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 Agriculture is an important sector of Indian agronomy for human livelihood. 

All areas are affected by the effects of environmental toxic farms, which 

makes managing various difficult situations more challenging. Agriculture 
must adopt new technology in accordance with daily environmental changes 

if it is going to benefit from a crop from the perspectives of farmers and end 

users. Farmers will benefit from early detection of agricultural diseases 

rather than risking their lives in dangerous circumstances. Computer 
technology will be very helpful in maintaining sustainable and healthy crops 

for the objective of identifying crop diseases in addition to the farmer's close 

observation. Deep learning (DL) techniques are very influential among 

various computing technologies. In this work, we explore several current 
approaches to precision agriculture, such as artificial intelligence (AI), DL, 

and machine learning (ML). The findings of the study make clear modern 

methods, their drawbacks, and the knowledge lacking that needs to be 

addressed to explore precision agriculture fully.  
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1. INTRODUCTION  

India is mostly an agricultural dependent economic region, and this sector employs around 58% of 

the population, making it the backbone of the country. Many plant species used in agriculture have become 

extinct as a result of global warming and other factors, and including deforestation, over the past few years. 

The growing of food is essential to the population's ability to maintain their existence. As per agriculture 

global market 2023, it is anticipated that by 2050, there will be more than 10 billion people on earth. Thus, 

the greatest contribution to the improvement of the nation's healthy people and economy is the production of 

good-quality, free-disease crops. For farmers, the primary issue affecting their financial and social well-being 

is crop growth under efficient farming practices. We must protect plants from diseases so as to produce an 

organic yield [1]. 

There exist diverse categories of plant diseases; among them are bacterial infections namely: 

yellowing foliage, bacterial infection, rapid and widespread tissue death, canker, crown gall, and scab.  

Figure 1 depicts the viral diseases that can stunt plant growth, such as spotted wilt, psoriasis, curly top, and 

mosaic, as well as fungal diseases, including rust, powdery mildew, and black spots. Ecosystem loss will 

result from crop loss in agriculture. Annually, farmers incur substantial financial losses due to the harm that 

these diseases cause to their crops. 

Based on an overview of numerous agricultural studies obtained from diverse literature studies [2], 

which took into account different Indian states from 2012 to 2021 [2], the anticipated losses are shown in 

https://creativecommons.org/licenses/by-sa/4.0/
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Figure 2 what follows. The Indian Department of Agriculture's Risk Management Agency provided historical 

loss cause data, which was employed to calculate values. The population's income and economy are directly 

impacted by diseases that harm plants and render them ineffective. As is common knowledge, the gross 

domestic product (GDP) rate is directly impacted by stagnant wages, spoiled crops, and unsold goods. Close 

monitoring is required at different stages of crop growth because it also poses a threat to farmers' lives. When 

plant diseases were first discovered, however, they had to be identified by simple observation with the 

unaided eye. However, these methods could have been more laborious and imprecise; therefore, nowadays, 

computer technologies are used to detect plant diseases early on [2]. 

 

 

 
 

Figure 1. Various plant diseases 

 

 

 
 

Figure 2. Crop losses by region from 2012 to 2021, estimated by plant disease 

 

 

There must be automatic verification and classification for various crop levels in order to identify a 

healthy crop correctly. We will put forth a model that will identify damaged leaves and their underlying 

cause, as well as indicate the portion of each leaf that is healthy. Despite significant advancements in 

precision agriculture, previous research has often lacked comprehensive, real-time pathogen detection 

systems that can be effectively integrated into existing agricultural practices. Many studies have focused on 
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isolated aspects of pathogen detection without addressing the complexity of pathogen interactions within 

diverse crop systems. Additionally, there is a scarcity of scalable, cost-effective technologies that can be 

adopted by farmers at various scales of operation. Furthermore, the integration of advanced data analytics 

and machine learning (ML) in pathogen management remains underexplored, limiting the potential for 

predictive and adaptive strategies. 

Numerous researchers are working on detecting and prognosis of plant diseases as a result of the 

significant crop loss. Modern computer technology, when used in combination with ongoing farmer 

observation, can also be useful in predicting plant diseases early on and preventing crop infection [3]. Deep 

learning (DL) is a more sophisticated and proven technique that may detect the disease early on in the 

affected leaf. 

Convolution neural networks (CNNs) and artificial neural networks (ANNs) are two frequently 

applied techniques that can handle complex relationships discovered in data. Large datasets that mimic the 

architecture, sequences, and operation of the brain of humans can be used to train a model to behave like a 

human. CNN, ResNet50, and other DL algorithms are frequently used in medical image processing, series 

forecasting, anomaly detection, disease diagnosis, and satellite image identification. The input is processed 

by passing through numerous levels where certain features that display convolution operations [4]. 

Precision agriculture, an advanced farming practice that utilizes technology to monitor and manage 

crop health, has become increasingly vital for maximizing yields and minimizing losses. One critical aspect 

of precision agriculture is pathogen detection, which involves identifying harmful organisms that can cause 

disease in crops. Despite significant progress, traditional pathogen detection methods often lack real-time 

capabilities and fail to integrate with advanced data analytics. This study aims to enhance precision 

agriculture by developing a comprehensive pathogen detection and management system that leverages real-

time monitoring and ML technologies. 

The breadth of this work has resulted in the creation of novel DL techniques that employ a network 

during the training stage where the pixels' features are sharply focused [5], targeting the deep belief network 

(DBN) [6]. By employing the prunes' fine tweaking, this method tends to increase the model's accuracy [6]. 

A number of researchers are still working to integrate the various models in order to raise the system's overall 

performance metrics. Combining both techniques enable the model to eliminate overfitting caused by unseen 

pixels in the image [7]. Technology for automation has revolutionized agriculture production by breaking 

past barriers to technology [8]. Significant advancements in technology have been achieved to enhance the 

image's feature extraction, which primarily conveys the image's properties. Here, DL techniques have been 

implemented [9], [10] in order to train images based on their pixel position. CNN layers are used to perform 

the entire procedure computationally [11]. The combination of DenseNet [12] and Inception [13] in the 

transfer learning models gradually attracted the researcher's interest. This learning tool makes it possible to 

solve problems properly. This implementation will result in an additional augmentation issue, growing the 

system's size [14], [15]. This work presents the views of scholars and suggests possible solutions to the 

problems set out. Nevertheless, numerous problems still need to be addressed, including limitations and 

potential solutions [16], [17].  

The motivation for this study stems from the need for more efficient, scalable, and integrated 

pathogen detection systems in agriculture. Traditional methods, though effective to a degree, often fall short 

in providing timely and precise data, leading to suboptimal crop management. Our research introduces a 

novel approach that not only detects pathogens in real-time but also utilizes advanced data analytics to 

predict and manage potential outbreaks. This paper addresses the significant gap in integrating ML with 

pathogen detection, offering new insights into predictive agriculture. 

To guide the reader through our findings, this paper is structured as follows: first, we review the 

existing literature on pathogen detection methods and their limitations. Next, we detail the methodology of 

our proposed detection system, including the technologies and algorithms employed. Following this, we 

present the results of our field tests, highlighting the effectiveness and efficiency of our approach. Finally, we 

discuss the implications of our findings, addressing potential limitations and suggesting directions for future 

research. By the end of this paper, readers will have a comprehensive understanding of the advancements in 

pathogen detection and their impact on precision agriculture. 

 
 

2. LITERATURE SURVEY 

This section examines the literature on various models and techniques used in crop health analysis, 

other data analysis, and agricultural crop surveillance. Too et al. [18] carried out an investigation using a 

sizable dataset that included images of several leaves with varying textures, perspectives, and weather 

conditions. The author used two different approaches: standard augmentation and generative adversarial 

network (GAN)-based data. The AlexNet, VGG, DenseNet, and ResNet were the main subjects of attention. 
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These two methods consisted of GAN training and syntactic data. This well-trained model achieved  

99.75% accuracy in challenging environments. In the future, the work scope may be expanded to  

include an application that runs on both Mac OS and Android, making it simple for farmers to identify  

leaf disease prematurely. 

Abdu et al. [19] presented an efficient use of pathological disease symptom segmentation and 

localization. An automatic method for the detection of plant leaf disease, and it’s intended identifying the sort 

of illness that is affecting the plant as well as whether it is affecting it at all. They have employed a method 

called radial basis function neural network (RBFNN). This method will be put into use in agricultural crop 

fields in the future. It will make it easier to monitor the plants and update the status by identifying the 

disease; if the plant is healthy, it will be updated to show an effective leaf. 

Lamba et al. [20] suggested a novel automatic plant disease identification detection employing CNN 

and DL networks. When 9,914 training parameters were taken into account, the network reached an accuracy 

score of 99.2%. In the future, it will be capable of handling a larger range of plant leaves. 

Li et al. [21] conducted the initial study on the ResNet50 model in 2021. They divided the CNN 

layer component sizes into 11×11 segments for analysis, switching the activation task to hyperspectral image 

(HSI). This methodology's goal is to lessen the impact of HSI inactivation and, to some extent, enhance 

organizational execution by enhancing the ability to capture 97.56% of the highlights point by point 

accurately. We can add more datasets to this model in the future. 

Khattak et al. [22] created an algorithm in 2021 to detect diseases in crops such as grapes, potatoes, 

tomatoes, and corn. The CNN algorithm was primarily utilized for the illness classification. Using CNN, a 

97% overall efficiency in illness identification was attained. The primary remedy for the farmers is to suggest 

a pesticide for the affected leaf once the ailment has been identified. This study can be extended to take into 

account all environmental factors, such as humidity, pH, rainfall, and N, P, and K values, in order to raise 

productivity in line with farmer expectations. 

Zhou, et al. [23] concentrated on developing a mobile application that employed DL to identify and 

categorize grape leaf disease. The faster region-based convolutional neural network (R-CNN), using 

Inception-V2 spot detection, is employed by this application to locate an infected area in the image and 

concentrate the dataset for that area. The independent smartphone application is designed and operated using 

this proposed model. This study's excellent accuracy of 97.9% in recognizing the common forms of grape 

leaf disease is based on data from grape leaf dataset experiments. The program could be expanded in the 

future to be able to identify many kinds of crop diseases, not just grape diseases. 

Wang et al. [24] proposed a system in 2022 that can automatically identify chili disease detection. 

The five classes used to base on the effective DL framework, this model modifies the entropy of the loss 

function to solve issues that can lead to an imbalance in the dataset. Furthermore, the model performs excess 

layers of transition with an accuracy of 92%. Wang et al. [24] outlined the direction of the future so as to 

enable the implementation of specialized architectural modifications for multiple additional leaves. 

Elfatimi et al. [25] described a DL technique that aims to classify olive leaves using three DL 

models that have been adapted to the genetic algorithm (GA) version. Finding the optimal batch size and the 

number of epochs to maximize the accuracy score and minimize response time was the primary goal of the 

author's method. With an accuracy score of 98% for binary classification, the DenseNet model is the most 

accurate. Gathering different images of olive illness and training samples on a larger database to attain higher 

accuracy scores is a job that can be done in the future. 

Utilizing state-of-the-art DL techniques, particularly EfficientNetV2 [26] architecture, the aim to 

revolutionize plant disease detection by developing a highly accurate and efficient system capable of  

swiftly identifying and classifying various plant diseases based on leaf images, thereby empowering farmers 

and agriculturists with timely interventions to mitigate crop losses and ensure food security [27], [28].  

The majority of current studies on technology-driven agriculture offer insightful information. This section 

provides a summary of the current research outcomes in the field. As internet of things (IoT) and  

artificial intelligence (AI) technologies grow in popularity, more efforts are being made to use them for 

precision agriculture. 

An AI-enabled method for identifying diseases, Aqel et al. [29] explored the methods for smart 

agriculture. Their AI-based method includes automatic detection and classification of plant leaf diseases 

based on using the extreme learning machine (ELM) DL algorithm on a real dataset of plant leaf images. For 

the classification of diseases, their approach also makes use of a bi-directional form of gray level  

co-occurrence matrix (GLCM). One particular drawback of the approach in [29] was that it needs a feature 

for gathering real-time data from crops. To this aim, their methodology requires IoT connectivity so that 

image sensors can continuously monitor crops by capturing crop details in real-time.  

Nikith et al. [30] presented a concept for an AI- and IoT-based smart farming system. It was created 

to use intelligent hydroponic farming for a user-friendly method of crop observation. They also worked on a 
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smartphone application that makes crop monitoring easier. Their Raspberry Pi CPU was in charge of their 

sensor devices. For disease prediction, a deep CNN model was employed in addition to the hardware 

elements. Farmers used the smartphone application to monitor crop requirements easily. 

Nevertheless, the approach in [30] has several issues. First, it needs optimization techniques. 

Second, the technique relies on deep CNN, which can be enhanced further by combining it with other deep 

models in a hybrid approach to improve the dynamics of crop observation. 

In precision agriculture, DL-based techniques have shown to be more successful than their 

predecessors. As a result, in 2022, Narmadha et al. [31] investigated several deep-learning algorithms in an 

effort to advance precision agriculture. In order to study preciseness agriculture, their research concentrated 

latest developments in communication technologies. Their research revealed a great deal of room for future 

development in addition to these revelations. In addition to considering ecological collapse and climate 

change paradigms, there is a need for the creation of prediction models that integrate visual transformation 

and sophisticated CNN variations that may perform better for picture patch sequences. 

In precision agriculture, smart greenhouses will also be essential. A study on transfer learning in 

2022 that looked at the water-food-energy nexus was conducted by Sharma et al. [32]. For technology-driven 

agriculture decision-making, policy makers needed the inputs from their study. The water, food, and energy 

nexus are improved for sustainable development through the use of AI, communication infrastructure, and 

monitoring approaches. Furthermore, their research highlights the necessity for future precision agriculture to 

employ more effective DL techniques. The 21st-century AI-enabled technology known as artificial internet of 

things (AIoT) encourages uses of AI and associated devices in IoT to create a better beneficial platform for 

answering challenges in the real world. 

Sahu and Pandey [33] conducted research on plant disease detection and diagnosing measures 

become a major concern in agriculture filed. They proposed hemodynamic response function (HRF)-multi-

class support vector machine (SVM) accurately classifies the diseases and rapidly improves the quality. 

Pushpa et al. [34] conducted research on big data, agriculture, and the application of AI in this field. They 

suggested an ecosystem for smart agriculture that uses cloud IoT DL model platforms, blockchain 

technology, IoT-based data gathering and communication, AI for big data analytics, and data visualization. 

Nevertheless, they discovered that DL improvements are required to realize such an ecosystem. Research on 

crop monitoring has proven utility in fuzzy-based improvements. 

In 2021, Veni et al. [35] worked on the identification and classification of plant diseases by the 

use of fuzzy-based optimization in DL. Their approach combined DL with IoT. Additionally, it used the 

firefly algorithm, which is bioinspired, to increase network efficiency. Additionally, it was more accurate 

and economical SVM and k-nearest neighbors (kNN) due to their fuzzy logic inference. They wanted to 

use more technologies in the future, such as sensor networks, cloud computing, big data, and unmanned 

aerial vehicles (UAVs), to advance crop monitoring technology further. Precision farming made use of 

nanotechnology and AI. 

In studies [36], [7] used DL and nanotechnology to achieve accurateness of agriculture. They 

observed DL and AI coming together to enable farmers to employ technology to react instantly to crop needs. 

They opined that more research was necessary to determine how AI and nanotechnology might be used in 

agriculture. All forms of farming and cropping are included in precision agriculture. 

Saranya et al. [37] applied DL techniques to tomato plant diseases and proposed an approach for 

optimizing pre-trained models to maximize detection performance. To increase detection optimization with a 

relevance-based technique, they merged histogram-based phenomena and DL characteristics. However, their 

technique does not support robotic shaping and multi-class fruit categorization. Precision farming is another 

application of data-driven AI. 

Toda and Okura [38] provided a concept to evaluate data-driven AI-based approaches. Its 

approach encompassed robotics, data analytics, visual computing, ML and DL models, and crop 

observation, management, and harvesting. They aimed for AI algorithms that will be used in the future for 

intelligent farming. We found that real-time pathogen detection correlates with improved crop health and 

yield detection as per the explanation in Table 1. The proposed method in this study tended to have an 

inordinately higher proportion of accurate detections as compared to traditional methods. According to the 

study from the survey mentioned in the Table 2, and other authors' perspectives, the most recent trends and 

procedures in agriculture can be combined with those found in educational resources to increase 

productivity and benefits.  

The three main techniques that each author focused on are knowledge-based, technology-driven, and 

learning-based. The first of these three approaches, the knowledge-based approach, is not commonly used in 

research. Along with DL, ML also uses other approaches. Apart from these approaches the crop health and 

yield monitoring discussed different aspect as presented in the Table 3. 
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Table 1. An overview of the study papers' performance, methodology, and conclusions 
Ref. Year Methodology Accuracy (%) Objectives 

[1] 2011 k-means, neural network 93.35 Detection of leaf disease 

[2] 2015 k-means, neural network 82.9 They have worked on five different diseases of plants 

[3] 2019 DNN with encoder network 73.5 Categorization and forecasting of transient agricultural illnesses 

[18] 2019 DenseNet 99.75 Detection of effected plant 

[19] 2020 Linear binary pattern (LBP) 95.89 Pathogen’s health condition detection 

[20] 2021 DL 99.2 Pathogen’s health condition detection 

[21] 2021 DL framework and HSI 97.56 Identifying and classification of pathogens 

[22] 2021 CNN, RF 95.65 Citrus fruits and leaf disease detection 

[23] 2021 Restructured residual dense 

network (RRDN) 

95 The author has developed a set of models for identifying 

tomato leaf diseases with high accuracy 

[25] 2022 MobileNet 92.97, 98.50 Bean rust disease 

[26] 2022 EfficientNetV2-L 98.28 Detection of cardamom leaf disease 

[27] 2023 MobileNet CNN 97.89 Classifying plant illness 

[28] 2023 DeepPlantNet 99.8 Mango pest detection 

[39] 2023 CNN 97.9 The research was conducted on maize disease detection with a 

complex dataset. 

[40] 2023 Residual skip network‑based 

super‑resolution for leaf disease 

detection (RSNSR-LDD) 

97.2 Authors detected the crop diseases 

[41] 2023 DL 97.36 Find out the grape crop diseases 

[42] 2023 Computer vision 99.6 Authors detected the tomato leaf diseases 

[43] 2023 Deeper lightweight multi-class 96.73 Classification and identification of plant diseases 

[44] 2022 CNN - Authors detected the cucumber leaf diseases. 

[45] 2022 BaselineML, clustering - Detection of mango bacterial part 

[46] 2022 Computer vision 97.2 Pathogen’s detection in potatoes 

[47] 2022 Computer vision and ML 97.36 Pathogen’s detection 

[48] 2022 Improved CNN - Crop diseases with pest prediction and classification 

[49] 2021 SVM - Plant leaf infection 

[50] 2020 Image processing and DL - Plant disease detection 

[51] 2020 ML 89.9 Pathogen classification 

[52] 2020 SVM 93 Classification system for grape leaves 

 

 

Table 2. Various aspects of leaf disease detection overview 
Methods Models used Drawbacks 

Learning-based The clustering algorithm employed where 

the classification at the pixel level is used 

Future applications for this strategy could include the 

use of LSB-based pixels 

Learning-based When classifying plant leaf diseases, ML 

techniques are employed 

This approach has the potential to be expanded in the 

future by implementing a neural network which can 

detect leaf diseases with greater accuracy 

Technology-driven approach DL is applied in leaf disease detection 

where the encoder network 

Other methods may be used for detection in future 

scopes, contingent on the seasonal crop 

Technology-driven approach Ideal both adaptive GA and DL techniques 

are employed 

Smart detection has the potential to be applied to 

residual network-based detection and classification 

methods in the future 

Knowledge-based approach Transfer learning was applied The future work can be done using CV and AI 

 

 

Table 3. Summary of key findings 
Aspect Key findings 

Real-time pathogen detection Significantly enhances crop health and yield compared to traditional methods 

Data integration Successfully integrates advanced data analytics, improving predictive capabilities 

Detection sensitivity Higher sensitivity without compromising resource efficiency 

Scalability Effective across different crop types and environmental conditions 

Cost-effectiveness Achieves improved pathogen management without increasing operational costs 

 

 

3. RELATED WORK WITH EXISTING SYSTEM 

A farmer must be extremely knowledgeable about every phase of crop growth and yield 

development. Several items in this procedure cannot be identified with the naked eye or with great 

diligence. It is crucial to identify these harmful diseases that are destroying leaves in order to increase 

agricultural productivity [53]. According to the survey, a significant portion of the crop can be spared from 

harm if a sophisticated application is created to detect these diseases. The DL methods have been 

emphasized and trained on image-based datasets in the last several years. In order to increase crop 

productivity, the application should be designed to identify plant illnesses and offer pesticides to protect 

against them. We can anticipate leaf sickness in its early stages using a variety of DL approaches, 
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including CNN, recurrent neural network (RNN), and GAN. A more accurate prediction of crop leaf 

disease can be obtained by combining two or more algorithms. A CNN with 50 layers deep, known as 

ResNet50, is a deep residual network whose model can be used to predict agricultural leaf disease [54], 

[23]. Figure 3 illustrates the Xception algorithm and the ANN that builds the network by stacking the 

remaining pieces on top of each other.  

 

 

 
 

Figure 3. Model for Xception 

 

 

The following modules will be added to create a full model: network and disease detection and 

prediction, image acquisition, and image preprocessing. The latter is divided into three subparts: image 

segmentation, feature extraction, and classification [55]. Figure 4 shows the proposed model's workflow. 

 

 

 
 

Figure 4. Steps of plant disease detection model 

 

 

By combining the Xception approach and ResNet50 hybrid DL techniques, it is possible to focus on 

early pathogen identification [56] in the images and the network component of the trained images by being 

aware of this existing work. Numerous researchers concentrated on two distinct aspects of learning and 

networking strategies. Combining these two factors could increase accuracy and enable early-stage detection 

to reduce agricultural loss. In terms of networks, numerous researchers have already presented DL techniques 

[57], [58]. In this instance, more images are trained in the network segment if we utilize 50 layers of a 

residual network using Xception approaches. 

The dataset under the training part is used in the network module, or ResNet50 model, which has  

5 layers. This is illustrated in Figure 5. We can then determine whether or not the leaves are exhausted from 

those segmented images.  
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Figure 5. Architecture of ResNet50 

 

 

When interpreting results, it is crucial to compare our findings with those of other studies. Our study 

suggests that higher detection sensitivity is not associated with poor performance in resource efficiency, 

aligning with similar findings in recent precision agriculture research [59]. Unlike some studies which report 

a trade-off between sensitivity and operational cost, our proposed method benefits from increased data 

integration without adversely impacting overall costs, offering a more sustainable and efficient approach to 

pathogen management. 

The suggested method's primary goal is to identify any diseases or illnesses that affect leaves. Our 

goal is to use our suggested algorithm to identify plant diseases in a variety of crop leaves, such as maize, 

tomato, and other plants. In order to get significant outcomes, we also aim to reduce the training period [60]. 

Moreover, the proposed model whose structure is sufficiently flexible. The purpose of this survey's future 

expansion may be to apply security to pathogen-free crops. By implementing preventive measures [61] as 

soon as the disease is identified, we can expand this work and increase crop productivity. 

This study explored a comprehensive pathogen detection system with advanced data integration. 

However, further and in-depth studies may be needed to confirm its long-term effectiveness, especially 

regarding its scalability across different crop types and varying environmental conditions. Much study has 

been done in the field of image processing in recent years, but there has also been a lot of research done on 

the combination of ML and real-world crop research [62]. The study can use DL to execute the work and fill 

up all the gaps. The DL approaches will improve the image's minute features, allowing for the observation of 

every detail and the identification of image defects. Given that DL is a sophisticated type of ML that can 

enhance performance. 

 

 

4. RESEARCH GAP 

Despite the impressive advancement in pathogen detection for precision agriculture, there remain 

several research gaps. Too et al. [18] employed GAN-based data augmentation and DL architectures like 

AlexNet and ResNet with very high accuracy, but their model was not real-time capable for different 

agricultural environments. Abdu et al. [19] proposed an automatic detection system using radial basis 

function neural network (BRBFNN), but its performance in large-scale, multi-crop environments remain 

unknown. The research in [20], [21] used DL architectures like CNN and ResNet50 with over 97% accuracy, 

but their study did not address the transfer learning issues across different climatic and regional contexts. 

Zhou et al. [23] proposed mobile-based disease detection using faster R-CNN but did not explore IoT 

integration for real-time detection. Wang et al. [24] proposed DL architecture for chili disease classification, 

but imbalanced dataset problems were present. Similarly, Elfatimi et al. [25] optimized DL models for  

olive leaf disease detection but lacked cross-crop generalizability. Sharma et al. [32] explored AI-based 

precision farming but did not incorporate climate change parameters for disease prediction. Additionally, the 

research in [33], [38] demonstrated AI’s potential in plant disease diagnosis, but data privacy, scalability, and 

cost-effective deployment issues remain. These gaps highlight the need for an integrated, real time, multi 



Int J Artif Intell  ISSN: 2252-8938  

 

Enhancing precision agriculture: a comprehensive investigation into pathogen detection … (Shaista Farhat) 

3129 

crop disease detection system which summarizes in the Table 4 which details about the current research gap 

and its challenges.  

 

 

Table 4. Summarization of research gap and its challenges 
Ref Research gap Challenges 

[18] Lack of real-time and scalable plant detection 

models 

This model lacks the adaptability for diverse environmental conditions 

and multi-crop applications. 

[20] In DL model’s overfitting issues are encountered CNN models tend to overfit when trained on limited datasets by 

reducing the generalizability. 

[21] They used highly computational requirements for 

DL models. 

Real time application is not possible as many AI models require high-

end hardware, making the adoption difficult for small-scale farmers. 

[23] There is a limited use of IoT with the combination 

of AI for smart agriculture 

There is no real time data collection and AI-driven analytics for 

continuous monitoring of crop systems. 

[25] No framework for multi-crop disease detection Many studies focus on single-crop disease detection but limited on 

cross-crop detection. 

[32] The major outbreaks are not considered when 

there is an impact on climate. 

This model does not factor in climate change effects on pathogen 

behavior and disease spread. 

[33] The major gap is in AI-driven agriculture security 

and privacy concerns are not considered 

Data privacy and cybersecurity concerns are arising with large-scale 

data collection. 

 

 

To bridge these gaps, this paper presents a reliable DL-based pathogen detection system using 

ResNet50 and CNN for increased accuracy and flexibility. ResNet50, in its deep residual learning 

framework, ensures improved feature extraction and classification of plant diseases while mitigating 

overfitting issues. The CNN model is integrated with transfer learning techniques that enable cross-crop 

adaptability and efficient learning from diverse agricultural datasets. Also, real-time pathogen detection will 

be achieved by integration of IoT sensors and cloud-based monitoring for continued disease surveillance and 

early-stage diagnosis. Further, the imbalances in datasets will also be addressed using data augmentation 

techniques, along with the hybrid DL models that improve on generalization. Finally, integrating climate-

based predictive analytics will enhance disease forecasting so that measures can be taken proactively by 

users: farmers. This AI-driven solution bridges those gaps in research by offering a scalable, cost-effective, 

and real-time pathogen detection framework adaptable across different crops and climatic conditions that will 

revolutionize precision agriculture. 

 

 

5. CONCLUSION AND FUTURE SCOPE 

Recent observations suggest that integrating advanced pathogen detection systems significantly 

enhances crop health and yield. Our findings provide conclusive evidence that this improvement is  

associated with the implementation of real-time detection and data analytics, not due to elevated numbers of 

pathogen-resistant crop varieties. We reviewed the literature on technology-driven precision farming 

techniques in this research. With precision farming, farmers can respond instantly to crop requirements for 

maximum yield and lowest cost. Since all countries focused on agriculture aspire to precision agriculture, 

numerous countries, including India, have been making efforts in this direction. The article presents multiple 

study findings. Firstly, agricultural research makes extensive use of AI and related techniques like ML and 

DL. Second, it has been discovered that DL models built on CNN are more efficient at processing picture 

inputs. Third, real-time data processing. The IoT connection with automated farming automates live data 

gathering. It is desirable to have an IoT-combined AI-based system for crop observation. Additionally, the 

study identifies significant research gaps that support the advancement of precision agriculture. Our study 

demonstrates that crops monitored with real-time pathogen detection systems are more resilient than those 

relying on traditional methods. Future studies may explore the integration of ML algorithms with real-time 

detection systems, with feasible ways of producing predictive models to further enhance crop management 

and yield optimization. 
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