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 Agriculture crop monitoring in real-time is crucial in formulating effective 

agricultural practices and management policies. The primary goal of the 

investigation is to explore how the utilization of Sentinel-1 data and its 

fusion with Sentinel-2 impact crop classification accuracy in a fragmented 

agricultural landscape in the Yavatmal District of Maharashtra, India. Pixel 

based classification and object-oriented classification approaches were 

implemented on Google Earth Engine (GEE), and obtained results were 

compared for different combinations of optical and microwave features. The 

research revealed that the object-based technique performed better than the 

pixel-based approach, with a 3.5% increase in overall accuracy. For 2022, 

crop-type mapping was generated with overall accuracies varying from 

85.5% to 61% and a kappa coefficient between 0.77 and 0.37. These overall 

accuracies imply that joint use of optical and radar data has given a 24% 

improvement in overall accuracy compared to use of only optical data. In 

addition, the temporal change in the backscatter coefficients and different 

vegetation indices for different crops were examined over crop growth cycle. 

This work demonstrates the fusion of Sentinel-1 and Sentinel-2 data to 

classify wheat, chickpea, other crops, water and urban areas. 
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1. INTRODUCTION 

Eradicating hunger and ensuring food security are top priorities for humanity. Crop classification 

(CC) maps are vital for designing and implementing agricultural monitoring practices that ensure food 

security and deal with environmental challenges caused by global warming [1], [2]. While extensive farming 

is a global trend, smallholder farming is widespread in India, as a result, the performance of small and 

marginal farmers will determine the future of sustainable agricultural growth and food security in India [3]. 

In India, cropping patterns are highly diverse concerning the types of crops and their number per year, 

making classification a challenging task. The traditional method of sample surveys used to determine crop 

distribution is labor-intensive and requires substantial resources, and its quality and timeliness cannot always 

be guaranteed [4]. However, satellite remote sensing has shown a higher potential for creating accurate crop 

maps. With the introduction of the Copernicus program, which offers frequent and cost-effective 

observations in optical Sentinel-2 and microwave Sentinel-1 domains, satellite remote sensing has become an 

attractive alternative for determining accurate crop maps [5]. Dealing with the processing of massive volume 

of remote sensing data for large areas poses several challenges, including time-consuming tasks, high data 
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bandwidth requirements for downloading, and the need for fast computing and enormous storage capacity. 

Google Earth Engine (GEE) is a cloud-based platform that permits users to download and process remote 

sensing imagery quickly. GEE has become increasingly popular among researchers due to its availability of 

different machine learning algorithms and quick processing times [6], [7]. Previous studies have 

demonstrated significant progress in building machine learning-based CC algorithms utilizing remote sensing 

imagery [8], [9]. The random forest (RF) classifier is particularly popular among researchers due to its 

outstanding classification accuracy and high processing speed in remote sensing applications [10].  

Cloud cover poses significant challenges when it comes to using optical remote sensing, but 

synthetic aperture radar (SAR) images with cloud penetration capabilities can overcome this issue. Optical 

data is an excellent choice for creating crop maps since it allows the calculation of vegetation indices and 

provides valuable information about the biophysical processes of vegetation. On the other hand, SAR 

backscattering echo can reflect structural information about the target, based on the frequency and 

polarization [11]. The combination of optical and microwave imagery can be deployed to get accurate crop 

mapping through fusion techniques. Many researchers have proposed the amalgamation of optical and 

microwave information for CC [12]–[16], but only a few have focused on small farmlands. While researchers 

have used object-oriented (OO) techniques to enhance CC accuracy [17]–[19], most of the work focuses on a 

single type of microwave or optical remote sensing images. Moreover, to the best of our knowledge,  

no research has yet explored the utilization of OO approach combined with the amalgamation of Sentinel-1 

and Sentinel-2 imagery for small farmlands. The major objectives of research are: 

− Evaluate mapping of crops with Sentinel-1 and Sentinel-2 data in regions having small-size farms using 

OO CC. 

− Investigate the performance of OO and pixel-based (PB) technique for CC. 

− Study normalized difference vegetation index (NDVI), green normalized difference vegetation index 

(GNDVI), normalized difference yellow index (NDYI), modified normalized difference water index 

(MNDWI), and backscatter temporal profiles of various crops. 

The remaining paper is organized as follows: in section 2, we review the works related to CC, while 

section 3 provides information on data acquisition and the proposed methodology of the CC algorithm.  

In section 4, we present the obtained results for CC using different combinations of Sentinel-1 and Sentinel-2 

data. Finally, in section 5, we summarize the future scope of the proposed research and our conclusions. 

 

 

2. LITERATURE REVIEW  

This section covers previous studies done by researchers for CC. Previous studies demonstrate the 

fusion and single sensor methods based on either optical or SAR data for crop mapping. Son et al. [20] 

demonstrated the application of a smooth backscattering profile for rice crop mapping using Sentinel-1A data. 

Nihar et al. [21] investigated the capacity of Sentinel-1 data for maize and corn crop area mapping using 

vertical-horizontal (VH) and vertical-vertical (VV) backscattering decision tree classifier recorded the accuracy 

of 75.0% for VH. In [22]–[24], deep learning methods were evaluated for CC using SAR data. Research by 

Kobayashi et al. [25], using the Sentinel-2 data authors, computed and evaluated 91 published spectral indices 

for CC and concluded that CC based on spectral indices gave good results. Saini and Ghosh [26] concluded that 

the NIR band in Sentinel-2 data played the most prominent role in CC results concluding that overall CC 

accuracy of Sentinel-2 imagery obtained by RF and support vector machine is 84.22% and 81.85%, respectively. 

Sonobe et al. [27] concluded that for detailed crop mapping, vegetation indices calculated from the 

original reflectance of Sentinel-2 contributed significantly. Mazzia et al. [28] proposed the application of 

recurrent and convolution neural networks for land cover and CC using Sentinel-2 data. Sentinel-2 red edge 

band1 and shortwave infrared band1 had shown greater accuracy in crop mapping. The amalgamation of 

optical and SAR data offers a comprehensive representation of structural and biophysical information about 

objects, improving CC accuracy. Many researchers have used optical and SAR data integration for CC  

[12]‒[16]. The above-mentioned CC methods are PB and perform CC by deriving the temporal optical or 

microwave features of image elements. PB CC techniques neglect the spatial correlation among adjacent 

pixel elements [29], due to which these techniques are sensitive to salt-and-pepper noise and have higher 

requirements for computing power [30]. The OO CC techniques based on remote sensing images can lower 

the salt-and-pepper noise [17], [18]. Yang et al. [19] demonstrate the potential of simple non-iterative 

clustering (SNIC) superpixel segmentation technique for high-resolution crop mapping based on Sentinel-1 

data. A 10% increase in accuracy was obtained in [31] utilizing composite Sentinel-1 images and the OO 

categorization technique. 

In conclusion, research combining optical and SAR characteristics of crop type mapping has 

received much attention. The following possible set of concerns has been found in previous research work: 
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− Many researchers have proposed the amalgamation of optical and microwave information for CC, but 

only a few have focused on small farmlands. 

− Most current studies on heterogeneous farmlands are based on PB CC method which suffer from salt and 

pepper noise. 

− Most of the work focuses on a single type of microwave or optical remote sensing images. There has been 

less attention given to the advantages that can be obtained by fusing different types of images. 

The proposed work exploits OO approach fusion of SAR and optical data for CC. The experiment is focused 

on smallholder agricultural landscapes in rural Maharashtra. 

 

 

3. METHOD 

The Figure 1 illustrates the adapted methodological approach for CC in the investigation area, which 

involves using various features extracted from Sentinel-1 and Sentinel-2 data. The approach comprises four 

main steps: i) acquisition and preprocessing of Sentinel-1 and Sentinel-2 data, ii) data preparation, where 

vegetation indices are calculated from time series optical and SAR images, iii) CC, where extracted optical 

and SAR features are merged, and CC is performed using OO and PB approach in different scenarios on 

GEE platform using RF classifier, and iv) accuracy assessment of the resulting classified maps. 

 

 

 
 

Figure 1. Flowchart of methodology 

 

 

3.1.  Sentinel-1 and Sentinel-2 data acquisition and preprocessing 

The study encompasses an area of around 743 km² with 70% of the land dedicated to agriculture. 

The landscape is heterogeneous and complex, with chickpeas and wheat being the dominant crops grown. 

The agricultural area is mostly composed of small farms that are less than a hectare in size. The study area is 

situated at latitude 19.912676 and longitude 77.566910. The soil in the area has a clayey loamy texture and is 

somewhat alkaline, containing calcium carbonate. The climate in the area is hot and dry during the summer, 

with a mean maximum temperature of 41 °C in May and a temperature range of 12-22 °C in winter. The 

annual rainfall in the region is typically between 850 and 1,150 mm. The study area includes the villages of 

Warud and Bhujla in Pusad, where agriculture is a primary source of income. 

 

3.1.1. Sentinel-1 data acquisition and preprocessing 

The study utilized a combination of optical and SAR images for CC. The dataset for ground range 

detected (GRD) with Sentinel-1SAR was acquired through the GEE cloud platform, containing all images of 
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the study area between January to April 2022. The study employed interference wideband mode with 

incidence angle variation of 35° to 40° to acquire the Sentinel-1 SAR GRD dataset, having a spatial 

resolution of 10 m and breadth of 250 km. The images underwent preprocessing on the GEE platform within 

the Sentinel-1 toolbox. To maintain image sharpness and minimize speckle, a refined Lee filter [32] was 

utilized to filter the Sentinel-1 images on the GEE platform. 

 

3.1.2. Sentinel-2 data acquisition and preprocessing 

To conduct research, we utilized Sentinel-2 orthorectified images from the GEE platform. The 

images were acquired between January to April 2022 over villages of Bhujla and Warud in Pusad, 

Maharashtra. Images were collected as a part of the Sentinel-2 multi-spectral instrument (MSI) level-1C 

dataset. The dataset consists of 13 top-of-atmosphere reflectance MSI bands, which are scaled by a factor of 

1,000. We also used the quality assessment band (QA60) to exclude any invalid observations. 

 

3.1.3. Field data 

Between January and April 2022, a team of researchers visited the villages of Bhujla and Warud in 

Pusad, Maharashtra to collect field data about crop type and land cover. They used a GPS device to record 

the centre and four corners coordinates of each farm, in addition to the name of the crop and supplementary 

data about vegetation and structures within each farm. Wheat, chickpea, and watermelon were among the 

crops observed and recorded. After the field survey, the GPS coordinates of farm boundaries were uploaded 

into ArcGIS as a point shapefile and overlaid onto the GEE for downloading the Sentinel-1 and Sentinel-2 

datasets. 70% of the collected ground truth data was applied to train the machine learning model, while the 

remaining 30% was used for validation. 

 

3.2.  Data preparation 

3.2.1. Optical features 

The growth of crops can be assessed through spectral indices that are sensitive to vegetation. The 

NDVI is highly responsive to leaf area index and chlorophyll present in crops which makes it an ideal metric 

to evaluate the greenness of vegetation [33], [34]. A research study has found that the MNDWI can 

effectively differentiate between open surface water bodies and vegetation and soils [35]. GNDVI is highly 

sensitive to chlorophyll, according to research [36], [37]. In recent years, the NDYI has been extensively 

utilized for calculating foliage cover [38]. Apart from the original Sentinel-2 bands, four prominent 

vegetation indices were calculated, including the NDVI, NDYI, GNDVI, and MNDWI. 

 

NDVI=
𝑁𝐼𝑅−𝑅𝐸𝐷

𝑁𝐼𝑅+𝑅𝐸𝐷
 (1) 

 

GNDVI=
𝑁𝐼𝑅−𝐺𝑅𝐸𝐸𝑁

𝑁𝐼𝑅+𝐺𝑅𝐸𝐸𝑁
 (2) 

 

NDYI=
𝐺𝑅𝐸𝐸𝑁−𝐵𝐿𝑈𝐸

𝐺𝑅𝐸𝐸𝑁+𝐵𝐿𝑈𝐸
 (3) 

 

MNDWI=
𝐺𝑅𝐸𝐸𝑁−𝑆𝑊𝐼𝑅

𝐺𝑅𝐸𝐸𝑁+𝑆𝑊𝐼𝑅
 (4) 

 

3.2.2. Radar feature 

Once the SAR image was acquired using GEE platform, VV and VH bands were extracted for CC. 

Rain and cloud cover don't affect SAR, which is capable of taking images day and night. The study fully 

utilized the benefits of SAR pictures by utilizing all winter wheat observation. Plant growth cycle-related 

changes in the water content of the canopy are reflected in VV and VH. band hence VV and VH provide 

more information about crop structure and characteristics, significantly improving CC algorithms' accuracy. 

 

3.3.  Crop classification 

3.3.1. Different feature combinations 

Several optical and radar feature combinations were evaluated for the purpose of comparison. The 

gamma and cost parameters are suitably tuned by the RF algorithm using a grid search and 8-fold  

cross-validation based on the training data. Next, we performed the RF for every combination of data. The 

performance of each model was compared by examining the overall accuracy (OA), producer's accuracy 

(PA), user's accuracy (UA), and Kappa coefficient (KC), following different combinations of optical and 

microwave features were explored to identify the most important radar and optical features for accurate crop 

mapping. 
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Combination 1: VH, VV SAR features  

Combination 2: Sentinel-2 bands 

Combination 3: Sentinel-2 bands and NDVI 

Combination 4: Sentinel-2 bands and GNDVI 

Combination 5: Sentinel-2 and NDYI 

Combination 6: Sentinel-2 and MNDWI 

Combination 7: Only Sentinel-2 bands and NDVI, GNDVI, NDYI and MNDWI  

Combination 8: With the fusion of all Sentinel-1 and Sentinel-2 features. 

 

3.3.2. Pixel based classification 

Conventional PB classification is a popular method for generating crop maps. The PB classification 

is performed at the pixel level, which solely relies on the spectral data of individual pixels. In PB 

classification, each pixel, the smallest unit in the image, is categorized into a predefined class using a trained 

model. Salt and pepper noise could be produced by the conventional PB categorization approach, particularly 

for Sentinel-1 radar data. This issue is lessened by the object-based approach, which divides the image into 

distinct regions or objects based on predetermined criteria by taking into account the neighboring information 

of a given pixel. 

 

3.3.3. Object based classification 

State-of-the-art machine learning algorithms can execute PB and OO classification methods on 

GEE. In the study presented, an RF classifier was used to implement PB and OO classification approaches, 

with the number of trees set to 100. An inbuilt GEE image segmentation algorithm was used to implement 

SNIC image segmentation, which is an OO imagery segmentation method that groups spatial objects with 

high uniformity. First, a centroid pixel initialization is done on the image's regular grid. Then, the 

dependence of each pixel with respect to the centroid is ascertained using the distance between pixels in the 

five-dimensional space of colour and spatial coordinates. Ultimately, the distance creates effective, compact, 

and almost uniform polygons by integrating the normalised spatial and colour distances [19], [31]. 

The SNIC algorithm was used to compare the performance of optical and SAR features for PB 

classification. The algorithm generates a regular grid of seeds using the "Image.Segmentation.seedGrid" 

function. The spacing of superpixel seed locations affects the cluster size and can be adjusted to achieve the 

best results. The algorithm was tested for different values of seed spacing to determine the best value based 

on OA. To produce compact clusters, the "compactness factor" parameter was set to a higher value, while the 

"connectivity" parameter was set to 8 to avoid tile boundary artifacts. Additionally, a "neighbourhoods" 

parameter was used to ensure that the tiles did not overlap. In this study, the SNIC parameters were set to 

compactness = 0, connectivity = 8, and neighbourhood size = 256. Finally, the visualization scale was found 

to significantly impact the accuracy of the SNIC algorithm for OO classification. 

 

3.3.4. Random forest classifier 

RF is a supervised machine learning model that does not follow the normal distribution of predictor 

variables. It integrates large decision trees and employs an adjustable amount of predictor variables. RF is 

built using the bootstrapping technique, where each decision tree is fitted based on in-bag data.  

For classification, two variables are to be set for the RF classifier, ntree which stands for the number of 

decision trees grown and mtry, which stands for the number of variables used at every split. A tree is 

trimmed only after it is fully developed and when its nodes are pure and can be used for prediction. RF was 

selected for its advantages, including the ability to handle large data sets, resistance to noise and outliers, and 

low computational complexity compared to other ensemble methods [39].  

 

3.4.  Accuracy assesement 

The following metrics are employed to assess the algorithm presented in this work: OA, KC, UA, 

and PA. The OA is determined by calculating the ratio of correctly classified cells to the total number of cells 

[40]. The KC is a statistical measure of interclass agreement that assesses classification accuracy using all 

data available in the confusion matrix. The PA of a map is defined from the map producer's point of view, 

whereas UA is defined from the user's point of view [36], [40]. The formulas for OA, KC, PA and UA are 

given by expression (5)-(8) respectively. 

 

𝑂𝐴 =
∑ 𝑚𝑖𝑖

𝑁
𝑖=1

 𝛴𝑗=1
𝑁 ∑ 𝑚𝑖𝑗

𝑁
𝑖=1

 (5) 

 

𝐾𝐶 =
𝑁 ∑ 𝑚𝑖𝑗

𝑛
𝑖=1 −∑ (𝑚𝑖+𝑚+𝑖)𝑛

𝑖=1

𝑁2−∑ (𝑚𝑖+𝑚+𝑖)𝑛
𝑖=1

 (6) 
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The PA of a map is defined from the map producer's point of view, whereas UA is defined from the 

user's point of view [36], [40]. The formulas for PA and UA are given in (7) and (8). 
 

𝑃𝐴 =
𝑚𝑖𝑖

𝑚+𝑖
 (7) 

 

𝑈𝐴 =
𝑚𝑖𝑖

𝑚𝑖+
 (8) 

 

 

4. RESULTS AND DISCUSSION  

4.1.  Analysis of temporal signatures of optical data 

In Figures 2(a) to 2(d), the temporal variation of NDVI, NDYI, GNDVI, and MNDWI of different 

classes (chickpea, wheat, watermelon, garlic, urban, and water) were plotted to study the temporal pattern of 

vegetation indexes at different phenological stages of various crops. 

− The NDVI is a measure of vegetation cover that ranges from -1 to +1. In this scale, positive values 

indicate areas covered by clouds and water, while a value of 0 represents no vegetation cover. NDVI 

values that are close to 1 indicate dense vegetation. This index has been proven to be a helpful tool in 

estimating crop yield and monitoring crop growth. During the sowing period, crops typically have a small 

NDVI value. However, as they enter the fast-growing season, the NDVI value increases rapidly. Wheat, 

for instance, begins to mature from the end of February, and as it does so, its NDVI value decreases, 

reaching a minimum at harvesting time. Chickpea and wheat typically have NDVI values of more than 

0.3, while the NDVI of other crops, urban areas, and water bodies are lower than 0.3. The water class 

usually shows the lowest NDVI values. 

− Based on the blue and green bands, the NDYI is suitable for representing the increase in yellowness 

during blossoming. This is because flowers absorb a significant amount of blue light, and the high 

reflectance in the green and red bands is then perceived as yellow. The study found that in-situ data 

regarding the beginning and end of flowering was similar to that captured by the Sentinel-1 data [38]. 

− GNDVI has a temporal pattern similar to NDVI. However, it is a variation of NDVI that uses green 

reflectance instead of red. 

− MNDWI can distinguish water and urban areas easily because water has the highest MNDWI value 

compared to other classes, while urban areas have negative MNDWI. 
 

 

  
(a) 

 

(b) 

 

  
(c) (d) 

 

Figure 2. Temporal profiles of (a) NDVI, (b) GNDVI, (c) NDYI, and (d) MNDWI 
 

 

4.2.  Dynamics of SAR polarisations vertical–vertical and vertical-horizontal 

The SAR VV and VH backscatter varies as the crop grows from sowing to harvesting.  

Figures 3(a) and 3(b) shows the temporal variation of the average backscatter coefficients of wheat, chickpea, 
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watermelon, garlic, water, and urban area under study in 2022. In Figure 3, on the X axis, the date of SAR 

image acquisition is taken, and on the Y axis value of the backscattering coefficient is placed. 

− During the initial growth stages, backscatter values are low, however, they increase rapidly as crops 

progress to the vegetative stage. 

− During the reproductive stage, slight variations in crop biomass and structure cause minute variation in 

backscatter. 

− During harvesting, a significant decrease in backscatter was observed as the plant died, resulting in a 

reduction of the plant's water content. The backscatter dropped from -15 dB (VH), -7.5dB (VV) to  

-22 dB (VH), -11 dB (VV) for chickpea; -13dB (VH), -10 dB (VV) to -15 dB (VH), -13 dB (VV) for 

wheat; and -15 dB (VH), -10dB (VV) to -18 dB (VH), -12 dB (VV) for watermelon. 

− The water class had the lowest backscatter and VV polarization showed higher backscatter variation as 

crops grew compared to VH polarization, this agrees with previous research [41].  

 

 

  
(a) (b) 

 

Figure 3. Temporal profiles of (a) vertical vertical (b) vertical horizontal 

 

 

4.3.   Classification results 

The classification maps generated applying the proposed method for the investigation area are 

displayed in Figure 4. Figure 4(a) shows classification maps generated using PB method and Figure 4(b) 

shows classification maps generated using OO method. Table 1 lists the OAs and KC of the different 

classification schemes using Sentinel-1 and Sentinel-2 data. The OA results varied from 61% to 85.5% 

depending on the approach (PB or OO) and input features. The highest OA and KC of 85.5% and 0.774 was 

obtained for OO-based classification approach with the fusion of Sentinel-1 and Sentinel-2 data. On the other 

hand, only Sentinel-2 bands produced the lowest OA of 61% and KC of 0.37. Orynbaikyzy et al. [15] 

observed that Sentinel-1 data showed more promising results than Sentinel-2. This result was consistent with 

the conclusion of the proposed work. Verma et al. [12] used joint Sentinel-1 and Sentinel-2 data for CC, 

which yielded an OA of 83.87 and a KC of 0.78. Research by Yang et al. [19], the highest accuracy of 

83.35% was obtained for CC based on the joint use of Sentinel-1 and Sentinel-2 images. Chickpea had the 

lowest UA and PA due to the smaller number of visited plots. Therefore, Chickpea was misclassified as other 

crops. This misclassification may have resulted from the coinciding growth stages of these crops. 

 

 

  
(a) (b) 

 

Figure 4. Using fusion of optical and SAR images (a) PB classification (b) OO classification approach 
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Table 1. OA and KP of each combination 

Combination 
PB OO 

OA KC OA KC 

VV+VH 0.8 0.69 0.83 0.76 

Sentinel-2 bands 0.61 0.37 0.66 0.48 

Sentinel-2 + NDVI 0.67 0.47 0.663 0.48 
Sentinel-2 + GNDVI 0.679 0.47 0.664 0.481 

Sentinel-2 + MNDVI 0.66 0.49 0.661 0.4879 

Sentinel-2 + NDYI 0.6818 0.478 0.66 0.48 
Sentinel-1 + Sentinel-2 0.8136 0.70 0.855 0.774 

 

 

In the study, Figures 5(a) and 5(b) displays the UA and PA obtained for different categories using 

PB and OO classification techniques. The results indicate that the OO classification approach had a higher 

UA than the PB classification. The researchers concluded that the fusion of Sentinel-1 radar and Sentinel-2 

optical data has resulted in an enhancement in accuracy of CC Similar outcomes were also achieved in the 

studies [13], [14]. The OA obtained in this study was higher than [12], primarily due to the integration of 

Sentinel-1 and Sentinel-2 using the OO classification approach. Object-based CC eliminates object spectral 

variability by averaging many pixel values leading to an increase in accuracy. An important factor affecting 

the classification accuracy of high-resolution images classified using SNIC technique is the size of the 

superpixels. To increase the accuracy and efficiency of classification, the automatic optimal superpixel 

segmentation size selection method still has to be created. 

 

 

  
(a) (b) 

 

Figure 5. PB and OO classification of (a) user accuracy and (b) producer accuracy  

 

 

5. CONCLUSION  

The reason behind the investigation was to examine the potential of combining multi-temporal 

Sentinel-1 and optical Sentinel-2 images to map crops using the PB and OO classification approach with a 

RF classifier. Different combinations of optical and microwave features were explored to identify the most 

important radar and optical features for accurate crop mapping. The outcome demonstrated that the 

integration of Sentinel-1 and Sentinel-2 using the OO classification approach provided the best results.  

The RF model trained using the fusion of Sentinel-1 and Sentinel-2 data had a maximum OA of 85.53% and 

a KC of 0.77, which was higher than the OA obtained using either Sentinel-1 or Sentinel-2 data alone. This 

suggests that merging remote sensing data has excellent prospects for image segmentation and classification 

algorithms. The proposed method used GEE, which made the generation of crop maps convenient, fast and 

accurate. This approach is suitable for finely classifying crops in quite complex and heterogeneous regions. 

In the future, automatic selection of an ideal superpixel for SNIC can be explored to further boost the 

accuracy of the CC. 

 

 

REFERENCES 
[1] J. Schmedtmann and M. Campagnolo, “Reliable crop identification with satellite imagery in the context of common agriculture 

policy subsidy control,” Remote Sensing, vol. 7, no. 7, pp. 9325–9346, 2015, doi: 10.3390/rs70709325. 

[2] K. Van Tricht, A. Gobin, S. Gilliams, and I. Piccard, “Synergistic use of radar sentinel-1 and optical sentinel-2 imagery for crop 

mapping: A case study for Belgium,” Remote Sensing, vol. 10, no. 10, 2018, doi: 10.3390/rs10101642. 
[3] M. A. Altieri, F. R. Funes-Monzote, and P. Petersen, “Agroecologically efficient agricultural systems for smallholder farmers: 

contributions to food sovereignty,” Agronomy for Sustainable Development, vol. 32, no. 1, pp. 1–13, 2012, doi: 10.1007/s13593-

011-0065-6. 

0

0.2

0.4

0.6

0.8

1

1.2

Channa othercrops wheat urban water

U
se

r 
ac

cu
ra

cy

Classification classes

PB OO

0

0.2

0.4

0.6

0.8

1

1.2

Channa othercrops wheat urban water

P
ro

d
u

ce
r 

ac
cu

ra
cy

Classification classes

PB OO



Int J Artif Intell  ISSN: 2252-8938  

 

 Crop classification using object-oriented method and Google Earth Engine (Geeta T. Desai) 

1279 

[4] C. Luo, H. Liu, L. Lu, Z. Liu, F. Kong, and X. Zhang, “Monthly composites from sentinel-1 and sentinel-2 images for regional 
major crop mapping with Google Earth Engine,” Journal of Integrative Agriculture, vol. 20, no. 7, pp. 1944–1957, 2021, doi: 

10.1016/S2095-3119(20)63329-9. 

[5] M. Berger, J. Moreno, J. A. Johannessen, P. F. Levelt, and R. F. Hanssen, “ESA’s sentinel missions in support of Earth system 
science,” Remote Sensing of Environment, vol. 120, pp. 84–90, 2012, doi: 10.1016/j.rse.2011.07.023. 

[6] N. Gorelick, M. Hancher, M. Dixon, S. Ilyushchenko, D. Thau, and R. Moore, “Google Earth Engine: Planetary-scale geospatial 

analysis for everyone,” Remote Sensing of Environment, vol. 202, pp. 18–27, 2017, doi: 10.1016/j.rse.2017.06.031. 
[7] G. T. Desai and A. N. Gaikwad, “Automatic land cover classification with SAR imagery and machine learning using Google 

Earth Engine,” International journal of electrical and computer engineering systems, vol. 13, no. 10, pp. 909–916, 2022, doi: 

10.32985/ijeces.13.10.6. 
[8] A. E. Maxwell, T. A. Warner, and F. Fang, “Implementation of machine-learning classification in remote sensing: an applied 

review,” International Journal of Remote Sensing, vol. 39, no. 9, pp. 2784–2817, 2018, doi: 10.1080/01431161.2018.1433343. 

[9] D. J. Lary, A. H. Alavi, A. H. Gandomi, and A. L. Walker, “Machine learning in geosciences and remote sensing,” Geoscience 
Frontiers, vol. 7, no. 1, pp. 3–10, 2016, doi: 10.1016/j.gsf.2015.07.003. 

[10] M. Belgiu and L. Drăguţ, “Random forest in remote sensing: A review of applications and future directions,” ISPRS Journal of 

Photogrammetry and Remote Sensing, vol. 114, pp. 24–31, 2016, doi: 10.1016/j.isprsjprs.2016.01.011. 
[11] A. Veloso et al., “Understanding the temporal behavior of crops using sentinel-1 and sentinel-2-like data for agricultural 

applications,” Remote Sensing of Environment, vol. 199, pp. 415–426, 2017, doi: 10.1016/j.rse.2017.07.015. 

[12] A. Verma, A. Kumar, and K. Lal, “Kharif crop characterization using combination of SAR and MSI optical sentinel satellite 
datasets,” Journal of Earth System Science, vol. 128, no. 8, 2019, doi: 10.1007/s12040-019-1260-0. 

[13] A. Chakhar, D. Hernández-López, R. Ballesteros, and M. A. Moreno, “Improving the accuracy of multiple algorithms for crop 

classification by Integrating sentinel-1 observations with sentinel-2 data,” Remote Sensing, vol. 13, no. 2, 2021, doi: 
10.3390/rs13020243. 

[14] Y. Chen, J. Hou, C. Huang, Y. Zhang, and X. Li, “Mapping maize area in heterogeneous agricultural landscape with multi-

temporal sentinel-1 and sentinel-2 images based on random forest,” Remote Sensing, vol. 13, no. 15, 2021, doi: 
10.3390/rs13152988. 

[15] A. Orynbaikyzy, U. Gessner, B. Mack, and C. Conrad, “Crop type classification using fusion of sentinel-1 and sentinel-2 data: 

Assessing the impact of feature selection, optical data availability, and parcel sizes on the accuracies,” Remote Sensing, vol. 12, 
no. 17, 2020, doi: 10.3390/rs12172779. 

[16] R. Sonobe, Y. Yamaya, H. Tani, X. Wang, N. Kobayashi, and K. Mochizuki, “Assessing the suitability of data from sentinel-1A 

and 2A for crop classification,” GIScience & Remote Sensing, vol. 54, no. 6, pp. 918–938, 2017, doi: 
10.1080/15481603.2017.1351149. 

[17] V. Walter, “Object-based classification of remote sensing data for change detection,” ISPRS Journal of Photogrammetry and 

Remote Sensing, vol. 58, no. 3–4, pp. 225–238, 2004, doi: 10.1016/j.isprsjprs.2003.09.007. 
[18] M. Baatz, C. Hoffmann, and G. Willhauck, “Progressing from object-based to object-oriented image analysis,” in Object-Based 

Image Analysis, Springer Berlin Heidelberg, 2008, pp. 29–42. 

[19] L. Yang, L. Wang, G. A. Abubakar, and J. Huang, “High-resolution rice mapping based on SNIC segmentation and multi-source 
remote sensing images,” Remote Sensing, vol. 13, no. 6, 2021, doi: 10.3390/rs13061148. 

[20] N.-T. Son, C.-F. Chen, C.-R. Chen, and V.-Q. Minh, “Assessment of sentinel-1A data for rice crop classification using random 

forests and support vector machines,” Geocarto International, pp. 1–15, 2017, doi: 10.1080/10106049.2017.1289555. 
[21] M. A. Nihar, J. M. Ahamed, S. Pazhanivelan, R. Kumaraperumal, and K. G. Raj, “Estimation of cotton and maize crop area in 

Perambalur District Of Tamil Nadu using multi-date sentinel-1A SAR data,” The International Archives of the Photogrammetry, 

Remote Sensing and Spatial Information Sciences, pp. 67–71, 2019, doi: 10.5194/isprs-archives-XLII-3-W6-67-2019. 
[22] P. P. D. Bem, O. A. D. C. Júnior, O. L. F. D. Carvalho, R. A. T. Gomes, R. F. Guimarāes, and C. M. M. Pimentel, “Irrigated rice 

crop identification in Southern Brazil using convolutional neural networks and sentinel-1 time series,” Remote Sensing 

Applications: Society and Environment, vol. 24, 2021, doi: 10.1016/j.rsase.2021.100627. 
[23] L. E. C. L. Rosa, R. Q. Feitosa, P. N. Happ, I. D. Sanches, and G. A. O. P. D. Costa, “Combining deep learning and prior 

knowledge for crop mapping in tropical regions from multitemporal SAR image sequences,” Remote Sensing, vol. 11, no. 17, 
2019, doi: 10.3390/rs11172029. 

[24] E. Ndikumana, D. H. T. Minh, N. Baghdadi, D. Courault, and L. Hossard, “Deep recurrent neural network for agricultural 

classification using multitemporal SAR sentinel-1 for Camargue, France,” Remote Sensing, vol. 10, no. 8, 2018, doi: 
10.3390/rs10081217. 

[25] N. Kobayashi, H. Tani, X. Wang, and R. Sonobe, “Crop classification using spectral indices derived from sentinel-2A imagery,” 

Journal of Information and Telecommunication, vol. 4, no. 1, pp. 67–90, 2020, doi: 10.1080/24751839.2019.1694765. 

[26] R. Saini and S. K. Ghosh, “Crop classification on single date sentinel-2 imagery using random forest and support vector 

machine,” The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XLII–5, pp. 

683–688, 2018, doi: 10.5194/isprs-archives-XLII-5-683-2018. 
[27] R. Sonobe, Y. Yamaya, H. Tani, X. Wang, N. Kobayashi, and K. Mochizuki, “Crop classification from sentinel-2-derived 

vegetation indices using ensemble learning,” Journal of Applied Remote Sensing, vol. 12, no. 02, 2018, doi: 

10.1117/1.JRS.12.026019. 
[28] V. Mazzia, A. Khaliq, and M. Chiaberge, “Improvement in land cover and crop classification based on temporal features learning 

from sentinel-2 data using recurrent-convolutional neural network (R-CNN),” Applied Sciences, vol. 10, no. 1, 2019, doi: 

10.3390/app10010238. 
[29] M. Fauvel, Y. Tarabalka, J. A. Benediktsson, J. Chanussot, and J. C. Tilton, “Advances in spectral-spatial classification of 

hyperspectral images,” Proceedings of the IEEE, vol. 101, no. 3, pp. 652–675, 2013, doi: 10.1109/JPROC.2012.2197589. 

[30] Q. Yu, P. Gong, N. Clinton, G. Biging, M. Kelly, and D. Schirokauer, “Object-based detailed vegetation classification with 
airborne high spatial resolution remote sensing imagery,” Photogrammetric Engineering & Remote Sensing, vol. 72, no. 7,  

pp. 799–811, 2006, doi: 10.14358/PERS.72.7.799. 

[31] C. Luo et al., “Using time series sentinel-1 images for object-oriented crop classification in Google Earth Engine,” Remote 
Sensing, vol. 13, no. 4, 2021, doi: 10.3390/rs13040561. 

[32] J.-S. Lee, J.-H. Wen, T. L. Ainsworth, K.-S. Chen, and A. J. Chen, “Improved sigma filter for speckle filtering of SAR imagery,” 

IEEE Transactions on Geoscience and Remote Sensing, vol. 47, no. 1, pp. 202–213, 2009, doi: 10.1109/TGRS.2008.2002881. 
[33] C. A. D. Vittorio and A. P. Georgakakos, “Land cover classification and wetland inundation mapping using MODIS,” Remote 

Sensing of Environment, vol. 204, pp. 1–17, 2018, doi: 10.1016/j.rse.2017.11.001. 

 



                ISSN: 2252-8938 

Int J Artif Intell, Vol. 14, No. 2, April 2025: 1271-1280 

1280 

[34] C. J. Tucker, “Red and photographic infrared linear combinations for monitoring vegetation,” Remote Sensing of Environment, 

vol. 8, no. 2, pp. 127–150, 1979, doi: 10.1016/0034-4257(79)90013-0. 
[35] H. Xu, “Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery,” 

International Journal of Remote Sensing, vol. 27, no. 14, pp. 3025–3033, 2006, doi: 10.1080/01431160600589179. 

[36] M. F. Isip, R. T. Alberto, and A. R. Biagtan, “Exploring vegetation indices adequate in detecting twister disease of onion using 
sentinel-2 imagery,” Spatial Information Research, vol. 28, no. 3, pp. 369–375, 2020, doi: 10.1007/s41324-019-00297-7. 

[37] W. Wu, “The generalized difference vegetation index (GDVI) for dryland characterization,” Remote Sensing, vol. 6, no. 2,  

pp. 1211–1233, 2014, doi: 10.3390/rs6021211. 
[38] G. Misra, F. Cawkwell, and A. Wingler, “Status of phenological research using sentinel-2 data: a review,” Remote Sensing,  

vol. 12, no. 17, p. 2760, 2020, doi: 10.3390/rs12172760. 

[39] V. F. Rodriguez-Galiano, B. Ghimire, J. Rogan, M. Chica-Olmo, and J. P. Rigol-Sanchez, “An assessment of the effectiveness of 
a random forest classifier for land-cover classification,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 67,  

pp. 93–104, 2012, doi: 10.1016/j.isprsjprs.2011.11.002. 

[40] Z. Wang, L. Xu, Q. Ji, W. Song, and L. Wang, “A multi-level non-uniform spatial sampling method for accuracy assessment of 
remote sensing image classification results,” Applied Sciences, vol. 10, no. 16, 2020, doi: 10.3390/app10165568. 

[41] A. Tassi, D. Gigante, G. Modica, L. Di Martino, and M. Vizzari, “Pixel- vs. object-based landsat 8 data classification in Google 

Earth Engine using random forest: the case study of Maiella National Park,” Remote Sensing, vol. 13, no. 12, 2021, doi: 
10.3390/rs13122299. 

 

 

BIOGRAPHIES OF AUTHORS  

 

 

Geeta T. Desai     received her B.E. degree from Padre Conceicao College of 

Engineering, Verna, Goa University, M.E. in electronics and telecommnication engineering 

from the Mumbai University in 2014, and completed her Ph.D. degree in electronics from 

Babasaheb Naik College of Engineering, Pusad from Amravati university. She is working as an 

Assistanti Professor in Department of Electronics and Computer, in Anjuman-I-Islam’s 

Kalsekar Technical Campus. Her current research interests include digital image processing, 

remote sensing, and machine learning. She can be contacted at email: tgeetadesai@gmail.com. 

  

 

Abhay N. Gaikwad     received his B.E. degree from Babasaheb Naik College of 

Engineering, Pusad, Amravati University, Amravati in 1993, M.Tech. from VNIT (formerly 

VRCE) Nagpur in 2001 and Ph.D. from Indian Institute of Technology, Roorkee, Uttarakhand, 

India in 2012. He is presently working as Head of Department of Artificial Intelligence and 

Data Science Engineering, Babasaheb Naik College of Engineering Pusad. He has 29 years of 

experience in teaching. His research interest includes wireless communication, radar signal 

processing, through wall imaging radar, and machine learning. He can be contacted at email: 

abhay.n.gaikwad@gmail.com. 

 

https://orcid.org/0009-0005-7868-2536
https://scholar.google.com/citations?user=UcdyOc4AAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=57223086982
https://www.webofscience.com/wos/author/record/GPS-6966-2022
https://orcid.org/0000-0002-8608-2662
https://scholar.google.co.in/citations?user=BXojMi4AAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=35408966400

