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 The current study aims to develop a simple model for estimating greenhouse 

gas emissions originating from paddy fields, utilizing backpropagation neural 

networks. The model integrated three input parameters: soil moisture, soil 
temperature, and soil electrical conductivity (EC), while generating 

estimations for two output parameters: methane (CH4) and nitrous oxide 

(N2O) emissions. The model was put into practice across three different 

irrigation systems, i.e., continuous flooded (FL), wet (WT), and dry (DR) 
regimes. For model training and validation, the input parameters were 

measured by a single 5-TE sensor. Concurrently, CH4 and N2O emissions 

were determined utilizing a closed chamber, and gas samples were subjected 

to laboratory analysis. Findings unveiled that the developed model accurately 
estimated CH4 and N2O emissions, demonstrating commendable coefficient 

of determination (R2) values ranging from 0.60 to 0.97 for validation process. 

Notably, the WT irrigation system exhibited the highest precision, boasting 

R2 values of 0.97 for CH4 and 0.73 for N2O estimation, respectively. 
Conversely, the FL irrigation system has the lowest accuracy with R2 values 

of 0.66 and 0.60. Despite variances in accuracy across irrigation systems, the 

overall performance remained deemed acceptable, warranting the model's 

applicability for estimating greenhouse gas emissions under diverse irrigation 
scenarios. 
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1. INTRODUCTION 

Rice cultivation stands out as a significant contributor to greenhouse gas emissions, primarily methane 

(CH4) and nitrous oxide (N2O). This poses a pressing concern prompting the scientific community to seek 

strategies for both adaptation and mitigation. Studies reveal that rice fields account for approximately 30% of 

global agricultural CH4 emissions and 11% of N2O emissions [1], surpassing emissions from wheat and maize 

fields [2]. The emission dynamics from paddy fields are influenced by various factors, including rice varieties, 

organic matter content, soil management practices, water regimes, and fertilizer applications. Specifically, 

continuous flooding, a prevalent water management technique, is the primary driver of CH4 emissions, while 

nitrogen fertilizer application significantly contributes to N2O emissions [3]. Additionally, the choice of 

https://creativecommons.org/licenses/by-sa/4.0/
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irrigation systems, particularly intermittent irrigation, plays a notable role in N2O emissions [4]. Efforts to 

mitigate these emissions must address these multifaceted factors comprehensively. 

CH4 typically arises in anaerobic environments, such as those fostered by the widespread practice of 

inundating paddy fields with standing water. Conversely, N2O is generated via microbiological processes 

encompassing nitrification and denitrification, occurring in both aerobic and anaerobic conditions [5]. The 

emission peaks for CH4 coincide with continuous flooding, whereas N2O production surges during intermittent 

flooding phases and periods of plant rotations [6]. Consequently, irrigation systems emerge as the pivotal factor 

influencing CH4 and N2O emissions. Numerous studies have underscored an inverse correlation between 

emission levels of CH4 and N2O and the treatment of irrigation systems [7], [8]. 

In the pursuit of adapting and mitigating the emissions of these two gases through irrigation system, 

precise measurements and quantification are imperative. Typically, measurements of CH4 and N2O emissions 

entail the use of closed chambers constructed from polycarbonate and acrylic plates for gas sampling, followed 

by analysis via gas chromatography (GC) to determine their concentrations and fluxes [9]. These measurements 

can be conducted either continuously [10] or through periodic sampling [11]. However, this method is notably 

intricate and costly, primarily due to the high expense associated with gas analysis equipment. 

Hence, there is a pressing need to develop greenhouse gas emission models that enable quantification 

using more accessible and economical equipment. Among various modeling techniques, neural networks 

emerge as particularly suitable models, as they facilitate the estimation of multiple parameters simultaneously. 

Previous efforts have seen the development of greenhouse gas emission models tailored to paddy fields 

utilizing neural networks model [12]–[17]. However, these models typically require input parameters measured 

by multiple sensors or diverse instruments, thus incurring substantial costs. Therefore, the objective of this 

study is to develop a simple model employing neural networks to predict CH4 and N2O emissions from paddy 

fields using input variables from a single sensor that provides simultaneously three variables including soil 

moisture (SM), soil temperature (ST), and soil electrical conductivity (EC). The use of these three variables 

from a single sensor will be promising a more practical and cost-effective model. 

 

 

2. METHOD 

2.1.  Collecting data for training and validation 

During the rice planting season spanning from January 20th to May 13th, 2018, data collection was 

meticulously conducted at Kinjiro Farm in Bogor, Indonesia. Greenhouse gas emission was identified from 

three distinct irrigation systems, each characterized by varying water levels: flooded (FL), wet (WT), and dry 

(DR). In the FL system, water was consistently maintained at a level 2 cm above the soil surface, inundating 

the plot from the time of transplanting until the 70th day after transplanting (DAT). Subsequently, the water 

level was reduced to 0 cm at the soil surface until the 113th DAT. Within the WT system, the water level was 

regulated at 1 cm above the soil surface from transplanting to the 20th DAT, followed by a maintenance of 0 

cm from the 21st to the 113th DAT. Conversely, in the DR system, the water level was kept at 1 cm from 

transplanting to the 20th DAT, then lowered to 0 cm from the 21st to the 30th DAT, and further decreased to  

-5 cm below the soil surface from the 31st to the 113th DAT. 

Within the scope of these three treatments, the 5-TE sensor was meticulously positioned at a depth of 

5 cm beneath the soil surface. 5-TE and its data logger provided by Decagon Device Inc, USA (currently 

changed as METER group, and the sensor is renamed became Teros-12). This sophisticated sensor served the 

crucial function of monitoring SM, ST, and soil EC, providing essential input parameters for the developed 

neural network model. Concurrently, greenhouse gas emissions, specifically CH4 and N2O for model training 

and validation, were meticulously quantified. A closed chamber, with the dimensions of 30 cm x 30 cm x 120 

cm, was employed for this purpose across each treatment. Gas samples were systematically collected from the 

chamber on a weekly basis and subjected to rigorous analysis in the laboratory with GC. This meticulous gas 

sampling regimen spanned a duration of 17 weeks, encapsulating the entirety of the 119-DAT. 

 

2.2.  Developing neural networks model 

The developed neural network model employed the backpropagation learning algorithm to facilitate 

its training process. Comprising three layers -input, hidden, and output- the model was structured to effectively 

process and predict greenhouse gas emissions. The input layer encapsulated crucial parameters including SM, 

ST, and soil EC, while the output layer focused on predicting CH4 and N2O emissions as shown in Figure 1. 

The selection of these input parameters was suggested by prior research, demonstrating their significant 

influence on CH4 and N2O emissions, thereby ensuring the model's robustness and relevance [13]–[15], [17]. 

The procedure for estimating CH4 and N2O emissions via the backpropagation algorithm unfolds as: 

− Weight Initialization: The weights denoted as Vij and Wjk (refer to Figure 1) are initialized with random values 

ranging from -1 to 1. 
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− Calculation of hidden layer values (Feedforward): Node of hidden value (Hj) is calculated by the (1) and (2). 
 

𝑍𝑖𝑗 = ∑ 𝑋𝑖𝑉𝑖𝑗
𝑛
𝑖=1  (1) 

 

𝐻𝑗 =
1

1+𝑒𝑥𝑝
−𝜎(𝑍𝑖𝑗)

 (2) 

 

Where, Xi is node of input, σ is constant of activation function.  

− Calculation of output layer values (feedforward): Value of output node is calculated by the (3) and (4). 
 

𝑍𝑗𝑘 = ∑ 𝐻𝑗𝑊𝑗𝑘
𝑛
𝑖=1  (3) 

 

𝑌𝑘 =
1

1+𝑒𝑥𝑝
−𝜎(𝑍𝑗𝑘)

 (4) 

 

Where, Yk is the value of output nodes. 

− Updating weight values (backward): Each weight is adjusted by accounting for the disparity between the 

model's output node and the observed data, utilizing the (5). 
 

𝐸 =
1

2
∑ (𝑌𝑜 − 𝑌𝑘)

2𝑛
𝑘=1  (5) 

 

Where, Yo is observed output data. 

Then, adjusted weight value in between node of output and node of hidden by the (6) to (8): 
 

∆𝑊𝑗𝑘 = 𝛼𝛿𝑘𝑌𝑘 (6) 

 

𝛿𝑘 = (𝑌𝑜 − 𝑌𝑘)𝑌𝑘
′ (7) 

 

𝑊𝑗𝑘𝑛𝑒𝑤 = 𝛽∆𝑊𝑗𝑘 +𝑊𝑗𝑘𝑜𝑙𝑑  (8) 

 

Where, α is constant of training rate, β is constant of momentum, Wjknew is new weight (after adjusted), 

and Wjkold is old weight (before adjusted). 

Meanwhile, adjusted weight in between node of hidden and node of input by the (9) to (12):  
 

∆𝑉𝑖𝑗 = 𝛼𝛿𝑗𝑋𝑖 (9) 

 

𝛿𝑗 = 𝛿𝑖𝑛𝑗𝐻𝑗
′ (10) 

 

𝛿𝑖𝑛𝑗 = ∑ 𝛿𝑘𝑊𝑗𝑘
𝑛
𝑘=1  (11) 

 

𝑉𝑖𝑗𝑛𝑒𝑤 = 𝛽∆𝑉𝑖𝑗 + 𝑉𝑖𝑗𝑜𝑙𝑑 (12) 

 

Where, Vijnew is new weight (after adjusted), and Vijold is old weight (before adjusted). 

The above process iterates with updated output weighting values (Vij and Wjk), which are then employed 

to estimate CH4 and N2O emissions. 

 

2.3.  Performance of model 

The evaluation of the developed model was conducted utilizing the coefficient of determination (R2), 

a metric ranging from 0 to 1, by assessing the concordance between model predictions and observed data with 

the (13): 
 

𝑅2 = 1 −
∑ (𝑦𝑘−𝑦𝑜)

2𝑛
𝑖=1

∑ (𝑦𝑜−𝑦𝑎𝑣𝑒)
2𝑛

𝑖=1
 (13) 

 

Where 𝑦ave is mean value of observed data.  

A higher R2 value indicates a stronger alignment between the model's estimations and the actual data, 

signifying superior performance. The assessment of model performance encompassed both training and 

validation phases. For this purpose, the cross-validation technique was implemented, adhering to the approach 

employed by Prabuwono et al. [18] in similar neural network applications. This methodology involved 

partitioning the dataset into 70% for training and 30% for validation [19], a strategy recognized for yielding 

superior outcomes compared to alternative partitioning schemes. 
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Figure 1. Developed simple neural networks to estimate CH4 and N2O emissions 

 

 

3. RESULTS AND DISCUSSION 

3.1.  Greenhouse gas emissions among the treatments 

Greenhouse gas emissions within rice fields were notably influenced by water management practices, 

as illustrated in Figure 2. Among the treatments, the FL system, characterized by continuous inundation, 

exhibited the highest CH4 emissions, followed by the WT and DR treatments as shown in Figure 2(a). 

Specifically, emissions totaled 152.2, 143.9, and 17.5 kg/ha/season for FL, WT, and DR, respectively. The 

pronounced CH4 emissions in the FL treatment can be attributed to the prolonged presence of standing water, 

fostering anaerobic conditions ideal for methanogenic bacteria proliferation and subsequent CH4 production 

[20], [21]. This finding was consistent with prior studies indicating a surge in CH4 emissions upon the initiation 

of flooding [22], corroborating Wu et al. [23] observation that continuous flood irrigation systems yield greater 

CH4 emissions compared to systems with reduced water levels. Conversely, the DR treatment, characterized 

by minimal water levels, yielded the lowest CH4 emissions among the treatments. The diminished CH4 

emissions in DR were attributed to the absence of standing water, even post-transplanting, despite maintaining 

elevated water levels below the ground surface. This condition was akin to the practice of alternate wetting and 

drying irrigation (AWDI), known to curtail CH4 emissions by up to 32% [24]. Hasanah et al. [25] conducted 

water level optimization studies aimed at mitigating greenhouse gas emissions, pinpointing a water level of  

-5 cm below the ground surface as optimal for emission reduction while preserving land productivity. The 

present study bolsters these optimization efforts, particularly in the context of CH4 emission reduction. 

A contrasting trend emerges in the total N2O emissions results, where the lowest water level treatment 

within the DR regime released the highest total N2O emissions, trailed by the WT and FL treatments as shown 

in Figure 2(b). This observation aligns with findings reported by Xing et al. [26], suggesting an inverse 

relationship, or trade-off, between CH4 and N2O emissions. N2O emission formation stems from the soil's 

nitrification and denitrification processes, involving denitrifying bacteria that convert nitrate (NO3-) into N2O. 

During this conversion, oxidation transpires, liberating oxygen into the environment, particularly in conditions 

characterized by lower water levels. Consequently, the DR treatment, with its minimal water level, exhibits the 

highest N2O emissions. This finding was further corroborated by prior research indicating AWDI system may 

elevated N2O emissions by up to 62% compared to FL irrigation systems [27]. 

 

3.2.  Estimating greenhouse gas emissions 

Table 1 illustrated the model's performance during both the training and validation phases. Notably, 

the training phase exhibited superior performance, boasting an R2 range of 0.93 to 1.00. Conversely, the 

validation process had an R2 value ranging from 0.60 to 0.97. This discrepancy in performance can be attributed 

to the continuous refinement of weight values within the neural network model during the training phase, 

achieved through iterative comparison between observed and modeled data. In contrast, the validation phase 

employed weights derived from the training process to assess data that had not been previously examined by 

the model. This methodology echoes findings from prior hydrological research [28], underscoring the 

importance of iterative training for optimizing model performance. 

The WT treatment exhibited the highest accuracy, primarily due to the moderate levels of total CH4 

and N2O emissions compared to other treatments. However, the accuracy of estimating N2O emissions was 

relatively lower compared to CH4 due to its lower flux value. Moreover, the formation of N2O emission was 

intricately influenced not only by the input parameters specified in the developed model but also by various 

other factors, further complicating its estimation. 
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(a) (b) 

 

Figure 2. Total of (a) CH4 emission and (b) N2O emission among the treatments during a season 

 

 

Table 1. Performances of developed model 

Process Estimation 

R2 

CH4 N2O 

Training:     

- FL 0.97 0.93 

- WT 1.00 0.93 

- DR 0.98 0.96 

Validation:     

- FL 0.66 0.60 

- WT 0.97 0.73 

- DR 0.91 0.71 

 

 

Figure 3 shows comparison between observed and model prediction data both for CH4 and N2O under 

FL treatment. In detail Figure 3(a) presents a comparison between observed CH4 flux and model predictions 

for the FL treatment, encompassing both the training and validation processes. The estimated flux data 

generally mirrors the trend observed in the actual data, albeit instances of both overestimation and 

underestimation. The recorded measurements range from 0.40 to 660.2 mg/m2/d, with minimum, average, and 

maximum values of 0.40, 127.8, and 660.2 mg/m2/d, respectively. In contrast, the model's predictions has 

minimum, average, and maximum values of -31.67, 199.1, and 729.4 mg/m2/d, respectively. Despite 

discrepancies between measurements and predictions, the model achieves a moderate level of agreement, as 

indicated by an R2 value of 0.61. 

Similarly, the comparison between observed N2O data and model predictions for the FL treatment 

reveals a consistent trend in Figure 3(b). The observed and estimated N2O fluxes exhibit a similar pattern, with 

smaller deviations compared to CH4. The measured N2O flux values range from -25.99 to 5.40 mg/m2/d, with 

minimum, average, and maximum values recorded at -25.99, -2.63, and 5.40 mg/m2/d, respectively. In contrast, 

the model-predicted values range from -26.47 to 5.30 mg/m2/d, with minimum, average, and maximum values 

of -26.47, -3.80, and 5.30 mg/m2/d, respectively. Notably, the R2 value in this comparison is higher than before, 

reaching 0.74, indicating a stronger agreement between observed and predicted N2O fluxes under FL treatment. 

 

 

  
(a) (b) 

 

Figure 3. Comparison of (a) CH4 emission and (b) N2O emission in between observed and model under  

FL treatment 
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The close alignment between the observed and model data was also found in the WT treatment, as 

presented in Figure 4. The WT treatment earned the most accurate results in predicting CH4 flux, boasting an 

impressive R2 value of 0.98 in Figure 4(a). This is evidenced by model predictions closely aligning with 

measurement results, exhibiting minimal deviation. Within this treatment, the observed CH4 flux values ranged 

from -174.2 to 812.9 mg/m2/d, with minimum, average, and maximum values of -174.2, 120.6, and 812.9 

mg/m2/d, respectively. Meanwhile, the model's predictions earned values ranging from -176.0 to 827.0 

mg/m2/d, with minimum, average, and maximum values of -176.0, 128.5, and 827.0 mg/m2/d, respectively.   

The WT treatment also exhibited accurate results in N2O estimation, albeit with a slightly lower R2 

value of 0.91 compared to CH4 estimation as shown in Figure 4(b). However, the deviation between 

measurements and model predictions remained minimal. This is evident from the close alignment between 

most of the model-predicted flux values and the measured values. Specifically, the minimum, average, and 

maximum flux values for both measurements and models were recorded at -1.89, 2.58, and 25.98 mg/m2/d and 

-2.13, 2.17, and 25.96 mg/m2/d, respectively. 

 

 

  
(a) (b) 

 

Figure 4. Comparison of (a) CH4 emission and (b) N2O emission in between observed and model under  

WT treatment 

 

 

For the DR treatment, the observed and predicted emissions trends for both CH4 and N2O were notably 

similar, indicating the acceptability of the models in Figure 5. Accuracy levels within this treatment were moderate 

for both CH4 and N2O predictions, with respective R2 values of 0.79 and 0.71. As illustrated in Figure 5(a), the 

model predictions for CH4 fluxes tended to be higher, indicating lower deviation values. Most of the predicted 

CH4 fluxes closely aligned with the measurements. Specifically, the minimum, average, and maximum values of 

measured CH4 flux were recorded at -22.9, 14.8, and 183.1 mg/m2/d, while the model predictions were -60.7, 

21.5, and 251.7 mg/m2/d, respectively. Meanwhile, in the case of N2O predictions in Figure 5(b), instances of 

both overestimation and underestimation were observed around the 7th DAT and after the 60th DAT. The 

measured N2O flux values ranged from -5.74 to 33.37 mg/m2/d, with minimum, average, and maximum values 

of -5.74, 4.55, and 33.37 mg/m2/d, respectively. In contrast, the model predictions ranged from -17.64 to 44.46 

mg/m2/d, with minimum, average, and maximum values of -17.64, 4.30, and 44.46 mg/m2/d, respectively. 

 

 

  
(a) (b) 

 

Figure 5. Comparison of CH4 emission (a) and N2O emission in between observed and model under  

DR treatment 
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The predicted total emissions across all treatments aligned precisely with the observed data as shown 

in Table 2. The FL treatment exhibited the highest total CH4 emissions, followed by the WT and DR treatments. 

Conversely, total N2O emissions were highest in the DR treatment, followed by WT and FL treatments. 

Notably, the WT treatment demonstrated the highest accuracy for total greenhouse gas emissions, with minimal 

deviation between observed and estimated data. The total differences for CH4 and N2O were recorded at 7.2 

kg/ha/season and 0.4 kg/ha/season, respectively. In contrast, the FL treatment displayed the least accuracy in 

estimating total emissions, characterized by the largest total difference. This consistency in model estimation 

underscores the reliability of the results. Despite varying R2 values, the accuracy values remained within an 

acceptable range, as suggested in similar studies [29]. Hence, the developed simple neural networks model 

presents a practical method for estimating greenhouse gas emissions with simplicity, cost-effectiveness, and 

accuracy. This method offers greater simplicity and accuracy compared to earlier models. Abbasi et al. [17] 

developed a neural network model to estimate greenhouse gas emissions from rice fields. However, their model 

demands more extensive input data, including soil characteristics, the amount of fertilizer, and the type of rice 

variety. In contrast, the new method requires fewer inputs, making it a more straightforward and efficient 

solution. This approach proves especially valuable in areas where direct emission measurement is impractical 

due to limited access and high costs. For broader applicability, it is recommended to validate the current model 

in diverse locations with varying environmental conditions and soil types. 

 

 

Table 2. Comparison of total emissions between observed and model among the treatments 

Total Emissions 

Treatments 

FL WT DR 

Total CH4 (kg/ha/season)       

Observed 152.2 143.9 17.5 

Estimated 243.7 151.1 25.9 

Differences 91.5 7.2 8.5 

Total N2O (kg/ha/season)       

Observed -3.45 2.88 5.56 

Estimated -4.91 2.48 4.87 

Differences 1.46 0.40 0.68 

 

 

4. CONCLUSION 

A straightforward model has been developed for estimating CH4 and N2O emissions using 

backpropagation neural networks from irrigated paddy fields. This model incorporates three input parameters, 

all of which can be conveniently measured using a single sensor, thus streamlining the gas emission estimation 

process. During validation across three distinct irrigation systems i.e., FL, WT, and DR, the model 

demonstrated accuracy, with R2 values ranging from 0.60 to 0.97. Despite variations in R2 values, the 

estimation outcomes remained consistently reliable, both in predicting flux values and total emissions over a 

single season. Consequently, this model presents a practical and cost-effective solution for estimating 

greenhouse gas emissions from paddy fields, simplifying the process significantly. 
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