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ABSTRACT

Dress-code surveillance is a field that utilizes an object detection model to en-
sure that people wear the proper attire in workplaces and educational institutions.
The case is the same within universities, where students and staff must adhere
to campus clothing guidelines. However, campus security still enforces univer-
sity student clothing manually. Thus, this experiment creates an object detection
model that can be used in the campus environment to detect if students are wear-
ing appropriate clothing. The model developed for this research has reached an
f1-score of 45% with an overall 51.8% mean accuracy precision. With this, the
model has reached a satisfactory state with room for further improvements.
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1. INTRODUCTION
Object detection is a field of machine learning, a branch of computing science designed to mimic

human intelligence to automate processes [1], such as email filtering [2], cancer detection [3], and speech
transcription [4]. Adoption of machine learning can be done in many fields, and thanks to its versatility, object
detection has become a field of its own. Object detection itself is used to detect objects within a captured frame
that aims to detect specific objects contained in digital images [5] in order to track objects in the video, as used
by surveillance systems [6], self-driving cars [7], or systems to count the number of objects in a video [8].
Fields such as security [9] and quality control in manufacturing [10] use these methods to quickly automate
processes that often take humans a long time to complete. All detection systems use image training data to
produce a desired prediction or decision through a model that can be improved over time [11].

The issue of dress code surveillance is often overlooked in many fields. Adherence to a company’s
dress code helps to ensure that everyone working on the site is comfortable and safe, especially in places such
as construction sites and offices [12]. However, dress code surveillance can also be used in other institutions
to help ensure that employees and workers adhere to the dress code set by their company or workplace [13],
[14]. In educational institutions such as Universitas Multimedia Nusantara (UMN), its dress code is written in
the student handbook. Some institutions have used technology to more quickly identify the clothes worn by
people within the area using webcams and machine learning models to detect different types of clothing [15].
This research aims to create a YOLO model to detect clothing articles using ultralytics’ YOLOv8 architecture,
using DeepFashion2 as the training, testing, and validation data set.
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2. METHOD
To suit the needs of UMN’s dress code, the classes within the training data set must be formatted

to fit the clothing allowed and disallowed within the campus area. The preprocessing process ensures that
the data requirements are met by removing data that are considered irrelevant to the original requirements
of the model [16]. Within the campus grounds, the types of clothing allowed within it are the following:
T-shirts, button-down shirts, long pants, shoes, flat shoes, long culottes, long skirts, blouses, and dresses. The
clothing items disallowed within the campus area include sleeveless clothing, crop tops, transparent clothing,
mini skirts, shorts, ripped jeans, mules, sandals, and rubber shoes. The data set used for this research is the
DeepFashion2 data set, which contains 13 clothing classes that include: short sleeve tops, long sleeve tops,
short sleeve outerwear, long sleeve outerwear, vest, sling, shorts, trousers, skirts, short sleeve dresses, long
sleeve dresses, vest dress, and sling dress [17].

For the filtering process, the annotations for each class of clothing items are first checked through
DeepFashion2’s documentation for clothing annotations, which shows the different types of annotation for
the clothing types within the data set. After this, the types of clothing are matched to the ones allowed and
disallowed within the campus area. The classes are categorized as shown in Table 1, which follows the rules as
written in the student handbook:

Table 1. Classes allowed and not allowed according to campus guidelines
Allowed Not allowed

1: ’short sleeve top’, 2: ’long sleeve top’ 5: ’vest’, 6: ’sling’
3: ’short sleeve outwear’, 4: ’long sleeve outwear’ 7: ’shorts’, 12: ’vest dress’
8: ’trousers’, 9: ’skirt’ 13: ’sling dress’
10: ’short sleeve dress’, 11: ’long sleeve dress’

After preprocessing is completed, the JSON files used as labels need to be converted to the YOLO
format, which uses the XY center of the models along with the width and height of the object; the conversion
is done using four equations to calculate the x_center, y_center, width, and height from the JSON
file’s bounding_box key.

x center =
( (x max+x min)

2 )

image width
(1)

In (1) is used to obtain the center X value of the object using the key bounding_box. The maximum and
minimum x points are added and then divided by two before being subdivided from the full pixel file width of
the image.

y center =
( (y max+y min)

2 )

image height
(2)

In (2) is used to obtain the center y value of the object using the bounding_box key. The maximum and
minimum y points are added and then divided by two before subdividing from the pixel height of the whole
image file.

width =
x max+ x min

image width
(3)

In (3) is used to obtain the width of the bounding box by adding the minimum and maximum x values and then
dividing by the pixel width of the image.

height =
y max+ y min

image height
(4)

Finally, the height of the bounding box is also obtained through in (4) that adds the minimum and maximum y
values and then divides it by the pixel height value of the image.

After the calculations are performed and looped through each file of the filtered version of the Deep-
Fashion2 data set, the folder structure is prepared for the training, testing and validation process. The file
paths are then included in the file deepfashion2.yaml, which is used to set the above file paths and the
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class IDs for each type of clothing item. A class 0 named none is added because the data set uses numbers
1-13, while YOLO requires the ID index to start from 0. After choosing the file paths, the type of architecture is
selected to match the hardware capabilities of the device being used. The architecture chosen to train the data is
ultralytics’ YOLOv8n. The architecture of YOLOv8n itself remains unchanged from the architecture obtained
from ultralytics.

YOLO models have a speed advantage over object detection models created using other algorithms.
YOLO is a type of CNN algorithm that uses an architecture of 24 convolutional layers and two fully connected
layers [18], [19]. YOLO focuses on the speed and accuracy of the model to detect objects in digital images or
videos as a regression problem [20] and gives the probability of detecting objects in the image or video as a
result. The YOLO algorithm is relatively fast as the convolutional neural network used by YOLO uses single
forward propagation [21] to maximize its speed, often used in public systems for physical distancing [22]. The
training process is then run using the following hardware specifications: 16 GB of RAM, Processor Intel(R)
Core(TM) i7-8700k CPU @ 3.70 GHz (128 GB Memory) and NVIDIA GeForce GTX1080 Ti.

After ultralytics has been set up, the default.yaml located within the AppData folder is modified
to allow for further enhancements during the training process. It is applied during the training process for every
batch of images. As shown in Figure 1, the augmentation displays various manipulations such as transparency,
rotation, horizontal flips, vertical flips, angle, and zoom to improve the model’s detection capabilities [23],
created by modifying the default.yaml file for ultralytics by modifying a few different parameters in
order to increase the model’s performance, done by increasing the hue, saturation, and value (HSV)-color
augmentations along with the scale and shearing of the image to make sure that the model is able to detect
clothing in any situation. The augmentation is done to the existing data rather than creating new data from the
augmentations; because of this, the amount of training data remains unchanged, with each clothing instance
equal to the data after it was filtered during the preprocessing step.

Figure 1. Samples of augmented training data

Hyperparameter tuning is also done to ensure the result of the training process can be used within any
environment. The class loss is also changed to 0.4, and the distribution focal loss is changed to 1.0. The YOLO
algorithm uses these loss functions to perform regression for the bounding box obtained from the training data
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to increase the probability that the item is correctly labeled during detection [24]. After the training process,
the validation process is done using the model.val function from ultralytics, utilizing the validation image
and JSON annotation files, written in deepfashion.yaml. The validation process then gives out the macro
metrics based on the results from the model created.

After the validation process is completed, the model then goes through a testing phase to make sure
that the model can run and detect the clothing within the captured frame. This testing is then split into two
main categories: the first testing on a static image and then the second through a live camera feed. The model’s
performance is then calculated through the precision, recall, and f1-score.

3. RESULTS AND DISCUSSION
The model created from the training process is in the form of a .pt file. The .pt file is then used for

the validation and testing process, which is done to ensure that the model has good accuracy.

3.1. Validation

The validation process checks the model’s quality by utilizing ultralytics’ model.val to automa-
tically validate the model using the validation directory included within the deepfashion.yaml file. The
validation process also generates graphs such as the multiclass confusion matrix and the label statistics, which
help during the evaluation process for the models created by the training process. Figure 2 shows the validation
process results, which show the macro metrics for all classes and the metrics for each of the 13 classes. The
metrics shown in the figure are the precision (P), recall (R), mean average precision (mAP) 50, and mAP50-95
(or f1-score). The results of the validation for all of the classes are in the form of macro metrics. Because the
YOLO model used to detect objects has multiple different classes, the micro average metrics are chosen as the
metrics used for the final evaluation. Besides the micro and macro metrics, a confusion matrix is generated to
see if the model can correctly detect the items within the ground truth labels used for the validation set.

Figure 2. The validation results

The results from the validation set in Figure 3 show that the model can detect objects not labeled
initially. However, further evaluation of the model’s results also shows how some of the model’s weaknesses,
for example, mistakenly detecting tops as outerwear, may affect the detection results during the testing phase.
This weakness may be due to the YOLO algorithm used for the model, which focuses on speed rather than
accuracy. One of the methods used to evaluate the model’s results is utilizing the confusion matrix to see the
accuracy of the model in detecting objects and whether or not they are correctly detecting the objects or as
other classes. The results can also be normalized to get a more accurate reading on the model results [25].

Figure 4 shows that the model can detect most of the classes with relatively high accuracy, except the
short-sleeve dress and long-sleeve dress classes, which is caused by the low amount of training data used for the
training after the preprocessing is completed. The confusion matrix includes 15 classes, including the ’none’
and ’background’ classes. The background class is added to ensure that the model correctly detects background
objects, not clothing items.
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Figure 3. Ground truth labels and prediction results on the validation set

Figure 4. Normalized confusion matrix from validation process

Along with the normalized confusion matrix, a graph is also generated, as seen in Figure 5(a), with
curves to show the model’s metrics after every epoch and the resulting losses during the training process. The
box_loss is a metric which displays the error between the predicted bounding box and the true bounding
box. The cls_loss displays the difference between the predicted class and the true class of the object, and
the dfl_loss shows the error if the model can differentiate very similar objects apart.

The results labeled with ”train” show that the box, class, and distribution focal loss has a significant
drop at epoch 50, which is done by tuning the close_mosaic parameter to stop 50 epochs before the training
is finished; this close_mosaic adds a mosaic augmentation to the image batches used while training. The
precision, recall and f1 score metrics can also show improvements over time, as seen in Figure 5(b). The mAP50
and the f1 score (mAP50-95) show a jump in improvement after the 50th epoch due to the close_mosaic
being stopped. However, the final model utilizes the metrics with the best metrics rather than the one that uses
the model’s final epoch. Overall, the validation process shows that the model shows promise with a decent
capability to detect the different object classes with about 50% f1-score.
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(a)

(b)

Figure 5. Results for loss and accuracy metrics after every epoch: (a) box loss, cls loss, and dfl loss score
metrics; and (b) the precision, recall, and f1 score metrics

3.2. Testing
The model testing is conducted in two main parts to thoroughly check if the model can

comprehensively detect different object classes. The two tests are run in the four different buildings to
ensure that they can run in every environment within the campus area. The proficiency of the model is then
evaluated by checking if it can detect the clothing item correctly in the correct positions and the confidence of
the detection done by the model; this allows for a more thorough evaluation of the model, which checks if it
can detect the correct clothing in the different environments of the campus.

Figure 6(a) is a static image test done using a picture taken in the UMN building B area; once again,
the model can detect the different clothing items with high enough confidence. However, an error can be seen
with the model detecting the reflection of a person on the floor instead of the person itself. Despite the low
confidence, it shows that there may still be some improvements to be made to make sure that the model is
detecting the proper items instead of reflections.
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Next, the live-feed camera test is conducted in UMN’s building C, as shown in Figure 6(b), utilizing
the camera script and the model created through the previous processes. The live-feed camera tests require the
use of the OpenCV library. The camera script creates a for loop that checks for objects within the captured
frame and draws a bounding box using cv2’s rectangle function if an object within the model is detected. The
model has shown that it can detect clothing items correctly except for a few errors, which may be due to the
inherent weakness of the YOLO algorithm due to its prioritization of speed over accuracy, which may lead to
some mistakes in detecting objects.

(a) (b)

Figure 6. Static and dynamic image testing using a picture taken in (a) UMN’s building B area and
(b) UMN’s building C area

4. CONCLUSION
The model created through this process has shown good functionality with a few errors due to the

algorithm’s limitations. Data augmentation is performed by editing the default.yaml file by modifying the
scale, shear, and flip parameters within the file. In addition to this, hyperparameter tuning is performed
during the training step by changing the cls and dfl properties. Changing it allows further modifications to
the training process’ loss and the augmentation of the training data. The final metrics result in the model with
a precision of 53.5%, a recall of 44.6%, and an f1-score of 48.6%. Although the model is functional, some
features still need to be added, such as identifying and detecting footwear and accessories such as the student
ID necklace. Further improvements to the model can also be done using architectures with more parameters,
such as YOLOv8l or YOLOv8x.
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