transfer Learning HAM-10000 98.55

Table 4. Overall performance analysis for Kaggle ISIC dataset

Model Accuracyc  Precision  Recall  Specificity Fl-score AUC
ResNet50 88.78 93.33 85.56 92.67 89.28 0.891
VGG-16 90.91 95.68 86.11 95.33 90.64 0.907
Xception 92.42 93.30 92.78 92.00 93.04 0.924
DenseNet 121 92.27 91.87 94.17 90.00 93.00 0.921
EfficientNetBO 92.30 94.02 91.67 93.00 92.83 0.923
Proposed Model 98.76 98.60 97.67 95.67 97.13 0.987
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This experiment shows that, proposed method reports, 95.76% of overall accuracy and average
precision is recorded at 98.60%. Figure 5, shows a graphic representation of the attained performance
characteristics in terms of precision, accuracy, specificity, F1-score, recall, and area under curve. For this
experiment, the training loss and validation loss performance is shown in Figure 6. The Figure 6(a) shows the
performance of validation loss and training loss, and it is observed that gretest performance is reported at
9 epochs. Similarly, Figure 6(b) shows the performance of validation accuracy and training accuracy and it is
observed that highest accuracy is reported at 15" epoch. This thorough research shows that the suggested
model not only outperforms several cutting-edge transfer learning techniques but also conventional deep
learning models, setting a new standard for melanoma classification accuracy and overall performance.

Comparative performance analysis

EResNet50 ®VGG-16 = Xception DenseNet 121  mEfficientNetBO ™ Proposed Model

98
X 96
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Figure 5. Comparative performance for varied transfer learning models
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Figure 6. Comparative performance of training and validation for (a) loss and (b) accuracy

5.  CONCLUSION

In this work, we address the pressing need for improved early detection and diagnosis of melanoma,
a formidable challenge in public health due to its increasing mortality rates. Machine learning has become a
viable way to improve accuracy, even though more conventional techniques, such as visual inspection,
mainly depend on observer expertise. However, researchers continue to face difficulties in reaching high
accuracy. To overcome this challenge, we proposed a comprehensive approach utilizing deep transfer
learning techniques. Our methodology encompasses several crucial steps to enhance the processing of
melanoma-related image datasets. Through data pre-processing, normalization, and label encoding, we
mitigate issues such as varied illumination, image noise, and data imbalance. Furthermore, we leverage pre-
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trained deep learning models like ResNet, MobileNet, VGG, and InceptionResNet for feature extraction,
followed by ensemble learning using transfer learning models like EfficientNet, Xception, and DenseNet for
classification. By fusing feature vectors and employing ensemble learning, our goal is develop a reliable
accurate model for melanoma classification. Our proposed approach demonstrates promising results on
publicly available ISIC datasets from 2017 to 2020. The reported average accuracies of 96.10%, 97.23%,
97.50%, 98.33%, and 98.60%, respectively, underscore the effectiveness of our methodology in accurately
identifying melanoma. These findings represent a substantial development in the profession and could result
in better patient outcomes and earlier detection. In future work, this work can be extended to provide a
universal architecture to identify differnet types of diseases.
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