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 Melanoma, a type of skin cancer, poses significant challenges in early 

detection and diagnosis. Several methods for early melanoma detection, 

including visual inspection and several machine learning models, face 

challenges with accuracy. To overcome these issues, deep learning has been 

widely adopted in various biomedical applications. In this work, we employ 

deep transfer learning methods to classify melanoma. Firstly, we collect 

publicly available datasets containing melanoma images, their corresponding 

ground truth for segmentation, and class labels. Subsequently, we perform 

data preprocessing, normalization, and label encoding to address issues of 

varied illumination, image noise, and data imbalance. Next, we conduct 

feature extraction utilizing the previously trained deep learning models, 

VGG, ResNet, InceptionResNet, and MobileNet. The characteristic vectors 

obtained from each model are fused to produce a comprehensive depiction 

among the provided pictures. In the classification stage, we employ 

ensemble learning using transfer learning models, including EfficientNet, 

Xception, and DenseNet. These models are trained on the final feature 

vector to classify melanoma images effectively. The effectiveness of the 

suggested method is verified using publicly available ISIC 2017–2020 

datasets, these model reports average accuracy scores of 96.10%, 97.23%, 

97.50%, 98.33%, and 98.60%, in that order. 
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1. INTRODUCTION  

Skin cancer is the most prevalent form of cancer, surpassing all other types combined in terms of 

diagnosis rates annually. In the United States alone, there are approximately 9,500 fresh cases identified 

daily, as reported by the Skin Cancer Foundation in 2017 [1]. By 2040, there will likely be close to half a 

million occurrences of skin cancer, with melanoma being the deadliest type, marking a staggering 62% surge 

since 2018. The severity of the situation is emphasized by the alarming fact that one person loses their life to 

skin cancer every four minutes, prompting dermatologists worldwide to classify its rising incidence as a 

global epidemic, as noted by Melanoma UK in 2020 [2]. 

Early detection and intervention, especially for melanoma, emerge as pivotal factors in improving 

the survival rates amid the mounting cases [3]. Excessive contact to ultraviolet (UV) radiation stands out as 

the primary identifiable culprit behind skin cancer [4]. Natural sunshine or other UV sources, such as indoor 

tanning machines, may be the source of this exposure (Cancer Research UK) [5]. Significantly, reduced 

ozone levels raise the risk of exposure to natural sunshine by increasing ground-level UV radiation 

(Department for Environment Food & Rural Affairs, 2020) [6]. Furthermore, regions situated closer to the 

https://creativecommons.org/licenses/by-sa/4.0/
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equator witness an uptick in non-melanoma skin cancer cases due to elevated UV radiation levels. 

Furthermore, lifestyle factors such as poor dietary choices, alcohol consumption, and smoking also contribute 

to the modifiable risk profile associated with skin cancer. Therefore, early detection and prevention of these 

cancers is studied widely. 

Several methods have been introduced for melanoma detection; however, imaging-based methods 

have been widely adopted in various biomedical applications. Dermatologists can diagnose malignant lesions 

through dermoscopic visual examinations. The diverse textures and wounds present on the skin surface can 

make detecting skin cancer challenging using dermoscopy. Yet, accurately diagnosing skin cancer through 

manual examination of dermoscopic images is difficult. The accuracy of lesion diagnosis is heavily 

influenced by the dermatologist's experience. The only alternative techniques for detecting skin cancer that 

are now available are dermoscopy, biopsy, and macroscopic inspection. Because skin lesions are complex, 

they require more time and care. The dermatologists perform the observation with naked eyes, dermoscopy 

mechanisms and biopsy. Therefore, the accuracy of these systems relies on clinician’s skill. A significant 

amount of research has been dedicated to developing computer-based image analysis algorithms for the early 

and rapid diagnosis of skin cancer, aiming to overcome the previously mentioned challenges, Primarily, these 

algorithms have been parametric, relying on normally distributed data for operation. However, due to the 

uncontrollable nature of the data, these methods often fail to provide accurate diagnoses. 

Numerous medical imaging researchers have introduced computer-aided design (CAD) techniques. 

This four-step CAD process encompasses image pre-processing, identification of affected areas, feature 

extraction, and classification. Several methods have been introduced using computer vision approach such as 

artificial neural networks (ANN), decision trees (DT), and support vector machines (SVM). The research in 

[7], [8] provides a thorough analysis of various techniques. Nevertheless, there are a number of data 

processing limitations with machine learning techniques, including the need for better contrast, noise-free, 

and cleaned images. Moreover, a number of criteria, including structural traits, color attributes, and texture 

attributes, are used to classify skin [9], [10]. However, classification based on inadequate feature sets can 

result in erroneous outcomes due to the high inter-class homogeneity and intra-class heterogeneity of skin 

lesions [11]. Conventional parametric methods require training data to be normally distributed, which is not 

the case for uncontrolled skin cancer data. Since every lesion has a different pattern, these traditional 

approaches are insufficient. As a result, deep learning methods have shown to be quite successful at 

classifying skin, helping dermatologists diagnose lesions with high precision. The application of deep 

learning in medicine has been widely explored through various detailed surveys. The most recent research on 

deep learning-based methods for melanoma detection and classification is covered in section 2.  

Deep learning techniques based on transfer learning have gained widespread traction at the moment. 

With this method, large-scale datasets from one domain (like natural photographs) are used to train deep 

learning models, which are then used to transfer their learned representations to a target domain (biomedical 

images). By fine-tuning these pre-trained models on smaller biomedical datasets, researchers can effectively 

classify biomedical images with high accuracy. Transfer learning in biomedical image classification offers 

several advantages. Firstly, it allows researchers to overcome the challenge of limited annotated data in the 

biomedical domain by leveraging knowledge learned from larger datasets in related domains. Secondly,  

pre-trained models capture generic image features like textures, shapes, and edges, which can typically 

transferable across different image domains. This allows the model to learn important features for biomedical 

image classification tasks without requiring extensive retraining from scratch. Several models have been 

presented using this concept of transfer learning such as Zunair and Hamza [12] presented a model composed 

of two stages, combining adversarial training with transfer learning, Qureshi et al. [13] used Google Xception 

model to develop the transfer learning architecture, Hosny et al. [14] used Alexnet. However, the transfer 

learning-based models suffer from different issues such as domain transfer between source and target domain 

where resolution, noise level, and tissue variability affects the transferability of learned attributes. As a result, 

the pre-trained model is unable to capture the pertinent characteristics. Furthermore, a significant quantity of 

data is needed to refine the previously trained models. In this reserach, our main objective is to develop a 

deep learning-based melanoma categorization through the use of transfer learning strategy.  

As discussed before, skin cancer occurs more commonly than any other form of cancer, with diagnosis 

rates surpassing all other types combined, and approximately 9,500 new cases are diagnosed each day in the 

United States alone. By 2040, skin cancer cases are projected to approach half a million, with melanoma being 

the deadliest type, marking a staggering 62% increase since 2018. Skin cancer is primarily caused by 

overexposure to UV radiation from sunlight or artificial sources like tanning machines, compounded by factors 

such as reduced ozone levels, geographical proximity to the equator, poor dietary habits, alcohol consumption, 

and smoking. Despite the urgency of the situation, current diagnostic methods like dermoscopy, biopsy, and 

macroscopic inspection are highly dependent on the clinician's skill, making accurate diagnosis challenging and 

time-consuming. Traditional computer image analysis algorithms and machine learning techniques have 
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attempted to assist in early diagnosis, but these methods often fall short due to the uncontrolled nature of skin 

cancer data and issues like inadequate feature sets, high inter-class homogeneity, and intra-class heterogeneity. 

Deep learning, especially transfer learning, offers a promising solution by leveraging large-scale datasets from 

related domains to enhance classification accuracy in biomedical images. However, transfer learning models 

face challenges such as domain transfer issues and the need for significant amounts of data to fine-tune pre-

trained models effectively. This work focuses on developing a robust deep learning model for melanoma 

classification through transfer learning, aiming to overcome the limitations of existing approaches and improve 

the accuracy and reliability of early skin cancer detection. 

The key contributions of this work are as follows: The pre-processing phase performs several tasks 

such as improving the image quality, hair removal and label encoding to process the efficiently. The 

proposed model uses transfer learning approach for feature extraction where VGG, InceptionResNet, ResNet 

and MobileNet modules are used to obtain the significant attributes. The obtained features are fused together 

to attain the final feature vector. In next step, deep ensemble model is constructed by using the concept of 

transfer learning where EfficientNet, Xception, and DenseNet transfer learning models are used to obtain the 

probability vector for predicting the skin cancer. Finally, FC and sigmoid layers are used to obtain the 

concluding classification.  

This work introduces several key innovations that significantly enhance the performance of 

melanoma image classification systems. A comprehensive multi-stage pre-processing pipeline is 

implemented to address common dermatological imaging challenges. This pipeline improves contrast to 

highlight critical features and applies noise reduction to ensure cleaner and more reliable input for further 

analysis. To counteract dataset imbalance—a frequent issue in melanoma detection. Various data 

augmentation techniques are employed to synthetically expand the minority classes, enhancing the model’s 

robustness and ability to generalize effectively. The approach also leverages pre-trained deep learning models 

like VGG, ResNet, MobileNet and Inception ResNet, for feature extraction. These models capture rich 

hierarchical representations, and by fusing their feature vectors, the system achieves a more comprehensive 

and discriminative understanding of the input images. Finally, ensemble classification using transfer learning 

is employed, combining the strengths of multiple architectures. This ensemble approach captures complex 

patterns and subtle distinctions within melanoma images, resulting in improved classification accuracy and 

overall system performance. 

The subsequent sections of the article are structured as follows: section 2 provides a comprehensive 

literature review of current melanoma classification techniques. Section 3 presents an in-depth overview of 

the proposed model. Section 4 outlines the results of the proposed model along with a comparative analysis 

with current techniques. Lastly, section 5 offers closing thoughts and future directions for the research.  

 

 

2. LITERATURE SURVEY   

This section gives in detailed analysis of the current approaches for classifying melanoma with the 

help of deep learning and transfer learning methods. Lu and Zadeh [15] presented an automated method for 

utilizing dermoscopy images to diagnose skin cancer. To increase classification accuracy, the model used 

depth-wise separable convolution and the swish activation function, with XceptionNet serving as the base 

network. Jain et al. [16] presented a deep transfer learning model was introduced. To address the issue of 

data imbalance, the method included image data augmentation. Moreover, feature extraction and 

classification tasks were performed using transfer learning techniques such as VGG19, InceptionV3, and 

MobileNet, among others. Following these architectures, the task was completed by incorporating max 

pooling, flattening, a dense layer, and the sigmoid function. 

Ali et al. [17] discussed the challenges associated with the current computerized skin lesion 

malignancy detection system due to various variables, such as uneven lesion sizes and shapes, different color 

illuminations, and varying light conditions. In the preprocessing stage, filters or kernels are employed to 

eliminate artifacts and noise, following which robust features are extracted using the feature extraction 

procedure. Finally, data augmentation is used to increase the size of the image collection and improve 

classification accuracy. The performance of this method is compared with that of other transfer learning 

models, including AlexNet and ReNet. 

Balaha and Hassan [18] presented an automated melanoma classification and segmentation 

approach by using the sparrow search algorithm (SpaSA) and meta-heuristic optimization tool. The 

segmentation method involves employing 5 different U-Net models—U-Net, U-Net++, attention-based 

UNet, and several others—each with a unique configuration. Additionally, eight pre-trained convolutional 

neural network (CNN) models, including MobileNet with VGG (small, big), are utilized to optimize 

hyperparameters using the meta-heuristic SpaSA optimizer. Meswal et al. [19] introduced an ensemble 

strategy for classifying skin lesions using weighted averages. They obtained the weighted sum of transfer 

learning models including InceptionV3, VGG16, Xception, and ResNet50 to create the ensemble models. 
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Sadik et al. [20] proposed a CNN-based architecture that combines Xception and MobileNet. 

Specifically, they utilized CNN architectures commonly applied in computer vision applications, namely 

MobileNet and Xception, to develop a system to detect skin cancer. Karri et al. [21] introduced a novel 

strategy to address the issue with current deep learning techniques, namely the challenge of generalizing data 

from various sources, leading to domain shift even in well-trained deep learning models. To overcome this, 

they proposed a transfer learning methodology which involves two-phase cross-domain. This method utilizes 

the ImageNet and MoleMap datasets to construct and enhance data-level and model-level transfer learning 

models. Additionally, they introduced SknRSUNet for segmentation, which incorporates spatial attention 

features merging. 

Shekar and Hailu [22] presented a deep transfer learning approach that combines six specially 

designed algorithms with the DenseNet-169 model to gather more detailed and richer features. Subsequently, 

the classification task is performed using the gradient boosting machine (GBM) classification model.  

Deng [23] highlighted the significance of challenging samples, suggesting that they contain crucial 

information. In their paper, they introduced a novel method called limited examples network (LSNet) aimed 

at recognizing and enhancing the learning of such difficult examples. LSNet utilizes a pseudo-inverse 

learning autoencoder with a patch-based structured input to quickly determine position-sensitive loss. By 

efficiently identifying position-sensitive loss, LSNet can recognize challenging samples effectively. 

Moreover, when dealing with skin lesion datasets with few samples, data augmentation is employed in 

conjunction with transfer learning to improve the accuracy of classification in deep learning models.  

Remya et al. [24] proposed a deep learning-based architecture integrating vision transformer, which 

combines channel attention and transfer learning techniques to deliver accurate region of interest (ROI) 

segmentation and classification.  

 

 

3. PROPOSED MODEL 

This section gives detail about the suggested deep transfer learning-based strategy to classify skin 

cancer. Several steps comprise the entire model, including feature extraction, augmentation, pre-processing, 

and classification. Figure 1 illustrates the general architecture of the proposed transfer learning-based 

methodology for categorizing skin cancer. 

‒ Step 1: collection and loading the dataset. In this step, we consider the melanoma related publically 

available dataset for processing. The dataset consists of images, their corresponding ground truth for 

segmentation and labels for classes.  

‒ Step 2: data pre-processing, normalization and label encoding. Generally, the skin cancer images have 

varied illumination which affects the image analysis tasks. Therefore, we apply contrast enhancement to 

obtain the refined dermoscopy image. Moreover, during capturing these images, the quality of images is 

degraded due to noise factor. To overcome this issue, we adopt image filtering modelto remove the 

noise. The melanoma affected data is imbalanced data therefore we also incorporate data augmentation 

methods to address the data imbalance issue. Finally, we apply label encoding mechanism to make it 

compatible with deep learning processing modules. 

‒ Step 3: feature extraction and feature vector. Once the image data is pre-processed and labels are encoded 

appropriately, we perform feature extraction task by using pre-trained deep learning models. In this work, 

we have used VGG, ResNet, InceptionResNet, andMobileNetfor feature extraction by using their  

pre-trained weights. The obtained feature vectors of each models are fused together to formulate the  

final vector. 

‒ Step 4: ensemble using transfer learning models for classification. In this step the resultant feature 

vector is processed through the training process which uses EfficientNet, Xception and DenseNet 

mocels are used to classify the image data.  

 

3.1.  Feature extraction 

3.1.1. VGG 

The VGG model is a deep CNN. The VGG architecture is constructed by using pooling layer, 

convolution layer, and fully connected layer. Consider 𝐼 as the input image, and 𝑉𝐺𝐺(𝐼) as the features extracted 

from the VGG model. The convolution operation of this model can be articulated as shown in (1) and (2): 

 

𝑍[𝑙] = 𝐶𝑜𝑛𝑣(𝐴[𝑙−1], 𝑊 [𝑙], 𝑏[𝑙]) (1) 

 

𝐴[𝑙] = 𝑅𝑒𝐿𝑈(𝑍[𝑙]) (2) 
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Where 𝑙 depicts the index of the layer, 𝐴[𝑙−1] represents the activation from the previous layer, 𝑊[𝑙] and 𝑏[𝑙] 

are the weights and biases of 𝑙𝑡ℎ convolutional layer, respectively and 𝑍[𝑙] represents the output of 

convolution operation. The MaxPooling operation can be performed as shown in (3): 
 

𝑃[𝑙] = 𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝐴(𝑙)) (3) 

 

Finally, in (4) to (6) shows the operation of the fully connected layer: 
 

𝐹 = 𝐹𝑙𝑎𝑡𝑡𝑒𝑛(𝑃[𝑙]) (4) 

 

𝑍[𝑙+1] = 𝐹. 𝑊[𝑙+1] + 𝑏[𝑙+1] (5) 
 

𝑉𝐺𝐺(𝐼) = 𝑅𝑒𝐿𝑈(𝑍[𝑙+1] (6) 
 

 

 
 

Figure 1. Architecture of proposed model 

 

 

3.1.2. ResNet model 

A deep CNN architecture called residual network (ResNet) was created to solve the issue of 

vanishing gradients. Instead of teaching the network the underlying mappings directly, it introduces skip 

connections, which enable the network to learn residual functions. This enables training of much deeper 

networks with improved performance. In order to perform the feature extraction task for melanoma images, 

let us consider that input image is denoted as 𝐼 and the features extracted from the ResNet model as 

𝑅𝑒𝑠𝑁𝑒𝑡(𝐼). For feature extraction, this model uses convolution, residual block, pooling layer, and fully 

connected layer. The (7) and (8) express ResNet's convolution layer action as: 
 

𝑍[𝑙] = 𝐶𝑜𝑛𝑣(𝐴[𝑙−1], 𝑊 [𝑙], 𝑏[𝑙]) (7) 

 

𝐴[𝑙] = 𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚 (𝑅𝑒𝐿𝑢(𝑍[𝑙])) (8) 

 

Where 𝑙 represents layer’s index, 𝐴[𝑙−1] represents the activation from the previous layer, 𝑊 [𝑙] denotes  

𝑙𝑡ℎ weight convolution layer, 𝑏[𝑙] denotes biases of 𝑙𝑡ℎ convolutional layer, and 𝑍[𝑙] depicts output of 

convolution operation. In next phase, it performs residual block operation which can be written as (9): 
 

𝐴[𝑙] = 𝐴[𝑙−1] + 𝐹(𝐴[𝑙−1], 𝑊[𝑙]) (9) 

 

Where 𝐹 represents the residual function to be learned by the residual block, 𝐴[𝑙−1] represents the input 

activation to the residual block. The addition operation denotes the skip connection, allowing the network to 

learn residual functions. Later, pooling operation is performed as (10): 
 

𝑃[𝑙] = 𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝐴[𝑙]) (10) 

 

Where 𝑃[𝑙] is the outcome of max pooling operation. Finally, the fully connected layer operations are 

performed as (11) to (13): 
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𝐹 = 𝐹𝑙𝑎𝑡𝑡𝑒𝑛(𝑃[𝑙]) (11) 

 

𝑍[𝑙+1] = 𝐹. 𝑊[𝑙+1] + 𝑏[𝑙+1] (12) 

 

𝑉𝐺𝐺(𝐼) = 𝑆𝑜𝑓𝑡𝑀𝑎𝑥(𝑍[𝑙+1]) (13) 

 

3.1.3. Inception ResNet 

The Inception ResNet architecture combines Inception modules and residual connections from 

ResNet, resulting accurate and efficient CNN. It intends to use the advantages of both architectures to 

achieve improved performance on various computer vision tasks. This model consists of inception module, 

residual connection, pooling layer, and fully connected layer. The Inception module has various parallel 

convolutional branches with different kernel sizes and pooling operations. Each branch captures features at 

different scales and resolutions. It can be represented as (14): 

 

𝐼𝑛𝑐𝑒𝑝𝑡𝑖𝑜𝑛(𝐴[𝑙−1]) = [𝐵𝑟𝑎𝑛𝑐ℎ1 , 𝐵𝑟𝑎𝑛𝑐ℎ2, … , 𝐵𝑟𝑎𝑛𝑐ℎ𝑛] (14) 

 

Where 𝐴[𝑙−1] is activation from previous layer. Similar to ResNet, InceptionResNet incorporates residual 

connections within its architecture to facilitate training of very deep networks. This operation can be 

expressed as (15): 

 

𝐴𝑙 = 𝐴[𝑙−1] + 𝐹(𝐴[𝑙−1])  (15) 

 

Where 𝐹 represents the residual function to be learned by the residual connection. In next step, we apply 

pooling operation similar to ResNet and VGG model as shown in (16):  

 

𝑃[𝑙] = 𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝐴[𝑙]) (16) 

 

Finally, it uses fully connected layer operations as discussed in VGG and ResNet models which is expressed 

as (17) to (19): 

 

𝐹 = 𝐹𝑙𝑎𝑡𝑡𝑒𝑛(𝑃[𝑙]) (17) 

 

𝑍[𝑙+1] = 𝐹. 𝑊[𝑙+1] + 𝑏[𝑙+1] (18) 

 

𝑉𝐺𝐺(𝐼) = 𝑆𝑜𝑓𝑡𝑀𝑎𝑥(𝑍[𝑙+1]) (19) 

 

3.1.4. MobileNet 

MobileNet is a lightweight CNN architecture that utilizes depth wise separable convolutions.  

It helps to minimize the required number of parameters for training resulting in reduced computation time 

and maintaining high accuracy. Let's denote the input image as 𝐼, and the features extracted from the 

MobileNet model as 𝑀𝑜𝑏𝑖𝑙𝑒𝑁𝑒𝑡(𝐼). The feature extraction process includes depth wise and point wise 

convolution operations. The depth wise convolution can be articulated as (20) and (21): 

 

𝑍[𝑙] = 𝐷𝑒𝑝𝑡ℎ𝑤𝑖𝑠𝑒𝐶𝑜𝑛𝑣(𝐴[𝑙−1], 𝑊[𝑙], 𝑏[𝑙]) (20) 

 

𝐴[𝑙] = 𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚 (𝑅𝑒𝐿𝑈(𝑍[𝑙])) (21) 

 

Where 𝑙 represents layer’s index, 𝐴[𝑙−1] represents the activation from the previous layer, 𝑊 [𝑙] denotes  

𝑙𝑡ℎ weight convolution layer, 𝑏[𝑙] denotes biases of 𝑙𝑡ℎ convolutional layer, and 𝑍[𝑙] represents the output of 

depthwise convolution operation. The next step performs, Pointwise convolution operation which is 

expressed as (22) and (23): 

 

𝑍[𝑙+1] = 𝑃𝑜𝑖𝑛𝑡𝑤𝑖𝑠𝑒𝐶𝑜𝑛𝑣(𝐴[𝑙], 𝑊 [𝑙+1], 𝑏[𝑙+1]) (22) 

 

𝑀𝑜𝑏𝑖𝑙𝑒𝑁𝑒𝑡(𝐼) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑍[𝑙+1]) (23) 
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The final feature vector can be obtained by concatenating these attributes and normalizing the concatenated 

feature vector. It can be expressed as (24): 

 

𝐹 = 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒[𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(𝑉𝐺𝐺(𝐼), 𝑅𝑒𝑠𝑁𝑒𝑡(𝐼), 𝐼𝑛𝑐𝑒𝑝𝑡𝑖𝑜𝑛𝑅𝑒𝑠𝑁𝑒𝑡(𝐼), 𝑀𝑜𝑏𝑖𝑙𝑒𝑁𝑒𝑡(𝐼) (24) 

 

3.2. Ensemble deep transfer learning model 

This section presents the ensemble model of deep transfer learning models for melanoma 

classification. The proposed model uses stacked ensemble of EfficientNetB0, Xception, and DenseNet121 to 

obtain he classification probability vector. Finally, the fully connected and sigmoid layers are used to obtain 

the final classification based on the concatenation of initial probability vector. In Figure 2 depicts the stacked 

ensemble classification model.  

 

 

 
 

Figure 2. Proposed deep transfer learning module for melanoma classification 

 

 

Efficient Net is a family of CNN architectures that have been designed to achieve the improved 

performance with less computational parameters compared to other architectures. In this work, we have used 

EfficientNetB0 which is the baseline model in the EfficientNet family. It performs convolution operations, 

depth wise separable convolution, global average pooling and fully connected operation. The feature 

extraction model can be articulated as (25) and (26): 

 

𝑍[𝑙] = 𝐶𝑜𝑛𝑣(𝐴[𝑙−1], 𝑊 [𝑙], 𝑏[𝑙]) (25) 

 

𝐴[𝑙] = 𝑆𝑤𝑖𝑠ℎ (𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚(𝑍[𝑙])) (26) 

 

Where 𝑙 represents layer’s index, 𝐴[𝑙−1] represents the activation after applying batch normalization and the 

swish activation function, 𝑊 [𝑙] is weights, 𝑏[𝑙] is biases of 𝑙𝑡ℎ convolutional layer, and 𝑍[𝑙] denotes the output 

of convolution operation. Next step, it performs global average pooling (GAP) as in (27): 

 

𝐺 = 𝐺𝐴𝑃(𝐴[𝑙]) (27) 

 

Finally, the fully connected layer is applied as (28) and (29): 

 

𝑍]𝑙+1]   =   𝐺. 𝑊 [𝑙+1] + 𝑏[𝑙+1] (28) 
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𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑁𝑒𝑡𝐵0(𝐼) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑍[𝑙+1]) (29) 

 

Here, Softmax denotes the softmax activation function, which converts the raw scores into class probabilities. 

Similarly, Xception and Densenet models also used to construct the classifier where Softmax function 

converts the raw score into class probabilities.  

 

 

4. RESULTS AND DISCUSSION  

A detailed study of the recommended approach is given in this section. The dataset utilised in this 

work is described in depth in the first subsection. The next subsection explains the metrics that were used to 

assess the proposed work's performance. Finally, a comparison analysis of proposed work with existing 

techniques is done.  

 

4.1.  Dataset details 

Research on the classification of melanoma has advanced significantly due to the attention from 

International Skin Imaging Collaboration (ISIC) challenges. High resolution skin lesion picture collections 

with expert annotation, biopsy-proven, and global information are made available by the ISIC. The 

organisation has conducted annual skin lesion challenges in an effort to boost researcher engagement and 

improve CAD algorithm detection. Table 1 provides an overview of the ISIC datasets from 2016 to 2020.  

‒ ISIC 2016 dataset: there are 1279 photos in total in this dataset, 900 samples are used for training and 

379 are used for testing. Both the training and testing sets have access to the ground truth data.  

‒ ISIC 2017 dataset: in this dataset 2600 images are available of which 2000 are usesd for network testing 

and 600 for training. This dataset contains the groundtruths for four different class groups: melanoma, 

seborrhoeic keratosis, nevus, and melanoma nevus 

‒ ISIC 2018 dataset: this large dataset has a total of 11,527 photos, of which 10,015 were used for 

network training and the remaining 1512 for network testing and performance evaluation.  

‒ ISIC 2019 dataset: of the 33,569 photos in the ISIC 2019 dataset, there are 8,238 images in the testing 

set and 25,331 images in the training set. But just the labels for the training set photos, which represent 

eight classes, are included in this dataset. The information about the training and testing photos is 

contained in the metadata. The training metadata contains all pertinent patient information, whereas the 

testing metadata contains the age, gender, anatomical site, and lesion ID of the patient. 

‒ ISIC 2020 dataset: there are 44108 photos in total in this dataset; 33126 are used for training and 10982 

are used for testing. The ground truth data, which includes lesion ID, gender, age, patient ID, diagnosis, 

anatomical place, and benign or malignant status, is supplied for the training set, just like it was the year 

before.  

‒ ISIC Kaggle: in this work, Kaggle dataset of skin lesions which is publicly available from the ISIC 

library, is used to train and validate our stacking ensemble model. There are 1800 benign and 1497 

malignant mole photos in the collection [14]. Upon closer inspection, sounds and artefacts were 

discovered in the gathered skin lesion photos. We used, standard pre-processing methods like scaling, 

normalisation, noise reduction, and contrast enhancement, to address this. 

The pixel intensity value range of evey image is normalized set to [0,1]. The images are then 

uniformly enlarged to 224 by 224 dimensions. The sample image of Benign and Malignant melanoma cases 

is shown in Figures 3(a) and 3(b) respectively, these images are obtained from ISIC challenge datasets. 

 

 

Table 1. Summary of ISIC 2016-2020 dataset 
Dataset Train Test Total 

ISIC 2016 900 379 1279 

ISIC 2017 2000 600 2600 

ISIC 2018 10015 1512 11527 
ISIC 2019 25331 8238 33569 

ISIC 2020 33126 10982 44108 

 

 

4.2.  Performance measurement parameters  

This subsection describes the performance measurement parameters that were used to analyze the 

overall performance of the proposed model. The classifier's performance is evaluated using the confusion 

matrix, which displays the quantity of true negatives (TN), and false negatives (FN), true positives (TP) and 

false positives (FP). Figure 4 provides a basic illustration of a confusion matrix.  
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(a) 

 

   
(b) 

 

Figure 3. The sample image of melanoma cases for (a) benign samples (b) malignant samples 

 

 

 
 

Figure 4. Representation of confusion matrix 

 

 

To evaluate the effectiveness of our proposed method, we employ established metrics including 

accuracy, F-measure, precision, false positive rate, true positive rate. These measures depend on true positive, 

true negative, false positive, and false negative being distinguished. In the context of this study, TP, TN, FP, 

and FN represent properly recognized malignant images, correctly classed benign images, wrongly categorized 

benign images, and incorrectly classified malignant images, respectively. 

The ratio of TP to the total number of pictures classified as malignant is used to calculate precision 

is shown in (30).  

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃 
 (30) 

 

Divide the total number of harmful pictures by the true positive rate (TPR) as in (31): 

 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (31) 

 

The false positive rate (FPR) is calculated as in (32): 

 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
 (32) 

 

The definition of accuracy is the product of TN and TP divided by overall pictures, as written in (33): 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
 (33) 

 

F-measure in (34) represents the harmonic mean of precision and recall: 

 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙)
 (34) 
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4.3.  Comparative performance analysis  

This subsection shows result of the proposed model along with a performance comparison between 

the obtained results and current systems. Table 2 displays the comparison analysis using several deep 

learning-based techniques and datasets. Table 2 shows hows well the proposed model performs alongside 

cutting-edge melanoma classifiers. A deep learning model was presented in [25] with a classification 

accuracy of 0.92. A new VGG-13 model for skin cancer diagnosis was given by Gilani et al. [26], and it 

achieved an 89.57% detection accuracy. Based on Inception-V3, the ConvNet model introduced in [27] 

focuses on binary classification of skin conditions and successfully differentiates between benign and 

malignant types of skin cancer. Malik et al. [28] showcased the multi-classification of skin lesions using 2D 

superpixels with ResNet-50, achieving an accuracy of 85.50%. Ling et al. [29] achieved a precision of 

88.10% in the multi-classification of skin cancer. Zhou et al. [30] presented SCDNet and achived accuracy of 

92.89% in classification of skin cancer. In contrast to established well known methods, our proposed model 

demonstrates an improved accuracy for ISIC 2016-2020 datasets.  

 

 

Table 2. Dataset comparative analysis with different datasets 
Article Year Model Dataset Accuracy Recall Precision F1-score 

[25] 2023 CNN ISIC-2017 92.01 91.91 91.66 91.99 

[26] 2023 VGG-13 ISIS-2019 89.58 90.69 89.65 89.63 

[27] 2021 ConvNet ISIC-2018 86.89 86.15 87.50 - 
[28] 2022 RCNN + 2Dsuperpixel HAM-10000 85.49 83.39 84.49 85.30 

[29] 2021 ResetXt101 ISIC-2019 88.49 87.39 88.10 88.30 
[30] 2022 SCDNet ISIC-2019 92.89 92.20 92.19 92.20 

  Proposed ISIC 2016 96.10 95.15 96.25 95.20 

ISIC 2017 97.23 96.20 96.30 95.55 
ISIC 2018 97.50 97.88 97.50 98.20 

ISIC 2019 98.33 98.50 98.30 98.15 

ISIC 2020 98.60 98.90 98.50 97.30 

 

 

In the following experiment, we compared the accuracy of the proposed approach to the most 

advanced deep learning, machine learning, and transfer learning techniques. The Table 3, shows the 

comparative analysis for HAM-10000. As discussed before, the transfer learning models have gained huge 

attention in this biomedical imaging domain therefore several transfer learning-based models have been 

introduced. To assess the efficiency of these transfer learning models, we evaluated the performance for 

Kaggle ISIC dataset. Table 4 demonstrates the outcome of mostly used transfer learning models for image 

classification tasks.  

 

 

Table 3. Comparative analysis for HAM10000 dataset 
Article Year Model Dataset Accuracy (%) 

[31] 2020 AlexNet HAM-10000 84 
[32] 2019 MobileNet HAM-10000 83.9 

[33] 2020 MobileNet, VGG-16 HAM-10000 80.61 
[34] 2019 SVM HAM-10000 74.75 

[35] 2020 ResNet HAM-10000 78 

2020 Xception 82 

2020 DenseNet 82 

[36] 2020 CNN HAM-10000 77 

[37] 2021 MobileNet and LSTM HAM-10000 85 
[38] 2021 Inception-V3 HAM-10000 89.73 

[39] 2023 InceptionResnet-V2 HAM-10000 91.26 

  Transfer Learning HAM-10000 98.55 

 

 

Table 4. Overall performance analysis for Kaggle ISIC dataset 
Model Accuracyc Precision Recall Specificity F1-score AUC 

ResNet50 88.78 93.33 85.56 92.67 89.28 0.891 

VGG-16 90.91 95.68 86.11 95.33 90.64 0.907 
Xception 92.42 93.30 92.78 92.00 93.04 0.924 

DenseNet 121 92.27 91.87 94.17 90.00 93.00 0.921 

EfficientNetBO 92.30 94.02 91.67 93.00 92.83 0.923 
Proposed Model 98.76 98.60 97.67 95.67 97.13 0.987 
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This experiment shows that, proposed method reports, 95.76% of overall accuracy and average 

precision is recorded at 98.60%. Figure 5, shows a graphic representation of the attained performance 

characteristics in terms of precision, accuracy, specificity, F1-score, recall, and area under curve. For this 

experiment, the training loss and validation loss performance is shown in Figure 6. The Figure 6(a) shows the 

performance of validation loss and training loss, and it is observed that gretest performance is reported at  

9 epochs. Similarly, Figure 6(b) shows the performance of validation accuracy and training accuracy and it is 

observed that highest accuracy is reported at 15th epoch. This thorough research shows that the suggested 

model not only outperforms several cutting-edge transfer learning techniques but also conventional deep 

learning models, setting a new standard for melanoma classification accuracy and overall performance. 
 

 

 
 

Figure 5. Comparative performance for varied transfer learning models 
 

 

  
(a) (b) 

 

Figure 6. Comparative performance of training and validation for (a) loss and (b) accuracy 

 

 

5. CONCLUSION 

In this work, we address the pressing need for improved early detection and diagnosis of melanoma, 

a formidable challenge in public health due to its increasing mortality rates. Machine learning has become a 

viable way to improve accuracy, even though more conventional techniques, such as visual inspection, 

mainly depend on observer expertise. However, researchers continue to face difficulties in reaching high 

accuracy. To overcome this challenge, we proposed a comprehensive approach utilizing deep transfer 

learning techniques. Our methodology encompasses several crucial steps to enhance the processing of 

melanoma-related image datasets. Through data pre-processing, normalization, and label encoding, we 

mitigate issues such as varied illumination, image noise, and data imbalance. Furthermore, we leverage pre-
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trained deep learning models like ResNet, MobileNet, VGG, and InceptionResNet for feature extraction, 

followed by ensemble learning using transfer learning models like EfficientNet, Xception, and DenseNet for 

classification. By fusing feature vectors and employing ensemble learning, our goal is develop a reliable 

accurate model for melanoma classification. Our proposed approach demonstrates promising results on 

publicly available ISIC datasets from 2017 to 2020. The reported average accuracies of 96.10%, 97.23%, 

97.50%, 98.33%, and 98.60%, respectively, underscore the effectiveness of our methodology in accurately 

identifying melanoma. These findings represent a substantial development in the profession and could result 

in better patient outcomes and earlier detection. In future work, this work can be extended to provide a 

universal architecture to identify differnet types of diseases.  

 

 

FUNDING INFORMATION 

This research received no external funding. 

 

 

AUTHOR CONTRIBUTIONS STATEMENT 

This journal uses the Contributor Roles Taxonomy (CRediT) to recognize individual author 

contributions, reduce authorship disputes, and facilitate collaboration.  

 

Name of Author C M So Va Fo I R D O E Vi Su P Fu 

Soumya Gadag ✓ ✓ ✓ ✓ ✓ ✓  ✓ ✓ ✓     

Panduranga Rao 

Malode Vishwanatha 

 ✓   ✓ ✓ ✓ ✓  ✓  ✓ ✓  

Virupaxi Balachandra 

Dalal 

✓  ✓ ✓ ✓ ✓    ✓ ✓    

 

C :  Conceptualization 

M :  Methodology 

So :  Software 

Va :  Validation 

Fo :  Formal analysis 

I :  Investigation 

R :  Resources 

D : Data Curation 

O : Writing - Original Draft 

E : Writing - Review & Editing 

Vi :  Visualization 

Su :  Supervision 

P :  Project administration 

Fu :  Funding acquisition 

 

 

 

CONFLICT OF INTEREST STATEMENT 

The authors declare no conflict of interest. 

 

 

DATA AVAILABILITY 

The data are publicly available in the International Skin Imaging Collaboration (ISIC) at 

https://www.isic-archive.com/ and Kaggle at https://www.kaggle.com/datasets/kmader/skin-cancer-mnist-

ham10000.  
 

 

REFERENCES 
[1] Skin Cancer Foundation, “Skin cancer facts and statistics,” Skin Cancer Foundation. 2025. Accessed: Apr. 18, 2024. [Online]. 

Available: https://www.skincancer.org/skin-cancer-information/skin-cancer-facts 

[2] Melanoma UK, “2020 melanoma skin cancer report,” Melanoma UK. 2020. Accessed: Apr. 18, 2024. [Online]. Available: 

https://www.melanomauk.org.uk/2020-melanoma-skin-cancer-report 
[3] E. J. Orrin, P. B. Cassidy, R. P. Kulkarni, E. G. Berry, and S. A. Leachman, “Melanoma prevention,” in Melanoma in Clinical 

Practice, Cham, Switzerland: Springer, 2021, pp. 3–29, doi: 10.1007/978-3-030-82639-0_1. 

[4] NHS, “Causes: Melanoma skin cancer” National Health Services. 2023. Accessed: Apr. 20, 2024. [Online]. Available: 
https://www.nhs.uk/conditions/melanoma-skin-cancer/causes/ 

[5] WHO, “More can be done to restrict sunbeds to prevent increasing rates of skin cancer,” World Health Organization. 2017. 

Accessed: Apr. 20, 2024. [Online]. Available: https://www.who.int/news/item/21-06-2017-more-can-be-done-to-restrict-sunbeds-
to-prevent-increasing-rates-of-skin-cancer 

[6] Department for Environment Food Rural Affairs, “Depletion of the ozone layer leading to an increase in ground-level ultraviolet 

radiation,” UK Air Information Resource. Accessed: Apr. 20, 2024. [Online]. Available: https://uk-
air.defra.gov.uk/research/ozone-uv/moreinfo?view=increase-uv-radiation 

[7] R. Kaur, H. GholamHosseini, R. Sinha, and M. Lindén, “Melanoma classification using a novel deep convolutional neural 

network with dermoscopic images,” Sensors, vol. 22, no. 3, 2022, doi: 10.3390/s22031134. 
[8] A. Masood and A. A. Al-Jumaily, “Computer aided diagnostic support system for skin cancer: A review,” International Journal 

of Biomedical Imaging, vol. 2013, 2013, doi: 10.1155/2013/323268. 



Int J Artif Intell  ISSN: 2252-8938  

 

Melanoma classification using ensemble deep transfer learning (Soumya Gadag) 

4955 

[9] A. S. Alphonse and M. S. Starvin, “A novel and efficient approach for the classification of skin melanoma,” Journal of Ambient 
Intelligence and Humanized Computing, vol. 12, no. 12, pp. 10435–10459, 2021, doi: 10.1007/s12652-020-02648-x. 

[10] R. D. Seeja and A. Suresh, “Melanoma classification employing inter neighbor statistical color and mean order pattern texture 

feature,” Multimedia Tools and Applications, vol. 80, no. 13, pp. 20045–20064, 2021, doi: 10.1007/s11042-021-10685-7. 
[11] I. Iqbal, M. Younus, K. Walayat, M. U. Kakar, and J. Ma, “Automated multi-class classification of skin lesions through deep 

convolutional neural network with dermoscopic images,” Computerized Medical Imaging and Graphics, vol. 88, 2021, doi: 

10.1016/j.compmedimag.2020.101843. 
[12] H. Zunair and A. B. Hamza, “Melanoma detection using adversarial training and transfer learning,” Physics in Medicine & 

Biology, vol. 65, no. 13, 2020, doi: 10.1088/1361-6560/ab86d3. 

[13] M. N. Qureshi, M. S. Umar, and S. Shahab, “A transfer-learning-based novel convolution neural network for melanoma 
classification,” Computers, vol. 11, no. 5, 2022, doi: 10.3390/computers11050064. 

[14] K. M. Hosny, M. A. Kassem, and M. M. Fouad, “Classification of skin lesions into seven classes using transfer learning with 

AlexNet,” Journal of Digital Imaging, vol. 33, pp. 1325–1334, 2020, doi: 10.1007/s10278-020-00371-9. 
[15] X. Lu and Y. F. A. Zadeh, “Deep learning-based classification for melanoma detection using XceptionNet,” Journal of 

Healthcare Engineering, vol. 2022, 2022, doi: 10.1155/2022/2196096. 

[16] S. Jain et al., “Deep learning-based transfer learning for skin cancer classification,” Sensors, vol. 21, no. 23, 2021, doi: 
10.3390/s21238142. 

[17] M. S. Ali, M. S. Miah, J. Haque, M. M. Rahman, and M. K. Islam, “An enhanced technique of skin cancer classification using 

deep convolutional neural network with transfer learning models,” Machine Learning with Applications, vol. 5, 2021, doi: 
10.1016/j.mlwa.2021.100036. 

[18] H. M. Balaha and A. E. S. Hassan, “Skin cancer diagnosis based on deep transfer learning and sparrow search algorithm,” Neural 

Computing and Applications, vol. 35, no. 1, pp. 815–853, 2023, doi: 10.1007/s00521-022-07762-9. 
[19] H. Meswal et al., “A weighted ensemble transfer learning approach for melanoma classification from skin lesion images,” 

Multimedia Tools and Applications, pp. 1–23, 2023, doi: 10.1007/s11042-023-16783-y. 

[20] R. Sadik, A. Majumder, A. A. Biswas, B. Ahammad, and Md. M. Rahman, “An in-depth analysis of convolutional neural network 
architectures with transfer learning for skin disease diagnosis,” Healthcare Analytics, vol. 3, 2023, doi: 

10.1016/j.health.2023.100143. 

[21] M. Karri, C. S. R. Annavarapu, and U. R. Acharya, “Skin lesion segmentation using two-phase cross-domain transfer learning 
framework,” Computer Methods and Programs in Biomedicine, vol. 231, 2023, doi: 10.1016/j.cmpb.2023.107408. 

[22] B. H. Shekar and H. Hailu, “Fusion of features extracted from transfer learning and handcrafted methods to enhance skin cancer 

classification performance,” in CVMI 2022, Springer, 2023, pp. 243–257, doi: 10.1007/978-981-19-7867-8_20. 
[23] X. Deng, “LSNet: a deep learning based method for skin lesion classification using limited samples and transfer learning,” 

Multimedia Tools and Applications, vol. 83, pp. 61469–61489, 2024, doi: 10.1007/s11042-023-17975-2. 

[24] S. Remya, T. Anjali, and V. Sugumaran, “A novel transfer learning framework for multimodal skin lesion analysis,” IEEE Access, 
vol. 12, pp. 50738-50754, 2024, doi: 10.1109/access.2024.3385340. 

[25] S. Wang, Y. Xing, L. Zhang, H. Gao, and H. Zhang, “Deep convolutional neural network for ulcer recognition in wireless capsule 

endoscopy: experimental feasibility and optimization,” Computational and Mathematical Methods in Medicine,  
vol. 2019, no. 1, 2019, doi: 10.1155/2019/7546215. 

[26] S. Q. Gilani, T. Syed, M. Umair, and O. Marques, “Skin cancer classification using deep spiking neural network,” Journal of 

Digital Imaging, vol. 36, no. 3, pp. 1137-1147, doi: 10.1007/s10278-023-00776-2. 
[27] F. Wen and A. K. David, “A genetic algorithm based method for bidding strategy coordination in energy and spinning reserve 

markets,” Artificial Intelligence in Engineering, vol. 15, pp. 71–79, 2001, doi: 10.1016/S0954-1810(01)00002-4. 

[28] H. Malik, M. S. Farooq, A. Khelifi, A. Abid, J. N. Qureshi, and M. Hussain, “A comparison of transfer learning performance 
versus health experts in disease diagnosis from medical imaging,” in IEEE Access, vol. 8, pp. 139367-139386, 2020,  

doi: 10.1109/ACCESS.2020.3004766.  

[29] W. Ling, X. Wang, J. Fu, and L. Zhen, “A novel probability binary particle swarm optimization algorithm and its application,” 
Journal of Software, vol. 3, no. 9, pp. 28–35, 2008, doi: 10.4304/jsw.3.1.28-35. 

[30] Y. Zhou, C. Koyuncu, C. Lu, R. Grobholz, I. Katz, A. Madabhushi, and A Janowczyk, “Multi-site cross-organ calibrated deep 
learning (MuSClD): Automated diagnosis of non-melanoma skin cancer,” Medical Image Analysis, vol. 84, 2023, doi: 

10.1016/j.media.2023. 

[31] A. Ameri, “A deep learning approach to skin cancer detection in dermoscopy images,” Journal of Biomedical Physics and 
Engineering, vol. 10, pp. 801–806, 2020, doi: 10.31661/jbpe.v0i0.2004-1107. 

[32] W. S. -Lim, W. Wettayaprasit, and P. Aiyarak, “Convolutional neural networks using MobileNet for skin lesion classification,” in 

2019 16th International Joint Conference on Computer Science and Software Engineering (JCSSE), 2019, pp. 242-247, doi: 

10.1109/JCSSE.2019.8864113. 

[33] A. C. Salian, S. Vaze, P. Singh, G. N. Shaikh, S. Chapaneri, and D. Jayaswal, “Skin lesion classification using deep learning 

architectures,” 2020 3rd International Conference on Communication System, Computing and IT Applications (CSCITA), 
Mumbai, India, 2020, pp. 168-173, doi: 10.1109/CSCITA47329.2020.9137810.  

[34] T. C. Pham, G. S. Tran, T. P. Nghiem, A. Doucet, C. M. Luong, and V. -D. Hoang, “A comparative study for classification of skin 

cancer,” 2019 International Conference on System Science and Engineering (ICSSE), Dong Hoi, Vietnam, 2019, pp. 267-272, 
doi: 10.1109/ICSSE.2019.8823124.  

[35] Z. Rahman and A. M. Ami, “A transfer learning based approach for skin lesion classification from imbalanced data,” 2020 11th 

International Conference on Electrical and Computer Engineering (ICECE), Dhaka, Bangladesh, 2020, pp. 65-68,  
doi: 10.1109/ICECE51571.2020.9393155. 

[36] K. Polat and K. O. Koc, “Detection of skin diseases from dermoscopy image using the combination of convolutional neural 

network and one-versus-all,” Journal of Artificial Intelligence Systems, vol. 2, pp. 80–97, 2020, doi: 10.33969/JAIS.2020.21005. 
[37] P. N. Srinivasu, J. G. SivaSai, M. F. Ijaz, A. K. Bhoi, W. Kim, and J. J. Kang, “Classification of skin disease using deep learning 

neural networks with MobileNet V2 and LSTM,” Sensors, vol. 21, no. 8, 2021, doi: 10.3390/s21082852. 

[38] N. Kausar et al., “Multiclass skin cancer classification using ensemble of fine-tuned deep learning models,” Applied Sciences,  
vol. 11, 2021, doi: 10.3390/app112210593. 

[39] G. Alwakid, W. Gouda, M. Humayun, and N. Z. Jhanjhi, “Diagnosing melanomas in dermoscopy images using deep learning,” 

Diagnostics, vol. 13, no. 10, 2023, doi: 10.3390/diagnostics13101815. 

 

 



           ISSN: 2252-8938 

Int J Artif Intell, Vol. 14, No. 6, December 2025: 4943-4956 

4956 

BIOGRAPHIES OF AUTHORS  

 

 

Soumya Gadag     completed her B.E. degree in Electronics and Communication 

Engineering from Visvesvaraya Technological University, India in 2008. She received her 

M.Tech. from Visvesvaraya Technological University in 2012. Currently working as 

Associate Professor in the Department of Electronics and Communication Engineering, Jain 

College of Engineering and Research, India. Her research interests include wireless 

communication, image processing, machine learning, and artificial intelligence. She can be 

contacted at email: soumya.gadag5@gmail.com. 

  

 

Panduranga Rao Malode Vishwanatha     obtained his Ph.D. from the National 

Institute of Technology Karnataka, Mangalore, India. He has completed a Master of 

Technology in Computer Science and a Bachelor of Engineering in Electronics and 

Communication. He works as a Professor in Jain (Deemed to be University) Bengaluru, 

India. His research interests are in the field of real-time and embedded systems on Linux 

platforms. He has published various research papers in journals and conferences across India. 

He visited JAPAN in 2008 for the IEEE international conference in Okinawa Island. He has 

authored two reference books on Linux internals. He is a life member of the Indian Society 

for Technical Education and IAENG. In the past three years, he has published 12 Indian 

patents. Here, three patents are stepping towards award/grant status. He can be contacted at 

email: r.panduranga@jainuniversity.ac.in. 

  

 

Virupaxi Balachandra Dalal     is currently working as Professor in the 

Department of Electronics and Communication Engineering at Jain College of Engineering 

and Research, Belagavi, Karnataka, India. He received his doctoral degree from 

Visveswaraya Technological University, Belagavi, Karnataka, India. His area of interest is 

signals processing and image processing, wireless communication, and digital electronics. He 

can be contacted at email: virupaxidalal@gmail.com. 

 

https://orcid.org/0000-0002-1427-1325
https://scholar.google.com/citations?user=VoKrAFIAAAAJ&hl=en&oi=ao
https://www.scopus.com/authid/detail.uri?authorId=58039028200
https://orcid.org/0000-0003-3674-2092
https://scholar.google.com/citations?user=WXSB53kAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=55466247700
https://orcid.org/0000-0002-1641-4481
https://scholar.google.com/citations?user=WfVJ_TMAAAAJ&hl=en&oi=sra
https://www.scopus.com/authid/detail.uri?authorId=58886497900

