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 Diabetic retinopathy (DR) is a major cause of vision impairment globally, 

with early detection remaining a significant challenge. The limitations of 

current diagnostic methods, particularly in identifying early-stage DR, 

highlight a pressing need for more accurate diagnostic technologies. In 

response, our research introduces an innovative model that enhances the 

visual geometry group 16 (VGG16) architecture with adaptive kernel 

techniques. Traditionally, the VGG16 model deploys consistent kernel sizes 

throughout its convolutional layers. In this study, multiple convolutional 

branches with varying kernel sizes (3×3, 5×5, and 7×7) were seamlessly 

integrated after the 'block5_conv1' layer of VGG16. These branches were 

adaptively merged using a softmax-weighted combination, enabling the 

model to automatically prioritize kernel sizes based on the image's intricate 

features. To combat the challenge of imbalanced datasets, the synthetic 

minority over-sampling technique (SMOTE) was employed before training, 

harmonizing the distribution of the five DR stages. Our results are 

promising, showing a training accuracy above 94.17% and a validation 

accuracy over 90.24%, our model significantly outperforms traditional 

methods. This study represents a significant stride in applying adaptive 

kernels to deep learning for precise medical imaging tasks. The model's 

accuracy in classifying DR stages highlights its potential as a valuable 

diagnostic tool, paving the way for future enhancements in DR detection and 

management. 
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1. INTRODUCTION 

Diabetic retinopathy (DR), a microvascular complication arising from diabetes mellitus, is the 

leading cause of visual impairment and blindness worldwide [1]. The global prevalence of DR among 

diabetes patients is significant, ranging from 20% to 30% in the United States alone [2]. The progression of 

DR from modest non-proliferative damage to proliferative DR, which can cause severe vision loss, poses 

important diagnostic issues [3]. Early identification and appropriate staging of DR are crucial for avoiding its 

negative consequences on vision and quality of life [4]. The increasing prevalence of diabetes, projected to 

impact 642 million individuals by 2040 [5], underscores the necessity for effective DR screening methods. 

https://creativecommons.org/licenses/by-sa/4.0/
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Fundus photography has been the prevailing method for detecting DR due to its ability to provide 

immediate visual screening [6]. However, the interpretation of these images requires specialized expertise, 

and variability in image analysis can lead to inconsistent diagnoses [2]. Additionally, a significant proportion 

of individuals with diabetes, particularly those residing in disadvantaged regions, lack access to screening 

initiatives. Consequently, there is an elevated likelihood that DR may remain undetected [7]. 

Advancements in artificial intelligence (AI), particularly in the field of deep learning, have offered 

promising solutions to these challenges [8]‒[11]. Researchers have made significant progress in the 

automatic classification of fundus images by utilizing advanced approaches like convolutional neural 

networks (CNNs) [4]. Despite these advancements, existing techniques face limitations in accurately 

classifying the various stages of DR due to factors such as image heterogeneity, subtle differences in early-

stage features, and imbalanced datasets [2]. 

Previous research efforts have employed preprocessing methods, like measuring image entropy, to 

improve image heterogeneity, addressing the variability in retinal images from existing datasets [12]. These 

methods enhance CNN performance in distinguishing between the various stages of DR [2]. However, 

challenges remain in effectively capturing multi-scale features and adapting to the diverse characteristics of 

retinal images. 

To bridge these gaps, this study aims to improve existing techniques by integrating an adaptive 

kernel approach into the VGG16 framework, enhancing the classification of images across different stages of 

DR. Unlike the traditional VGG16 model that deploys consistent kernel sizes throughout its convolutional 

layers, the proposed model introduces multiple convolutional branches with varying kernel sizes (3×3, 5×5, 

and 7×7) after the 'block5_conv1' layer. These branches are adaptively merged using a SoftMax-weighted 

combination, allowing the model to dynamically prioritize kernel sizes based on the intricate features of the 

images. Furthermore, to address the challenge of imbalanced datasets, the synthetic minority over-sampling 

technique (SMOTE) is employed before training. This method harmonizes the distribution of the five DR 

stages, enhancing the model's predictive performance across all stages.  

The primary contributions of this study are: 

− Adaptive kernel integration: introducing a novel adaptive kernel approach within the VGG16 architecture 

to improve feature extraction and classification accuracy for different DR stages. 

− Dataset balancing with SMOTE: utilizing SMOTE to address dataset imbalance, ensuring equitable 

representation of all DR stages during model training. 

− Enhanced model performance: demonstrating significant improvements over traditional methods, 

achieving a training accuracy above 94.17% and a validation accuracy over 90.24%. 

This study not only leverages the existing advantages of the VGG16 model but also introduces 

innovative modifications to enhance its applicability in medical imaging classification tasks. By improving 

the accuracy of DR stage classification, the proposed model has the potential to serve as a valuable diagnostic 

tool, facilitating early detection and management of DR, ultimately helping to protect the vision of millions 

of individuals at risk. 

The remainder of this article is structured as follows: section 2 provides an in-depth examination of 

related work in DR classification. Section 3 details the architectural enhancements made to the VGG16 

model and the methodology employed. Section 4 presents a detailed evaluation of the results. Section 5 

discusses the findings within the existing landscape of DR classification techniques, highlighting the model's 

advancements over current methods. Finally, section 6 explores the implications of this research for future 

diagnostic practices and the broader field of medical imaging. 

 

 

2. RELATED WORK 

DR is a critical area of medical research due to its position as a leading cause of vision loss among 

diabetic patients. The advent of deep learning techniques in medical imaging has opened new avenues for 

early detection and accurate classification of DR, offering the potential for improved patient outcomes.  

Doshi et al. [13] were among the first to employ deep convolutional neural networks (DCNNs) for 

automating the classification of DR stages. Their groundbreaking work demonstrated the capability of CNNs 

to handle complex medical imaging tasks, providing accurate assessments of DR severity. However, they 

faced challenges related to the variability and complexity of retinal images, especially in distinguishing 

subtle features across different DR stages. 

Building on this foundation, Qummar et al. [14] explored the effectiveness of ensemble DCNN 

models for DR stage classification using the Kaggle DR dataset. Their approach significantly enhanced the 

accuracy of diagnosing various DR stages by effectively encoding a broad range of retinal image features. 

Despite the improved performance, ensemble models increased computational complexity and required 

extensive training data, which may not be feasible in all clinical environments. 
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Kalyani et al. [15] investigated the use of capsule networks, an advanced neural architecture that 

preserves spatial hierarchies between features. Their work demonstrated precise classification of DR stages, 

highlighting the potential of such innovative architectures in medical diagnostics. However, capsule networks 

are computationally intensive and may not scale well with large datasets. 

Asia et al. [16] conducted a comparative analysis of various CNN-based models, including  

ResNet-101, ResNet-50, and VGGNet-16, for detecting DR. Their study showed that ResNet-101 achieved 

the highest accuracy, outperforming other network models in DR classification tasks, thereby highlighting 

CNNs' potential in medical image interpretation and the importance of exploring deeper network 

architectures for improved sensitivity and classification performance. The performance of CNNs is 

significantly influenced by the selection of convolutional kernels, which are essential for feature learning 

[17]. Recent studies have focused on optimizing kernel sizes to minimize redundant or noisy features while 

effectively capturing crucial patterns. Strategies like adaptive kernel selection and feature map refinement 

have shown promise in enhancing CNN performance, leading to more efficient feature extraction tailored to 

specific medical imaging tasks. 

Advancements in kernel technologies have introduced dynamic filter modules into CNNs [18].  

By incorporating a decoupled dynamic filtering layer alongside a filter-generating network, convolutional 

filters can adjust dynamically to changing input data. This development represents a substantial step toward 

creating more adaptable and responsive network architectures, increasing the sensitivity of CNNs to specific 

characteristics of medical images. 

Esquivel et al. [19] advanced the concept of adaptability in CNNs by proposing adaptive 

convolutional kernels whose weights change dynamically based on the input image characteristics. Their 

method improved memory efficiency and reduced training times and computational requirements, which is 

particularly beneficial in resource-limited settings. However, they did not fully explore integrating adaptive 

kernels within established architectures like VGG16 for DR classification. 

Maharjan et al. [20] expanded the application of deep learning in medical imaging by developing a 

CNN model using a modified softmax loss function with regularization for brain tumor detection from 

magnetic resonance imaging (MRI) images. Their approach minimized overfitting risks while providing 

multi-class classification, improving accuracy and reducing processing time. This work emphasizes the 

importance of precise mathematical formulations in enhancing medical diagnostic models. 

Despite these advancements, several gaps remain in the current literature. A common limitation is the 

use of fixed kernel sizes throughout convolutional layers, which may not effectively capture the multi-scale 

features inherent in retinal images. This shortcoming affects the models' ability to accurately classify different 

DR stages, especially when lesions vary significantly in size and appearance. Al-Antary and Arafa [21] 

addressed this issue by proposing a multi-scale attention network (MSA-Net) that employs a multi-scale 

feature pyramid and attention mechanisms to capture retinal structures at various scales. While their approach 

improved classification performance, it primarily focused on attention mechanisms without fully integrating 

adaptive kernel techniques into established architectures like VGG16. 

Additionally, although advanced architectures like ensemble models and capsule networks have 

improved classification accuracy, they often introduce greater computational complexity and resource 

demands. This makes them less practical in resource-constrained clinical environments. Alzubaidi et al. [22] 

discussed these challenges, highlighting that the computational intensity and scalability issues associated 

with deep learning models can impede their deployment in real-world settings, particularly where hardware 

resources are limited. 

Moreover, DR datasets often suffer from class imbalance, where certain DR stages are 

underrepresented. This imbalance leads to biased models that perform poorly in minority classes. Addressing 

dataset imbalance is crucial for developing models that perform reliably across all DR stages.  

Saini and Susan [23] investigated the impact of class imbalance in DR datasets, conducting extensive 

comparative analyses using various deep learning models. They found that traditional models often struggle 

with imbalanced data, resulting in poor classification performance for minority classes. Their study 

underscores the necessity of employing techniques such as data resampling, appropriate evaluation metrics, 

and tailored architectures to mitigate the effects of class imbalance. 

To bridge these gaps, our research integrates adaptive kernel techniques into the VGG16 

architecture to enhance DR stage classification. By incorporating multiple convolutional branches with 

varying kernel sizes and adaptively merging them using a SoftMax-weighted combination, our model more 

effectively captures multi-scale features without significantly increasing computational complexity. 

Additionally, we employ SMOTE before training to address dataset imbalance. This ensures equitable 

representation of all DR stages, enhancing the model's predictive performance across both majority and 

minority classes. 
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3. MATERIALS AND METHODS 

3.1.  Dataset acquisition and image preprocessing 

We focused on Kaggle 2015 dataset [24] due to its diversity and real-world applicability, recognizing its 

widespread acceptance as a benchmark in DR research. This choice allows for a direct comparison with multiple 

studies, including state-of-the-art models evaluated on the same dataset. Although exploring multiple datasets 

could broaden our study, the depth and challenge presented by this dataset offer significant insights and 

advancements in DR diagnosis, justifying its exclusive use. Our findings, which leverage this single dataset, 

contribute valuable advances in this field, demonstrating the improved diagnostic accuracy of our model within 

an established research context. In addressing the composition of the data set and our categorical selection, it is 

important to emphasize the diversity of the data set and its clinical relevance. The dataset includes 35,126 images, 

reflecting a broad spectrum of DR stages. This diversity is crucial for developing a model capable of recognizing 

and classifying the nuanced progression of DR. Each category represents a specific stage of DR, from no DR to 

mild, moderate, severe non-proliferative DR, and proliferative DR, as clinically recognized. This categorical 

division aligns with medical standards, facilitating potential clinical application of the model. 

The primary goal of the dataset is to facilitate predictions across five categorically distinct stages of 

DR, reflecting its progression from no apparent condition to advanced stages. These categories are not 

chosen arbitrarily but are rooted in clinical practice, representing medically recognized stages of DR that are 

crucial for diagnosis and treatment planning. This systematic classification, detailed in Table 1, is essential 

for developing a nuanced understanding and detection capability of DR at various stages. The dataset initially 

presents an imbalanced representation, with class 1 (No DR) constituting approximately 73% of the entries. 

This imbalance is systematically addressed in the preprocessing phase using the SMOTE technique to ensure 

a balanced learning environment and improve the predictive performance of the model across all DR phases. 

By focusing on these five categories, the research aligns with clinical diagnostic criteria, enhancing the 

model's applicability and potential utility in medical settings. 

A meticulous preprocessing routine was implemented to prepare the dataset for deep learning 

analysis. At first, all images were uniformly adjusted to a fixed resolution of 256×256 pixels. The 

standardization step was essential to ensure consistency in the input size throughout the dataset. Through the 

act of resizing the images, we achieved two significant outcomes: enhancing the efficiency of the training 

process and diminishing the computational requirements on memory. Following the resizing process, we 

implemented normalization techniques to adjust the pixel intensity values of all images, ensuring they fall 

within a standardized range of 0 to 1. Normalization is crucial for deep learning models, as it expedites 

convergence during training and enhances the model's ability to learn effectively from the dataset. 

To address the challenge of the imbalanced nature of the original dataset, which had a significant bias 

towards the 'No DR' stage, we employed SMOTE [25]. SMOTE played a crucial role in artificially expanding 

the dataset by generating synthetic images for the underrepresented classes, using the similarities in the feature 

space of existing samples. The synthetic images were created to represent the underrepresented stages of DR 

accurately and inclusively, thus ensuring a balanced dataset for training purposes. After undergoing the 

preprocessing phase, the dataset attained a state of balance, with each DR stage being equally represented by 

2324 images. The balance was crucial in maintaining an impartial training regimen for the deep learning 

model, enabling a thorough and fair evaluation of the model's predictive performance across all DR classes. 
 
 

Table 1. Distribution of DR stages in the dataset 
Stages of DR Descriptions Number of images 

Normal (No DR) − Without any abnormalities. 25810 

Mild non-proliferative diabetic retinopathy (NPDR) − Presence of microaneurysms only. 2443 

Moderate NPDR − Microaneurysms are present but in smaller 

amounts as compared to severe NPDR. 

5292 

Severe NPDR − Venous beading in two or more regions. 

− Prominent intraretinal microvascular-abnormality 

(IRMA) in one or more regions. 

873 

Proliferative DR − Vitreous/pre-retinal hemorrhage. 

− Neovascularization. 

708 

 

 

3.2.  State of the art solution: VGG16 

The VGG16 model, created by the Visual Geometry Group at the University of Oxford, is a 

significant milestone in the advancement of deep learning architectures for image classification. Its 

architecture is distinguished by the use of small 3×3 convolutional kernels throughout, which are combined 

with 2×2 max-pooling layers, allowing for increased network depth and improved feature extraction 

capabilities. This model comprises 16 convolutional and fully connected layers that systematically extract 
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and process a hierarchical variety of features from images, leading to its wide adoption in diverse domains 

and demonstrating exceptional performance on various image classification benchmarks [26], [27]. 

Figure 1 shows the VGGNet architecture, emphasizing its profound structure that enables the 

extraction of complex features, starting from simple edges and textures in the initial layers and progressing to 

more advanced patterns in the deeper layers. Particularly notable within this family are VGG16 and its 

extension, VGG19, which includes three additional convolutional layers for a total of 19. VGG19 seeks to 

improve the model's ability to discern even more complex image features, leveraging the depth of the 

architecture to achieve refined image classification results [28]. 

Although VGG16 and VGG19 are effective, they encounter difficulties when dealing with images of 

different scales and complexities, which are often encountered in medical imaging. In addition, the deep 

structures of these models require significant computational resources, posing implementation challenges in 

environments where such resources are limited [28]. In subsection 3.3, we will introduce the adaptations 

made to the VGG architecture in our work. Our proposed enhancements aim to maintain the depth and 

comprehensive feature learning capabilities inherent in VGG16, while addressing their limitations regarding 

scalability and computational efficiency. The purpose of these modifications is to guarantee that the models 

not only perform exceptionally well in academic environments but are also suitable for real-world 

applications, particularly in challenging image classification tasks like diagnosing medical conditions. 
 

 

 
 

Figure 1. Architecture of VGG [29] 
 
 

3.3.  Model architecture and deep integration of adaptive kernels 

The structure of our model is an advancement of the traditional VGG16 framework [26], which has 

been widely employed in image classification because of its deep layers and strong ability to extract features. 

The architecture of our model preserves the fundamental structure of VGG16, consisting of a sequence of 

convolutional layers that commonly employ 3×3 kernels. These layers are then followed by max-pooling 

layers, which serve to decrease dimensionality and capture the most significant features. The basic design has 

been enhanced to include a new multi-branch configuration that starts after the "block5_conv1" layer, where 

high-level features have started to develop in the network's hierarchy. 

Figure 2 illustrates the customized configuration with multiple branches. Every branch is furnished 

with convolutional layers that have different kernel sizes—3×3, 5×5, and 7×7. The reason for choosing these 

particular sizes is to examine the retinal images at multiple scales concurrently. The smallest 3×3 kernel is 

highly effective in capturing complex details such as subtle edges and textures, which are crucial in detecting 

early-stage DR. The 5×5 kernels offer an intermediate perspective, striking a balance between detail and 

overall understanding, which is crucial for detecting characteristics such as exudates and hemorrhages. The 

largest 7×7 kernels are intended to encompass larger regions of the image, enabling the detection of broader 

patterns and structural alterations in the retina that are indicative of more advanced stages of DR. 

The convolutional layers are arranged in these branches, enabling the network to construct a 

sophisticated hierarchy of features at various scales. The output of each layer is used as input for the next 

layer, gradually enhancing the level of abstraction of the visual information. After performing convolution, 

batch normalization is applied to normalize the activations, which helps speed up the training process and 

improves the overall stability of the model. Non-linear activation functions, such as rectified linear units 

(ReLUs), are used to introduce non-linearity into the network. This allows the network to learn and represent 

more intricate patterns. 
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Figure 2. Augmented VGG16 model with multi-branch convolutional layers and adaptive kernel integration 
 
 

3.4.  Adaptive kernel integration technique 

After processing feature maps through their respective branches with varying kernel sizes, we employ 

an adaptive kernel integration technique [19] to merge the multi-scale features into a unified representation. 

This technique allows the network to dynamically prioritize features from different scales based on their 

relevance to the input image. Which is crucial for accurately classifying DR stages with varying lesion sizes. 

Firstly, the output feature maps from each branch—corresponding to kernel sizes 3×3, 5×5, and 

7×7—are flattened into one-dimensional vectors, denoted as 𝐹3×3, 𝐹5×5, and 𝐹7×7, respectively. We introduce 

trainable parameters 𝑤𝑖  for each branch, where 𝑖 ∈ {1, 2, 3} corresponds to the three kernel sizes. A softmax 

function is applied to these parameters to compute adaptive weights 𝛼𝑖, ensuring that the weights are positive 

and sum to one. The adaptive weights are calculated as follows: 
 

𝛼𝑖 =
𝑒𝑤𝑖

∑ 𝑒
𝑤𝑗3

𝑗=1

, 𝑓𝑜𝑟 𝑖 =  1, 2, 3. (1) 

 

These adaptive weights enable the network to emphasize or de-emphasize features from each branch 

during training, based on their relevance to the specific input image. The flattened feature vectors are then 

combined using the adaptive weights through a weighted sum. 
 

𝐹𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑 =  𝛼1 𝐹3×3 +  𝛼2 𝐹5×5 + 𝛼3 𝐹7×7  (2) 
 

This integration effectively merges the multi-scale features into a single comprehensive feature vector 

𝐹𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑 , capturing both fine-grained details and broader structural information pertinent to the stages of DR. 

Subsequently, the integrated feature vector is passed through fully connected layers for 

classification. It first enters a dense layer with 256 neurons utilizing the ReLU activation function. To prevent 

overfitting, a dropout layer with a rate of 0.45 is applied. This is followed by a second dense layer comprising 

128 neurons, also with ReLU activation. The final output layer consists of a dense layer with 5 neurons 

corresponding to the five DR classes, employing a softmax activation function to produce class probabilities. 

By employing this adaptive kernel integration technique, our model dynamically adjusts the 

importance of features from different scales for each input image. This adaptability is essential in medical 

imaging, where lesions can vary significantly in size and appearance. The integration method enables the 

network to prioritize the most relevant features, enhancing its ability to accurately classify the stages of DR. 

This approach not only improves classification performance but also contributes to a more nuanced 

understanding of the retinal images, which is critical for effective diagnosis and treatment planning. 
 

3.5.  Training procedure 

The architecture of the model was built using TensorFlow and Keras. We utilized the VGG16 

network as the base of our model, which was already equipped with pre-trained weights derived from 

training on the ImageNet dataset. The decision to freeze the network's layers up to 'block5_conv1' was a 

strategic decision aimed at preserving pre-existing powerful feature extraction capabilities. This approach 

ensures that the model retains the ability to recognize a wide range of image features, which is crucial given 

the diverse nature of retinal images in the diagnosis of DR. By freezing these layers, we harness the 

generalizability of VGG16's lower-level feature detectors, which have been optimized for a wide variety of 

image types, allowing our model to effectively adapt to the specific nuances of retinal imaging. This method 

not only enhances the model's accuracy by using proven feature extraction methods, but also simplifies the 

training process, as only the layers beyond 'block5_conv1' need to be trained from scratch, reducing both the 

computational overhead and the complexity of the optimization process. 
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Our adaptation involved adding convolutional branches with varying kernel sizes (3×3, 5×5, 7×7) after 

'block5_conv1' of VGG16, aimed at capturing a diverse range of features critical for DR stage classification. 

Smaller kernels excel in detecting fine details crucial for early DR stages, while larger kernels capture broader 

pathological features of advanced DR. This design ensures our model adeptly identifies features across all DR 

stages. Combining branch outputs through a softmax-weighted combination allows dynamic weighting of each 

branch's significance, optimizing feature integration for accurate DR classification. This method enhances both 

the versatility and precision of our model, significantly improving its diagnostic efficacy. 

After merging these branches, the resulting output was compressed and processed through a 

sequence of dense layers and dropout layers (with a dropout rate of 0.45) to avoid overfitting. The last layer 

consisted of a dense layer with softmax activation, specifically designed to generate the probability 

distribution across the five DR classes. The model was compiled utilizing the stochastic gradient descent 

(SGD) optimizer, employing an initial learning rate of 5e-5 and a momentum of 0.9. The loss function 

employed was categorical cross-entropy, which is suitable for multi-class classification tasks. 

In order to enhance the efficiency of the training process, we utilized multiple callback functions: 

− ModelCheckpoint: Used to store the model weights after each epoch in which there was an enhancement 

in validation accuracy. 

− ReduceLROnPlateau: This function decreases the learning rate when the validation accuracy reaches a 

plateau, which aids in refining the model. 

− The CSVLogger is used to record the training and validation metrics for each epoch, making it easier to 

analyze the model's performance over time. 

The model completed training on the preprocessed dataset for a total of 60 epochs, employing a custom 

training generator for data input. The model was validated using a separate validation generator. 

 

3.6.  Validation and performance metrics 

During the development phase of our diagnostic tool for DR, we divided the augmented dataset of 

11,620 synthesized fundus images into two main categories in a strategic manner. The training set consisted 

of a substantial majority of 10,458 images, which effectively facilitated the learning algorithm of our model. 

The remaining subset, consisting of 1,162 images, was designated as the validation set, serving as a crucial 

tool for assessing the effectiveness of our diagnostic methodology. 

The validation set played a crucial role when evaluating the model's performance using a range of 

statistical metrics. We have implemented the next set of evaluation criteria: 

− Accuracy: This metric provides a measure of the model's overall classification accuracy by determining the 

proportion of correct results, including both positive and negative outcomes, out of all the cases examined. 

− Recall, also referred to as the true positive rate, is a metric that quantifies the model's ability to correctly 

identify actual positive instances and serves as an indicator of its sensitivity and effectiveness. Ensuring 

comprehensive case identification is of utmost importance in clinical diagnostics. 

− Precision: This metric measures the proportion of correctly predicted positive instances out of all the 

positive predictions made by the model. A high precision score indicates a lower number of false 

positives, which is essential for ensuring clinical reliability. 

− The F1 score is a composite metric that combines recall and precision. It provides a single measure that 

represents a balance between the two. The F1 score is particularly useful when dealing with imbalanced class 

distributions. This highlights the significance of both detecting and accurately identifying positive occurrences. 

The metrics that underpin our evaluation strategy are established by (3) through (6). These formulas 

are fundamental to evaluating classification models and are widely cited in literature, including but not 

limited to [30], [31] for their application in medical imaging and machine learning contexts. Collectively, 

they provide a thorough evaluation of our model's performance, encompassing not only its accuracy but also 

its ability to consistently detect true positive cases while maintaining a balanced consideration of both 

sensitivity and precision. 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒)

(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒)
 (3) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒)
 (4) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒)
 (5) 

 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ×  
𝑅𝑒𝑐𝑎𝑙𝑙 ×𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛

(𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛)
 (6) 
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By conducting this comprehensive validation procedure, our goal is to confirm the accuracy of the model and 

provide evidence of its strength in correctly categorizing the different stages of DR. This will further support 

its potential for reliable use in clinical settings. 

 

 

4. RESULTS AND DISCUSSION 

Despite advances in deep learning applications for DR classification, accurately identifying all 

stages of the disease—particularly intermediate stages like Moderate NPDR—remains challenging. Previous 

models, such as traditional CNN architectures, often struggled with several key limitations: they were unable 

to effectively capture multi-scale features within retinal images, leading to poor differentiation of subtle 

pathological signs in intermediate DR stages. Additionally, class imbalances in datasets were inadequately 

addressed, resulting in models that disproportionately favored the classification of more dominant stages 

while underperforming in the detection of rarer, yet clinically critical, stages like Moderate NPDR. 

Our research addresses these gaps by integrating adaptive kernel techniques into the VGG16 

architecture, enhancing feature extraction across multiple scales and improving classification performance 

across all DR stages. The adaptive kernels allow the model to effectively capture both fine and coarse details 

in retinal images, improving detection across all DR stages, particularly the more challenging intermediate 

stages. Furthermore, to address the issue of class imbalance, we utilized the SMOTE technique during the 

data preprocessing phase, which ensures a more balanced classification across all stages. 

Our augmented VGG16 model, enhanced with adaptive kernels, demonstrated exceptional 

performance on the Kaggle DR dataset. The classification report in Table 2 highlights the model's 

effectiveness across various stages of DR, and our approach consistently achieved high metrics across 

classes. In terms of overall results, the model reached an accuracy of 90%, with both the macro-averaged and 

weighted-averaged metrics also at 0.89. This strong performance indicates balanced classification results, 

ensuring that no particular DR stage is favored at the expense of others. 

 

 

Table 2. Classification report for DR stages 
Class Precision Recall F1-score 

Normal (No DR) 0.81 0.96 0.88 
Mild NPDR 0.86 0.90 0.88 

Moderate NPDR 0.90 0.67 0.77 

Severe NPDR 0.98 0.97 0.97 
Proliferative DR 0.96 0.97 0.97 

 

 

Notably, the model exhibited outstanding precision and recall in detecting advanced stages of DR. 

For Severe NPDR (Class 3), it achieved a precision of 0.98 and a recall of 0.97. Similarly, for Proliferative 

DR (Class 4), the precision and recall were 0.96 and 0.97, respectively. Accurate identification of these 

critical stages is vital for timely clinical interventions that can significantly improve patient outcomes. 

However, the model faced challenges in classifying Moderate NPDR (Class 2), with a recall of 0.67. 

This lower recall suggests difficulty in identifying all true positive cases in this category, possibly due to the 

subtle symptoms characteristic of this intermediate stage. The confusion matrix in Figure 3 illustrates that 

misclassifications in Class 2 often occurred, with instances being incorrectly labeled as 'No DR' or  

'Mild NPDR'. This pattern indicates the need for further refinement of the model or additional training data to 

better distinguish the nuances between early DR stages. To contextualize our model's performance, we 

compared it with other significant studies in the field, as detailed in Table 3. Our model's accuracy surpasses 

that of existing methods, demonstrating its superior efficacy in DR classification. 

Our model's superior performance can be attributed to the integration of adaptive kernels, which 

allows effective analysis of complex medical images by capturing features at multiple scales. Compared to 

traditional methods like the CNN with weight matrix-based approach by Lam et al. [32], which achieved 

74.1% accuracy, our model shows a significant improvement. Even when compared to more sophisticated 

architectures, such as the Inception-ResNet-v2 model used by Gangwar and Ravi [33] with an accuracy of 

82.18%, our approach outperforms them while utilizing a relatively simpler architecture. This suggests that 

strategically enhancing the VGG16 model with adaptive kernels is more effective than merely increasing 

model complexity. 

Furthermore, our model surpasses ensemble approaches like that of Qummar et al. [14], who 

combined multiple DCNN models and achieved 80.8% accuracy. Achieving higher accuracy with a  

single-model architecture highlights the efficiency of our method. Despite these successes, the difficulty in 

accurately classifying Moderate NPDR indicates an area for future investigation. Possible improvements 

include integrating a broader range of training data to expose the model to more variations of moderate DR 
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symptoms or exploring hybrid models that combine the strengths of different architectures to enhance feature 

extraction capabilities. 

Additionally, incorporating clinical data alongside image features could provide a more holistic 

approach to DR classification. Multimodal models that include patient history, genetic factors, and other 

relevant clinical indicators may capture a broader spectrum of diagnostic information, potentially improving 

classification accuracy, especially for challenging stages like Moderate NPDR. In summary, our study 

contributes significantly to medical image analysis by accurately classifying DR stages using an enhanced 

VGG16 model with adaptive kernel integration. The model not only achieves high accuracy but also 

maintains balanced performance across different DR stages, setting a new benchmark in this critical area of 

ophthalmological research. 

 

 

 
 

Figure 3. Confusion matrix of DR stage classification by the augmented VGG16 model 

 

 

Table 3. Comparative analysis of DR classification models across various studies 

Study Proposed solution Data set 
Number of 

images used 

Performance 

measure 

Results 

(%) 

Lam et al. [32] CNN and weight matrix-
based method 

MESSIDOR-1 36,200 Accuracy 74.1 

Gangwar and Ravi [33] Inception-ResNet-v2 and 

CNN-based model 

MESSIDOR and APTOS 

2019 

4862 Accuracy 82.18 

Nagaraj et al. [34] CNN and VGG16 

network-based 

framework 

EyePACS 35,126 Accuracy 73.72 

Lin et al. [2] CNN-based architecture 

for entropy images  

EyePACS 33,000 Accuracy 86.10 

Qummar et al. [14] Ensemble approach 
which consists of five 

different DCNN models 

that include Inception-
V3, Resnet50, Dense-

121, Dense-169, and X-

ception 

Kaggle 35,126 Accuracy 80.8 

Oh et al. [35] Residual network with 

34-layer (ResNet-34)-

based model 

Custom-developed at 

Catholic Kwandong 

University International 
St. Mary’s Hospital, 

South Korea 

11,734 Accuracy 83.38 

Kanungo et al. [36] Inception-V3-based 
architecture 

EyePACS 40,000 Accuracy 88 

Khan et al. [37]  VGG16, spatial pyramid 

pooling layer (SPP), and 
network-in-network 

(NiN)-based model 

EyePACS 88,702 Accuracy 85 
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5. CONCLUSION AND FUTURE WORK 

This study introduced an enhanced VGG16 model with adaptive kernel integration for the 

classification of DR stages. The model achieved an overall accuracy of 90%, demonstrating balanced 

performance across different DR stages, which is vital for effective patient diagnosis and treatment. Its strong 

ability to detect advanced stages of DR highlights its potential as a reliable tool in ophthalmology, contributing 

to timely clinical interventions and improved patient outcomes. Beyond the immediate results, this research 

contributes to the broader context by showcasing how integrating adaptive kernels into CNNs can enhance 

feature extraction in medical image analysis. This approach can be applied to other medical imaging tasks 

where capturing multi-scale features is crucial, potentially advancing diagnostic methods in various specialties. 

However, challenges remain in accurately classifying the intermediate stage of Moderate NPDR, as evidenced 

by the lower recall rate for this category. Addressing this limitation is important not only for DR classification 

but also for other conditions where early detection is essential. Future work will focus on enhancing the model's 

sensitivity to subtle features characteristic of this stage. This may involve exploring hybrid architectures, 

incorporating additional clinical data, or utilizing advanced image processing techniques. Validating the model 

on larger and more diverse datasets will also be a priority to improve its robustness and applicability across 

different clinical settings. By refining the model in these ways, we aim to contribute further to the field of 

medical image analysis and ultimately support better healthcare outcomes for patients with DR. 
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