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 Understanding personality traits can help individuals reach their full 

potential and has applications in various fields such as recruitment, 

advertising, and marketing. A widely used tool for assessing personality is 
Myers-Briggs type indicator (MBTI). Recent advancements in technology 

have allowed for research on how personalities can change based on social 

media use. Previous research used machine learning methods, deep learning 

methods, until transformers-based method. However, these previous 
approaches must be revised to require extensive data and a high 

computational load. Although transformer-based methods like bidirectional 

encoder representations from transformers (BERT) excel at understanding 

context, it still has limitations in capturing word order and stylistic 
variations. Therefore, this study proposed integrating fine-tuning BERT with 

recurrent neural networks (RNNs) consisting of vanilla RNN, long short-

term memory (LSTM), and gated recurrent unit (GRU). This study also uses 

a BERT base fully connected layer as a comparison. The results show that 
the BERT base fully connected layer approach strategy has the best 

evaluation results in class extraversion/introversion (E/I) of 0.562 and class 

feeling/thinking (F/T) of 0.538. then, the BERT+LSTM approach strategy 

has the highest accuracy for the intuition/sensing (N/S) class of 0.543 and 
judging/perceiving (J/P) of 0.532.  
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1. INTRODUCTION 

Personality refers to an individual's typical behavioral, emotional, and cognitive patterns that are 

mostly displayed when engaging with others. Analyzing personality has attracted a lot of interest. This has 

resulted in various areas such as recruitment, advertising, and marketing. These fields study how personality 

influences different aspects to enhance the effectiveness of strategies. Understanding an individual's 

personality provides insights into their general characteristics or attitudes, there by maximizing their potential 

[1]. This knowledge also holds significance in the career field. Researchers in [2], [3] suggests that 

individuals perform better when their personality aligns with their job, making it easier to adapt to the work 

environment without requiring extensive physical abilities. Herr et al. [4] supports the idea that individuals 

work best in roles with lower physical demands. 

The method to discover personality is by completing the questionnaire for the personality test. A 

widely used tool for assessing personality is Myers-Briggs type indicator (MBTI). MBTI is founded on Carl 
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Jung's personality theory [5] and employs four-factor model including: extraversion (E) or introversion (I), 

intuition (N) or sensing (S), feeling (F) or thinking (T), and judging (J) or perceiving (P). However, traditional 

personality tests have limitations as responses may not always be consistent due to random or haphazard 

answering, leading to variable predicted results. As a result, this study suggests using social media, particularly 

X (commonly known as Twitter), to detect personality traits. X provides a platform for users to interact, 

express thoughts and feelings through tweets, which indirectly reveal aspects of their personality [6].  

Several studies have examined the use of X data for MBTI personality detection using natural 

language processing (NLP). The approaches for MBTI personality classification mostly involve binary 

classification. Frkovic et al. [7] demonstrated that the binary classification approach is more effective than 

the multiclass classification approach. The researchers initially used syntactic analysis features and n-gram 

characteristics with classical machine learning methods. The research in this field also utilized classical 

machine learning methods [8], [9], [10] in MBTI personality detection. However, classical machine learning 

methods challenges in feature extraction, as missing or incomplete features can lead to suboptimal outputs 

[11]. This limitation can be overcome by using deep learning methods, particularly sequential-based 

architectures like recurrent neural networks (RNNs). Since RNNs can automatically extract features and 

consider semantic dependencies, making it superior to classical machine learning methods. This has been 

proven in research by [12], [13].  

Following the advancements in deep learning, the bidirectional encoder representations from 

transformers (BERT) is a noteworthy breakthrough in NLP. BERT employs the transformers framework, 

similarly to the generative pre-trained transformer (GPT) and large language model meta-AI (LLaMA). The 

architecture relies on self-attention mechanism, enabling every token to be evaluated alongside all other 

tokens at the same time [14]. As a result, attention weights between tokens are calculated, enabling the model 

to access information from all inputs. BERT employs the encoder structure of transformers, capturing context 

from both directions to comprehend text thoroughly, making it suitable for classification. Several previous 

studies have employed BERT for MBTI personality detection. For instance, research by [15], [16] utilized 

BERT as a word embedding approach. Additionally, researchers by [17], [18] conducted research by fine-

tuning BERT to classify the four different MBTI dimensions. In contrast to employing BERT exclusively as 

a word embedding, which depend on vectors generated from pre-trained models, fine-tuning BERT involves 

retraining or transferring the knowledge from the BERT model utilizing a specific task dataset [19], and 

subsequently incorporating a fully connected layer that maps the representation results into the intended 

output. However, although BERT excels in understanding context, it still has limitations in capturing word 

order and stylistic variations. Therefore, this study proposed integrating fine-tuning BERT with RNNs to 

examine the impact of enhanced context modeling.  

The proposed method aims to improve model performance by understanding the global context of 

words and capturing deeper meaning related to MBTI personality. The remainder of the paper is organized as 

follows: section 2 outlines the methodology, providing a comprehensive overview of the data, fine-tuning 

BERT for personality detection, and it suggest the integration of RNNs. Section 3 explain experiment setup 

and a discussion of those results, this study implication and future research. Finally, section 4 contains the 

conclusion of this study. 

 

 

2. METHODOLOGY  

The methodology starts with collecting data by scraping tweets from the X social media platform. 

Once the data is collected, it is preprocessed before being input into the model. The performance of the 

model is evaluated by an accuracy metric. Figure 1 depicts the phases of the proposed study, and the details 

of each phase will be explained in the subsequent sub-sections.  

 

2.1.  Dataset 

The dataset contains tweet data from Indonesian X users who have shared their results of personality 

tests from various personality test services 16personalities.com. The dataset consists of tweet data from 

Indonesian X users who have shared their personality test results from the website 16personalities.com. The 

50 most recent tweets from these users will be retrieved using the X application programming interface (API) 

library. At the same time, the shared personality test results will be used as data labels. After that, data labels 

will be divided into four categories: E/I, N/S, F/T, and J/P. 5120 data were successfully collected with 

balanced classes for all MBTI personality types. 

Figure 2 shown the length or the data. It can be seen that some users have a token length of less than 

200, which means that those users have less than or equal to 4 tokens in each of their tweets. On the other 

hand, some users have long tweets with more than 1,000 tokens, so these users have more than 20 tokens or 
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words per tweet. Meanwhile, most data distribution is around the 300 range. Thus, on average, one tweet 

contains 5 to 7 words. From Figure 2, it can be seen that the data is long and quite complex. 

 

 

 
 

Figure 1. Research methodology 

 

 

 
 

Figure 2. Distribution of length token data 

 

 

2.2.  Preprocessing 

The X data resulting from crawling is data that has much noise and is unstructured, so it requires 

preprocessing to reduce the dimensions of the data during training [20], [21]. All the preprocessing steps 

carried out using the IndoNLP library. Preprocessing is essential because it allows the model identify distinct 

patterns in the data, enabling the analysis and classification of personalities. The preprocessing steps 

conducted in order are as follows: 

i) Remove X special characters, such as mentions, hashtags, and URLs, because they are meaningless [22].  

ii) Case folding, converted from all letters to lowercase. Additionally, all letters are converted to lowercase 

to ensure consistency and prevent significant variations in word vectors.  

iii) Convert emoji or emoticon to strings. 

iv) Data cleaning, which includes remove word elongation, slang words, and stop words. Stop words are 

frequently meaningless, so the model can focus only on essential words that contribute more to the text's 

meaning [23].  

 

2.3.  Fine tuning BERT 

BERT is a versatile model that trains bidirectional representations of unlabeled text [14]. BERT has 

greatly improved NLP by effectively understanding context and semantics in text, analyzing information 

from both directions [24], [25]. BERT can be implemented using two approaches: feature-based and fine-
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tuning. The feature-based model is preserved, and the output is a feature vector for the subsequent 

classification model [26], this process also known as word embedding process. The resulting vector will be 

sent through the specified classifier. In contrast, fine-tuning retrains the model to solve a more specific 

problem by modifying or adjusting the model architecture, showcasing BERT's adaptability to different tasks. 

As explained before, this study implemented fine tuning BERT. First at all, the dataset required to fit 

the BERT input format, necessitating a tokenization process to align with the pre-trained model. It involved 

adding unique tokens to each sentence and converting the data into vectors. Fine-tuning was crucial to adjust 

all parameters precisely. Special symbols such as [CLS] and [SEP] were added at the beginning and end of 

each input, with padding used to ensure uniform data length [14]. The [CLS] token was included in the 

downstream task as an aggregate representation summarizing the input sequence information. To fine-tune the 

vector classification model related to [CLS], it was input into the encoder before adding a neural network layer 

above the output layer. Figure 3 shows the output layer can be integrated with other architectures. As 

illustrated in Figures 3(a) to 3(d), the integration of fine-tuning BERT with the RNNs utilized in this study. 

The selected RNNs include vanilla RNN, long short-term memory (LSTM), and gated recurrent unit (GRU). 

Apart from that, experiments will also be carried out with the base layer of BERT, with only a fully connected 

layer added as a comparison. A description of each RNN method is explained in the following subsection. 
 

 

  
(a) 

 

(b) 

 

  
(c) (d) 

 

Figure 3. Architecture of fine tuning (a) BERT base fully connected layer, (b) BERT+vanilla RNN,  

(c) BERT+LSTM, and (d) BERT+GRU 
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The lower layers of BERT contain more generalized information, whereas the upper layers focus on 

specific tasks information. In fine-tuning, the classification task’s model is initialized with pre-trained 

parameters, and then modified to fit the labeled data; several of the adjustments mentioned in detail are 

explained as follows. As depicted in Figures 3(a) to 3(d), the model architecture approach is BERT-based 

fully connected layer, this architecture uses a representation of X words provided by BERT (last hidden 

layer), which is directly connected to the fully connected layer without any hidden layers. The activation 

function is applied to the final layer for classification. BERT+(vanilla RNN, LSTM, or GRU) layer. The 

architecture uses word representations generated from the last hidden layer of BERT, which is connected to 

the RNN layer. It performs RNNs before connecting into the fully connected layer and output with an 

activation function. The architecture of this approach also uses dropout as a regulation technique. 

 

2.4.  Vanilla reccurent neural network 

RNNs is a type of neural network with loops. RNNs has memory and allows it to store existing 

information [27]. Vanilla RNN is a type of RNNs with only one iteration, meaning that vanilla RNN can only 

store information from one previous state.  

 

2.5.  Long short-term memory 

LSTM is a form of RNNs that addresses the limitation of vanilla RNN. If vanilla RNN can only 

store information from one previous state, LSTM can store information from all previous states and 

overcome long-term text dependency [28], [29]. Features of LSTM consist of memory cells and three gate 

units (input gate, forget gate, and output gate) to read, store, and update information. 

 

2.6.  Gated recurrent unit 

GRU is also an improved architecture over vanilla RNN and can handle long-term dependencies of 

text. The distinction between GRU and LSTM is found in the type of gate they possess. If LSTM has three 

gates, GRU only has update gates and reset gates [30], [31]. The update gate is a merging input gate and 

forget gate, while the reset gate sets the value from the previous state to continue to the next state. 

 

 

3. RESULTS AND DISCUSSION 

3.1.  Implementation 

The implementation of this study used the pre-trained IndoBERTweet-base-uncased [32] form 

IndoLEM, a pre-trained language model for Indonesian language which have 409 M tokens. IndoBERTweet 

has been trained based on BERT-base-uncased by utilizing 12 attention heads, 12 hidden layers, feed-forward 

hidden layers, and 180 epochs [14]. After processing, the data is tokenized using the same approach as the 

pre-trained model. Tokenization not only separates punctuation and removes invalid characters but also 

prepares the data for analysis. The upper limit for sentence length is determined to be 512 tokens according 

to the distribution of token lengths in the dataset. If an input is shorter than this length, zeros are added to pad 

it; if it exceeds this limit, it is truncated to fit. The tokenized dataset is separated into three segments: training 

data, testing data, and validation data, following an 80:20 division for training and testing. The validation 

data consists of 10% of the training data. The model was trained with hyperparameters: batch size 16 and 

epoch 25. The dropout probability was set for all layers at 0.5. The AdamW optimizer utilizes a learning rate 

of 1e-5. For evaluation, the study employs a confusion matrix along with accuracy metrics since the dataset is 

balanced. Subsequently, all experiments were conducted using the T4 GPU, a Turing architecture GPU 

intended to enhance the inference process of deep learning models. 

 

3.2.  Result and discussion 

This study used a binary approach to recognize MBTI personality, with four categories consist of 

E/I, N/S, F/T, and J/P. The method using fine-tuning BERT integrated with RNNs. Table 1 and Figure 4 

compare the average of the results. Figure 4 demonstrates that fine-tuning BERT with a fully connected layer 

achieves the highest average accuracy with a value of 0.533. Then, it was followed by BERT+vanilla RNN of 

0.523 and BERT+LSTM with a value of 0.518. Moreover, the last is BERT+GRU, with a value of 0.504. 

From Figure 4, shown that addition of RNNs architecture after BERT fine-tuning affects the model 

prediction results. BERT with a transformers base is used to understand the relationship between words in the 

text, so adding RNNs that aim to capture sequences will likely diminish the incremental value that LSTM 

might contribute. The possibility of ambiguous and overly short tweets also makes more difficult. As a result, 

integration with RNNs often fails to improve performance. Meanwhile, with fully connected layer, the BERT 

representation results are directly entered into a simple matrix and mapped to the desired label. Although,  

as seen in Table 1 BERT+LSTM fine-tuning has the best accuracy for the N/S class and the J/P class,  
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with values of 0.543 and 0.532. For the other two classes, the best accuracy is using the BERT base fully 

connected layer method, with values of 0.562 and 0.538. 

 

 

Table 1. Experiment result 
Fine tuning strategies Label 

E/I N/S F/T J/P 

BERT BASE FULLY CONNECTED LAYER 0.562 0.524 0.538 0.510 

BERT+vanilla RNN 0.545 0.521 0.523 0.505 

BERT+LSTM 0.518 0.543 0.480 0.532 

BERT+GRU 0.516 0.516 0.480 0.505 

 

 

 
 

Figure 4. Average of experiment result 

 

 

The E/I dimension refers to how a person directs energy and pays attention. This can be observed 

through their interaction style and emojis in tweets. The F/T dimension involves a preference for decision-

making based on objective principles rather than personal feelings. When analyzing tweets, this dimension is 

reflected in the choice of words and tone, whether the author uses factual language or opts for a more 

empathetic and emotional tone. So, E/I and F/T do not require the addition of LSTM because they are 

sufficient to capture frequently appearing words and understand relationships directly without the need for a 

time sequence. Therefore, a fully connected layer is sufficient. In contrast, the N/S dimension focuses on a 

person's preference for acquiring information via the five senses or through patterns and possibilities. In 

tweets, this dimension pertains to how information is processed, whether the tweets convey reality using 

straightforward language or tend to be more conceptual and speculative. Lastly, the J/P dimension relates to 

an individual's lifestyle preference for either structure and definiteness or flexibility and adaptability. On the 

tweet, this dimension is reflected in their communication style, which may be either systematic and formal or 

spontaneous, exploratory, and often using abbreviations. It explains why BERT+LSTM is more effective for 

the N/S and J/P dimensions. It involves more complex sentence structures and a better understanding of the 

flow of language over time. 

Compared with previous studies Datta et al. [33] was using BERT followed by random forest (RF) 

and extreme gradient boosting (XGB) as classifiers for MBTI personality detection on X data. Those studies 

reported the best accuracies of 0.441 and 0.424 for each classifier. In contrast, the proposed method in this 

study achieved a better accuracy of 0.562. The static embeddings produced by the BERT model in those 

studies may not be fully optimized for certain specific tasks, and tree-based classifiers do not inherently 

recognize sequential dependencies. In conclusion, the BERT-based fully connected layer consistently 

outperforms the others when it comes to directly capturing the meaning of text by identifying frequently 

occurring words. In contrast, the BERT+LSTM excels in understanding more complex sentence structures 

and managing temporal sequences. Therefore, the selection of the best model can be made by simply 

considering the highest accuracy for each label, eliminating the need for statistical testing. Although,  

this study investigates the impact of integrating BERT fine-tuning with RNNs by only applying fully 

connected layer. However, further comprehensive studies are necessary to ensure that the integration of 
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RNNs has a significantly impacts on evaluation results, particularly with regard to the suitability of the data 

type or structure used with the chosen model. This discovery provides conclusive evidence that this 

phenomenon is linked to changes in the classification part of fine-tuning, which can influence the model's 

performance and complexity. 

 
 

4. CONCLUSION 

This study integrates fine-tuning BERT with RNNs for personality detection using X data.  

The RNNs used consist of vanilla RNN, LSTM, and GRU. In addition, this study also uses the  

BERT-based fully connected layer as a comparison. The results indicate that the BERT-based fully 

connected layer achieves the highest accuracy for class I/E and F/T, with scores of 0.562 and 0.538. This 

is attributed to its ability to effectively capture frequently appearing words and understand relationships 

directly without relying on a time sequence. On the other hand, the classes N/S and J/P require to 

understand more complex sentence structures and manage temporal sequences. Thus, the best-performing 

method for this class is BERT+LSTM, with accuracy scores of 0.543 and 0.532. This suggests that 

integration with RNNs can have a positively impact on certain classes. For future work, several 

improvements can be explored. First, optimizing hyperparameter settings is essential, as RNNs are highly 

sensitive to the hyperparameters used. Techniques such as Bayesian optimization can help identify optimal 

configurations. Additionally, it may be beneficial to alter the structure of the tweet data by segmenting 

each tweet for use with BERT. Maintaining the authenticity of each tweet's content is vital to avoid mixing 

information. Investigating methods like hierarchical BERT architectures could also be valuable in 

capturing the structural nuances of the text. 
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