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 Support vector machine (SVM) is widely used in machine learning for 

classification and regression tasks, but its performance is highly dependent 

on hyperparameter tuning. Therefore, fine-tuning these parameters is key to 

improving accuracy and generality. Recently, many researchers have 

focused only on applying different algorithms to optimize these parameters. 

There is a shortage of studies that compare the performance of these 

methods. Hence, research is needed to compare the performance of these 

algorithms for the hyperparameters of the SVM optimization problem. This 

paper compares five optimization algorithms for tuning SVM 

hyperparameters: grid search (GS), random search (RS), Bayesian 

optimization (BO), genetic algorithm (GA), and the novel chemical reaction 

optimization (CRO) algorithm. Experimental results on benchmark datasets 

such as iris, digits, wine, breast cancer Wisconsin, and credit card fraud 

demonstrate that CRO consistently outperforms other methods in terms of 

classification scoring metrics and computational time. It achieves 

improvements in accuracy, precision, recall, and F1-score of up to 1% on 

balanced datasets and up to 10% on highly imbalanced datasets such as 

credit card fraud. It also reduces computation time by up to 50% compared 

to GS, BO, and RS. These findings suggest that CRO is a promising 

approach for hyperparameter optimization (HPO) of SVM models. 
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1. INTRODUCTION 

Support vector machine (SVM) was proposed by Cortes and Vapnik in 1995 [1]. This model is 

based on statistical learning and is widely used for classification and regression problems. Many practical 

applications use SVM models, such as face detection and recognition [2]–[7], disease diagnosis [8]–[15], text 

recognition [16]–[21], sentiment analysis [22]–[24], intrusion detection systems [25]–[29], and plant disease 

detection [30]–[34]. The default parameter configurations of the SVM model might not consistently yield 

optimal outcomes for the given dataset, potentially leading to inadequate performance, overfitting, or 

underfitting. Consequently, parameter optimization becomes essential to refine the SVM model and enhance 

its predictive accuracy. The hyperparameter of the SVM consists of C, gamma, and kernel type. Optimizing 

them has several benefits, including: 

https://creativecommons.org/licenses/by-sa/4.0/
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‒ Improved predictive accuracy: optimization of the SVM model leads to better predictive performance, 

enabling more accurate predictions on new data points. 

‒ Enhanced generalization: optimal hyperparameters help prevent overfitting or underfitting, leading to a 

model that generalizes well to unseen data. This ensures that the model's performance remains 

consistent across different datasets. 

‒ Efficient resource utilization: an adequately optimized SVM model requires fewer computational 

resources for training and prediction, resulting in faster execution times and reduced computational 

costs. 

‒ Increased robustness: a well-tuned SVM model is less sensitive to variations in the dataset and noise, 

making it more robust and reliable in real-world applications. 

In general, improperly selected SVM hyperparameters can significantly degrade model 

performance, leading to misclassification, increased computational costs, or poor generalization. For 

example, an improperly tuned SVM can misclassify patients in medical diagnostics, leading to inaccurate 

diagnoses and potentially harmful treatments. In financial forecasting, an SVM model with suboptimal 

hyperparameters can fail to detect market trends accurately, resulting in significant economic losses for 

investors. Similarly, choosing an inappropriate kernel function in image recognition can result in poor object 

classification in computer vision tasks. In addition, our experiment on the wine dataset, which exhibits a 

significant feature variance of up to 46,546.424, demonstrates that an SVM model with improperly chosen 

hyperparameters results in low prediction accuracy, attaining only 66.34%. In contrast, the tuned SVM achieves 

an accuracy of up to 98.67%. For highly imbalanced datasets such as credit card fraud detection (CCFD), the 

default SVM model attains 0% in precision, recall, and F1-score metrics. 

Logically, the SVM model can be tuned manually using a trial-and-error approach. However,  

this method is infeasible to use in actual-world applications due to computational constraints and the 

complexity of the data set. Therefore, optimization algorithms help solve this problem by systematically 

exploring the hyperparameter space and significantly improving model accuracy while reducing human effort 

and subjectivity. 

Given the advantages of hyperparameter optimization (HPO) in SVM models and the limitations of 

manually tuning them, numerous studies have employed various optimization algorithms to identify the optimal 

hyperparameters for these models. Mantovani et al. [35] utilized random search (RS) techniques to optimize the 

hyperparameters of the SVM model, comparing the results with those obtained using grid search (GS). The 

experimental results demonstrate that a RS found better parameters than the default configuration and 

performed comparably to a GS. Guido et al. [36] employed genetic algorithms (GA) and a combination of GA 

and a decision tree for HPO of the SVM model. Research outcomes indicate that the novel approach achieves 

better or equal performance compared to other methods utilized in the literature for tuning the hyperparameters 

of the SVM model. Wenzhuo and Shuo [37] used an advanced whale optimization algorithm (WOA) to find 

optimal hyperparameters of the SVM model. Abdulraheem et al. [38] proposed to enhance the cat swarm 

optimization algorithm and applied it to discover the optimal hyperparameters of the SVM model. The 

experimental outcomes demonstrate that their proposed method achieves an average classification accuracy of 

91.2% across 15 benchmark datasets. Ramasamy et al. [39] employed three heuristic search algorithms, 

including cuckoo search optimization (CSO), ant lion optimizer (ALO), and polar bear optimization (PBO), for 

optimizing the hyperparameters of the SVM model. The experimental results indicate that the performance of 

the three methods is comparable. Specifically, CSO, ALO, and PBO achieved average classification accuracies 

of 86.86%, 86.26%, and 84.44%, respectively. Lessmann et al. [40] utilized the GA to identify the optimal 

hyperparameters of the SVM model. They encoded the kernel function parameters as chromosome genes and 

then ran the GA to find the best individual, achieving the highest classification accuracy. The research 

outcomes demonstrate that the fusion of the GA and SVM achieves better classification accuracy than SVM 

alone, albeit requiring more time to find the optimal parameters. 

The hyperparameter of the SVM model consists of the C, gamma, and kernel types. However, 

almost all researchers have optimized some of them, such as in [35]–[37], authors only optimized the C and 

gamma, and in [38]–[40], authors only optimized kernel type. Therefore, research is needed to optimize all 

parameters for the SVM model to improve its performance. In this article, we propose to use the chemical 

reaction optimization (CRO) algorithm to find all hyperparameters of the SVM model and investigate the 

hypothesis that the novel CRO algorithm for HPO of the SVM model will achieve the best performance 

compared to other popular algorithms, such as the GS, the RS, and the GA.  

The CRO is a novel optimization method proposed by Lam and Li [41] in 2012. The algorithm 

simulates a chemical reaction chain to convert a less stable substance (with large kinetic energy (KE)) into a 

stable substance (with small KE) by releasing energy into the environment. In the context of hyperparameter 

tuning, molecules represent candidate hyperparameter sets that initially may be far from optimal. Chemical 

reactions correspond to search operations such as decomposition or synthesis, allowing exploration of 

different hyperparameter combinations. Energy levels are analogous to model performance metrics, such as 
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accuracy. Unstable molecules, analogous to poor hyperparameter choices, undergo reactions until they reach 

a lower energy state, analogous to better performance. The system converges to a stable state, similar to how 

an optimized hyperparameter set improves model accuracy over iterations. It integrates the strengths of both 

the GA and simulated annealing (SA). CRO preserves energy conservation in a manner similar to the 

Metropolis algorithm in SA, while its decomposition and synthesis processes resemble the crossover and 

mutation operations found in GA. Hence, the CRO performs both local and global searches.  

Numerous optimization challenges have been tackled successfully using CRO. Cong et al. [42]  

used CRO to tune the proportional integral (PI) controller to fast-track the active and reactive power of the 

doubly fed induction generator (DFIG) with maximum power point tracking (MPPT) when the wind speed 

changes. The experimental results demonstrate that CRO outperforms GA and PSO regarding control error.  

Ba et al. [43] utilized CRO to find optimal PID controller parameters. The simulation results show that CRO 

achieves the best performance compared to GA, PSO, WOA, and teaching learning-based optimization 

(TLBO). Research by Yu et al. [44], CRO is used to train neural networks, and the neural networks trained 

with CRO exhibit the lowest testing error rate compared to several other representative evolutionary methods. 

Ba et al. [45] used CRO to optimize the hyperparameters of a deep learning model, such as the number of 

filters in each convolutional layer and the number of neurons in the fully connected layer. The experimental 

results demonstrate that the proposed optimized deep learning model outperforms VGG-16 and MobileNet in 

plant leaf disease recognition. The structure of this manuscript is organized as follows: the next section 

presents the methodology, followed by the experimental results. Finally, the last section includes the 

conclusion and future work. 

 

 

2. METHOD 

2.1.  Support vector machine 

SVM is a power supervisory learning technique applied widely in classification problems. SVM 

seeks to identify the optimal hyperplane that best separates the data into two classes, maximizing the 

margin—the distance between the hyperplane and the nearest data points. Figure 1 shows the hyperplane and 

its corresponding margin. 

 

 

 
 

Figure 1. Illustrate the key features of the SVM 

 

 

Data classification problems are based on some given samples. Specifically, given m samples 

𝑥1, 𝑥2, … , 𝑥𝑚  corresponding to the outputs 𝑦1, 𝑦2, … , 𝑦𝑚 ∈ ∆, where ∆ is a fixed discrete set. Here, we focus 

on the binary classification problem, meaning ∆ = {−1, 1}. Then 𝑥𝑖 is classified into a class 𝐶+ if 𝑦𝑖 = 1, 

otherwise, it is classified into a class 𝐶−. Therefore, it is necessary to find a classification function f(x) 

defined as follows: 

 

𝑓: 𝑅𝑛 → 𝑅, 𝑓(𝑥𝑖) = 𝑦𝑖 , ∀𝑖 ∈ 𝑀 = {1, 2, … , 𝑚} (1) 

 

If there exists a function g such that 𝑔(𝑥𝑖) > 0 for all 𝑥𝑖 in  𝐶+and 𝑔(𝑥𝑖) < 0 for all 𝑥𝑖  in 𝐶− then 

the classification function can be chosen as 𝑓(𝑥) = 𝑠𝑔𝑛(𝑔(𝑥))  and the surface 𝑆𝑔 = {𝑥 ∈ 𝑅𝑛: 𝑔(𝑥) = 0} is 
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called the decision surface. 𝑆𝑔 divides 𝑅𝑛  into two regions, corresponding to two classes 𝐶+ and 𝐶−. 

Especially when g is an affine function 𝑔(𝑥) = 𝑤. 𝑥 + 𝑏, then 𝑆𝑔 is a hyperplane and is called a linear 

decision surface. Then there exists a pair (𝑤, 𝑏) ∈ 𝑅𝑛 × 𝑅 such that: 

 

{
𝑤. 𝑥𝑖 + 𝑏 ≥ 1, ∀𝑥𝑖 ∈ 𝐶+

𝑤. 𝑥𝑖 + 𝑏 ≤ −1, ∀𝑥𝑖 ∈ 𝐶− (2) 

 

and 𝑓𝑤,𝑏(𝑥) = 𝑠𝑔𝑛(𝑤. 𝑥 + 𝑏), 𝑆𝑤,𝑏 = {𝑥 ∈ 𝑅𝑛: 𝑤. 𝑥 + 𝑏 = 0}. Finding the optimal hyperplane with 

maximum margin requires solving the following optimization problem: 

 

{
𝜑(𝑤, 𝑏) =

1

2
‖𝑤‖2 → 𝑚𝑖𝑛

1 − 𝑦(𝑤. 𝑥𝑖 + 𝑏) ≤ 0, 𝑖 ∈ 𝑀𝑖

 (3) 

 

The quadratic programming algorithms can solve this problem. However, to be able to extend to the 

case of non-linearly separable data, the Lagrange multiplier method is introduced: 

 

𝐿(𝑤, 𝑏, 𝛽) =
1

2
‖𝑤‖2 + ∑ 𝛽𝑖(1 − 𝑦𝑖(𝑤. 𝑥𝑖 + 𝑏))𝑚

𝑖=1  (4) 

 

where, 𝛽 = (𝛽1 , 𝛽2 , … , 𝛽𝑚), 𝛽𝑖 ∈ 𝑅+ , ∀𝑖 ∈ 𝑀. The Lagrange dual function is defined: 

 

ℎ(𝛽) = min
𝑤,𝑏

𝐿(𝑤, 𝑏, 𝛽) (5) 

 

Substitute 
𝜕𝐿(𝑤,𝑏,𝛽)

𝜕𝑤
= 0, and 

𝜕𝐿(𝑤,𝑏,𝛽)

𝜕𝑏
= 0 into (4) we obtain: 

 

ℎ(𝛽) = ∑ 𝛽𝑖 −
1

2
∑ ∑ 𝛽𝑖 𝛽𝑗𝑦𝑖𝑦𝑗(𝑥𝑖𝑥𝑗)𝑚

𝑗=1
𝑚
𝑖=1

𝑚
𝑖=1  (6) 

 

Subject to: 

 

𝛽𝑖 ≥ 0, ∀𝑖 ∈ 𝑀 (7) 

 

∑ 𝛽𝑖𝑦𝑖 = 0𝑚
𝑖=1  (8) 

 

When perfect separation is unattainable, slack variables 𝜌 are introduced for samples within the margin and 

penalty parameter C. It manages the balance between maximizing the margin and minimizing classification 

errors during training. The optimization problem can then be redefined as: 

 

{
𝜑(𝑤, 𝑏, 𝜌) =

1

2
‖𝑤‖2 + 𝐶 ∑ 𝜌𝑖

𝑚
𝑖=1 → 𝑚𝑖𝑛

1 − 𝑦𝑖(𝑤. 𝑥𝑖 + 𝑏) − 𝜌𝑖 ≤ 0, ∀𝑖 ∈ 𝑀
 (9) 

 

The Lagrange function is defined: 

 

𝐿(𝑤, 𝑏, 𝜌, 𝛽, 𝛾) =
1

2
‖𝑤‖2 + 𝐶 ∑ 𝜌𝑖 + ∑ 𝛽𝑖(1 − 𝑦𝑖(𝑤. 𝑥𝑖 + 𝑏) − 𝜌𝑖) − ∑ 𝛾𝑖𝜌𝑖

𝑚
𝑖=1

𝑚
𝑖=1

𝑚
𝑖=1  (10) 

 

The Lagrange dual function is specified as follows: 

 

ℎ(𝛽, 𝛾) = ∑ 𝛽𝑖 −
1

2
∑ ∑ 𝛽𝑖 𝛽𝑗𝑦𝑖𝑦𝑗(𝑥𝑖𝑥𝑗)𝑚

𝑗=1
𝑚
𝑖=1

𝑚
𝑖=1  (11) 

 

with constraints: 

 

{
∑ 𝛽𝑖

𝑚
𝑖=1 𝑦𝑖 = 0

0 ≤ 𝛽𝑖 ≤ 𝐶, ∀𝑖 ∈ 𝑀
 (12) 

 

The classification function is obtained: 

 

𝑓(𝑥) = 𝑠𝑔𝑛(∑ 𝛽𝑖𝑦𝑖(𝑥𝑖𝑥) + 𝑏𝑚
𝑖=1 ) (13) 
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When the samples are not linearly separable, the transformation function ∅(𝑥) that maps input space to 

higher dimension feature space. The kernel function is defined as follows: 

 

𝐾(𝑥, 𝑦) = ∅(𝑥). ∅(𝑦) (14) 

 

Finally, the classification function is obtained: 

 

𝑓(𝑥) = 𝑠𝑔𝑛(∑ 𝛽𝑖𝑦𝑖𝐾(𝑥, 𝑥𝑖) + 𝑏𝑚
𝑖=1 ) (15) 

 

2.2.  Hyperparameter optimization formulation 

In the design phase of machine learning models, efficiently exploring the hyperparameter space 

using optimization techniques helps identify the HPO for the models. As described in [46], HPO consists of 

four key components: an estimator with its objective function, a search space (or configuration space), a 

search algorithm for discovering tuning parameters, and a scoring function to evaluate the performance of 

different configurations. The primary goal of HPO is to locate an optimal point within the search space. 

 

s∗  = arg min _{s ∈  S} f(s)  (16) 

 

Here, f(s) presents the objective function to be minimized, 𝑠* is an optimal point in search space 𝑆. For the 

SVM model, the search space can include the kernel type, penalty parameter 𝐶, and kernel gamma 

coefficient. Each tuning parameter has a discrete, continuous, or categorical value domain with several 

options 𝑚𝑖 in the corresponding search space 𝑆𝑖. Therefore, the search space can be represented as follows: 

 

𝑆 =

s₁
s₂
⋮

sₙ

=

s₁, ₁
s₂, ₁

⋮
sₙ, ₁

    

s₁, ₂
s₂, ₂

⋮
sₙ, ₂

    

⋯
⋯
⋯
⋯

    

s₁, m₁ 
s₂, m₂ 

⋮
sₙ, mₙ 

  (17) 

 

2.3.  Grid search 

GS is an exhaustive method that explores a predefined range of hyperparameters. It aims to discover 

the optimal combination that delivers the highest performance. This technique generates a grid encompassing 

all feasible hyperparameter values and then assesses each combination through cross-validation to determine 

its efficacy. 

 

2.4.  Random search 

RS provides a more efficient alternative to GS by randomly sampling hyperparameters within a 

specified range. These sampled values are then assessed through cross-validation. This method decreases the 

computational expense of GS while maintaining exploration across a broad scope of hyperparameters. 

 

2.5.  Bayesian optimization 

The principle of Bayesian optimization (BO) is to use a probabilistic model to find the extreme 

values of a function that is complex, expensive to evaluate, or has an unknown form. It is a highly effective 

global optimization method, particularly well-suited for hyperparameter tuning in machine learning. BO 

builds a probabilistic model (typically a Gaussian process) to approximate the objective function. It then uses 

this model to predict and select the next evaluation point to reach the global optimum with the fewest 

possible evaluations. 

 

2.6.  Genetic algorithm 

GA simulates natural evolution to solve optimization problems. The process begins with an initial 

population of the potential solutions, which undergoes evolution influenced by basic operators such as 

natural selection, crossover, and mutation, resulting in a refined set of solutions. Ultimately, the optimal 

solution is found. 

In a GA, each solution is represented by an individual, with chromosomes comprising genes. The 

number and value of genes vary based on the optimization problem being addressed. For the HPO problem of 

the SVM model, each chromosome consists of three genes representing parameters C, gamma, and kernel 

function type. 

GA rely on fitness functions to evaluate individuals within a population. Individuals with higher 

adaptive values are more likely to be selected into new populations. Randomly selected individuals undergo 

crossover and mutation processes. During crossover, a pair of parents create two new offspring, inheriting a 
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portion of the dad's and mom's genes each. These offspring replace their parents in the new population. 

Mutation involves changing the value of a gene at a randomly selected position in an individual. Figure 2 

illustrates the GA flow diagram. 
 
 

 
 

Figure 2. The genetic algorithms flow diagram 
 

 

2.7.  Chemical reaction optimization 

The CRO algorithm is a modern stochastic search technique designed for solving optimization 

problems. It draws inspiration from the behavior of loosely coupled chemical reactions, simulating the 

dynamic transformations that occur within such systems. In a chemical reaction system, substances interact 

with one another and with their environment, each possessing potential energy and KE, while the 

environment itself is modeled as a central energy buffer [40]. As reactions proceed toward equilibrium, 

molecules stabilize at minimal potential energy states. 

CRO mimics this equilibrium-seeking behavior by converting potential energy into KE and 

gradually releasing excess energy into the environment. The algorithm is structured around four fundamental 

reaction operators: on-wall ineffective collision, decomposition, inter-molecular ineffective collision, and 

synthesis. The two ineffective collision types enable local search, while decomposition and synthesis support 

global search. By combining these mechanisms, CRO efficiently balances exploration and exploitation to 

locate the global optimum within a feasible region. CRO incorporates the advantages of both SA and GA. It 

upholds energy conservation principles similar to the Metropolis algorithm used in SA, and its decomposition 

and synthesis operations resemble the crossover and mutation mechanisms in GA. 

In CRO, each molecule is defined by a molecular structure (ω), which represents a candidate 

solution, along with its associated potential energy (evaluated via the fitness function) and KE (indicating the 

molecule’s capacity to withstand energy increases). The algorithm simulates its four core reactions using 

three primary operators: neighbor, decomposition, and synthesis. The neighbor operator is applied during 

collision events to produce a new solution by randomly modifying elements of an existing one, thus enabling 

localized search for improvement. Compared to traditional GAs based on mutation and crossover operators, 

which may rapidly converge to a good set of individuals in the early stages, this leads to a loss of diversity in 

the population, prone to getting stuck at a local extreme point in high-dimensional spaces, such as SVM 

hyperparameter tuning. CRO provides a more adaptive and energy-aware search process. It dynamically 

adjusts the search path based on energy levels, which can help escape local optima more efficiently. 

Similarly, while SA performs a probability-reducing search process through temperature cooling, CRO 

combines this annealing-like behavior with molecular interactions that promote diversity and convergence. 

This hybrid nature allows CRO to balance exploration and exploitation more effectively, which is especially 
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suitable for complex optimization situations such as those encountered during SVM parameter selection. 

Algorithm 1 depicts the pseudocode of this operator. 
 

Algorithm 1: Neighbor (ω) 
Input: a molecular structure ω 

Output: a neighbor of the ω is ω′ 

1. Clone ω to ω′ 

2. Create a random integer i that is less than the total elements in ω. 

3. IF ω′(i) is discrete THEN 

4.  ω′(i) = sᵢ, sᵢ ∈ Sᵢ 
5. ELSE IF ω′(i) is continuous THEN 

6.  ω′(i) = ω(i) + ρᵢ 

7. ENDIF 

8. Return ω′ 

 

The decomposition operator is used in the decomposition reaction. This operator creates two new 

solutions ω′₁, ω′₂ from the given solution ω. This operator helps to escape local minima by half the total 

change. The pseudocode of this operator is demonstrated by Algorithm 2. 
 

Algorithm 2: Decomposition (ω) 
Input: a molecular structure ω 

Output: two new molecular structure ω′₁, ω′₂ 

1. Copy ω to ω′₁ 
2. Random change 50% of the element of ω′₁ by replacing ω′₁(i) with sᵢ ∈ Sᵢ for ω′₁(i) is a 

discrete value or update ω′₁(i) = ω′₁(i) + ρ for ω′₁(i) is a continuous value. 

3. Repeat steps 1 and 2 for the ω′₂ in a similar manner. 
4. Return ω′₁, ω′₂ 
 

The synthesis operator simulates the synthesis reaction. This operator generates a new solution, ω′, 

by combining the two given molecules, ω₁ and ω₂. The procedure entails randomly selecting components 

from two molecules with equal probability to form a new molecule. The pseudocode outlining this operation 

is presented in Algorithm 3. 
 

Algorithm 3: Synthesis (ω₁, ω₂) 
Input: Two molecules ω₁ and ω₂ 
Output: A new molecule ω′ 

1. FOR i = 1 TO n DO 

2.  Generate a random number r in a range of 0 and 1. 

3.  IF r > 0.5 THEN 

4.   ω′(i) = ω₁(i) 
5.  ELSE 

6.   ω′(i) = ω₂(i) 
7.  ENDIF 

8. ENDFOR 

9. Return ω′ 

 

The pseudocode for the CRO is presented in Algorithm 4. The initial parameters of the algorithm 

include the number of molecules (solutions), where Mole_Coll determines whether a mono-molecular 

collision or an inter-molecular collision occurs. Additionally, 'buffer' represents the initial energy of the 

environment, while 'InitialKE' denotes the initial KE of each molecule. δ and θ are parameters that control the 

decomposition and synthesis reactions, respectively. 
 

Algorithm 4: CRO 
1. Initial parameters of the CRO algorithm. 

2. Create PopSize of molecules. 

3. DO 

4. Create a random number k between 0 and 1. 

5. IF k>MoleColl THEN 

6. Select randomly one molecule from the population 

7. IF numHit – minHit > 𝛿 THEN 
8. Decomposition is performed 

9. ELSE 

10. On-wall ineffective collision has taken place. 
11. ENDIF 
12. ELSE  
13. Select randomly two or more molecules from the population. 

14. IF KE < 𝜃 THEN 
15. Synthesis operator is performed 
16. ELSE 
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17. Inter-molecular ineffective collision. 
18. ENDIF 
19. IF a new min solution is found THEN 
20. Update the best solution 
21. ENDIF 
22.  WHILE the stop condition is not met  
23. RETURN the best solution 

 

2.8.  The proposed method 

The proposed method is demonstrated in Figure 3. Firstly, the search space and objective function 

are defined. Next, the search algorithms presented above will be applied sequentially to find the C, gamma, 

and kernel types of the SVM model. We apply a 5-fold CV when finding optimal hyperparameters. These 

parameters are encoded as genes of chromosomes in the GA algorithm and molecules in the CRO algorithm. 

After finding optimal hyperparameters, the dataset will be divided into a training dataset and a testing dataset. 

We train the optimal SVM model with a training set and test by test set. 
 

 

 
 

Figure 3. The principle of the proposal method 
 

 

3. RESULTS AND DISCUSSION 

To compare the performance of four algorithms presented above. Four benchmark datasets, 

including iris plants, handwritten digits, wine, breast cancer Wisconsin, and CCFD data sets, are used for an 

experiment. The CCFD dataset contains transactions that occurred over two days in September 2013, 

including 492 fraudulent cases out of a total of 284,807 transactions. Unfortunately, due to hardware 

limitations, the authors restricted their experiment to using only 10% of the original dataset while still 

maintaining the proportion of fraudulent transactions at 0.172% of the total. The features of each dataset are 

summarized in Table 1. 
 

 

Table 1. Summary of the experimented dataset 
Dataset Number of samples Number of features Number of classes Number of samples per class 

Iris plants 150 4 3 50 

Handwritten digits 1797 64 10 Nearly 180 

Wine 178 13 3 59, 71, 48  
Breast cancer Wisconsin 569 30 2 212, 357 

Credit card fraud detection 28480 30 2 49 (frauds), 28431 

 

 

The search space and configuration for each algorithm are summarized in Table 2. The range of 

each hyperparameter is chosen based on practical usage. If the range is too small or too large, the SVM 

model may become overfitted or underfitted, resulting in poor performance during testing and deployment. 

Several scores are used to evaluate each method's performance. The accuracy, precision, recall, and F1-score 

are defined in the following: 
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𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
 (18) 

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (19) 

 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (20) 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2×𝑇𝑃

2×𝑇𝑃+𝐹𝑃+𝐹𝑁
 (21) 

 

where: TP, or true positive, represents the number of correctly classified instances in the positive class. TN, 

or true negative, presents the number of correctly classified instances in the negative class. FP, or false 

positive, represents the number of samples incorrectly classified as positive when they belong to the negative 

class. FN, or false negative, represents the number of instances incorrectly classified as negative when they 

belong to the positive class. 
 

 

Table 2. Summary of the search space and algorithm’s configuration 
Algorithm C Gamma Kernel type Configuration 

GS [0.1, 1, 2, 3, 4, 5, 
6, 7, 8, 9, 10] 

[0.0001, 0.0002, 0.01, 
0.1, 0.2, 0.3, 0.4, 0.5, 

0.6, 0.7, 0.8, 0.9, 1.0] 

[sigmoid, linear, rbf, poly] 5–fold CV 

RS Continuous range 

from 0.1 to 100 

Continuous range from 

0.0001 to 1.0 

[sigmoid, linear, rbf, poly] Number iteration: 50, seed is default, 

5-fold CV 

BO Continuous range 
from 0.1 to 100 

Continuous range from 
0.0001 to 1.0 

[sigmoid, linear, rbf, poly] Number iteration: 50, seed is 42, 5-
fold CV 

GA Continuous range 

from 0.1 to 100 

Continuous range from 

0.0001 to 1.0 

[sigmoid, linear, rbf, poly] Number iteration: 50, pop size: 10, 

crossover probability: 0.5, mutation 

probability: 0.2, 5-fold CV 

CRO Continuous range 
from 0.1 to 100 

Continuous range from 
0.0001 to 1.0 

[sigmoid, linear, rbf, poly] Number iteration: 50, pop size: 10, 5-
fold CV 

 

 

The C, gamma, and kernel types are encoded as genes in the chromosome. The fitness function is 

determined by the mean accuracy prediction of the 5-fold cross-validation training process. The mutation 

operator is performed as follows: it randomly replaces one chromosome gene with a random value within its 

domain. The parameters of the GA are set as follows: the number of individuals is 10, the crossover 

probability is 0.5, the mutation probability is 0.2, and the number of generations is 50. 

For using the CRO algorithm, the parameters C, gamma, and kernel types are encoded within the 

molecular structure. The KE of each molecule is determined by one minus the mean accuracy prediction of 

the 5-fold cross-validation training process. The initial parameters of the CRO algorithm are chosen 

according to practical suggestions in [41]: δ =300, θ =500, initial KE is 100, KE lost rate is 0.1, mole 

collision is 0.1, number of molecules is 10, and number of generations is 50. 

The experiment is implemented by using the Python programming language running on  

Intel Core i5 6300U, 3 GHz, DDR4 16 GHz. The GS, BO, and RS algorithms are supported by a scikit-learn 

framework. The GA is supported by the distributed evolutionary algorithms in Python (DEAP) framework. 

The CRO algorithm is implemented by us. The HPO and score metrics are presented in Table 3. 

After obtaining the optimal hyperparameters, the SVM model is trained on 80% of the samples from 

each dataset. It is then tested on the remaining 20%. Figures 4 to 8 illustrate a heat map of the confusion, and 

performance metrics generated by the SVM model for classifying handwritten digits and wine data sets, 

providing an example. 

The experiment results demonstrate that the CRO method performs best over five benchmark 

datasets. This method not only increases the mean classification accuracy during the training phase using  

5-fold cross-validation, but also achieves better accuracy in predictions during the testing phase, and 

decreases computation time. This is achieved because the CRO algorithm inherits the advantages of both GA 

and SA. This hybrid nature allows CRO to balance exploration and exploitation more effectively. The 

experiment results also reveal that when the variance of features is small (3.896 for the Iris dataset, and 

36.201 for the handwritten dataset), the SVM with default hyperparameters (C =1, kernel type is a radial 

basic function and gamma is a scale) archieves reasonable accuracy classification of 96.67% and 96.33% for 

the Iris and Handwritten Digits dataset, respectively. In this case, the fine-tuning SVM model improves the 

performance by about 2 percent. On the contrary, when the variance of features is extensive. Specifically, the 

variance of features is 46546.424 and 52119.705 for the wine and breast cancer data sets, respectively. The 

SVM model with default parameters gives low prediction results, especially with the wine data set, the 



Int J Artif Intell  ISSN: 2252-8938  

 

Comparison among search algorithms for hyperparameter of support vector … (Nguyen Ba Nghien) 

3811 

prediction accuracy is only 66.34 percent. In this case, the tuned model gets a much higher prediction 

accuracy, improving by about 30%. Furthermore, on highly imbalanced datasets such as credit card fraud, the 

default SVM model can even yield 0% in precision, recall, and F1-score metrics, whereas the SVM model 

with hyperparameters optimized by the CRO algorithm achieves the best performance across all evaluation 

metrics. Therefore, the CRO algorithm is well-suited for tuning SVM models, especially when applied to 

complex and highly imbalanced datasets. 

 

 

Table 3. Summary of the HPO and score matrix for each method 
Dataset Method C Gamma Kernel type Mean 

accuracy 

(%) 

Mean 
precision 

(%) 

Mean 
recall 

(%) 

Mean 
F1-score 

(%) 

Time 
spent 

(s) 

Iris plants Default 

hp.parameters 

Grid search 

1.00 

1.00 

- 

0.70 

rbf 

linear 

96.67 

98.00 

96.85 

98.18 

96.67 

98.00 

96.66 

97.99 

0.015 

14 

Random search 0.46 0.77 linear 98.00 98.00 98.18 97.99 3 

Bayesian opt. 0.22 0.68 linear 97.33 96.29 96.67 96.28 7 

Genetic algorithm 0.57 0.99 linear 98.67 98.79 98.67 98.66 4 

CRO algorithm 0.52 1.00 linear 98.67 98.79 98.67 98.66 1 

Handwritten 
digits 

Default 
hp.parameters 

Grid search 

1.00 
7.00 

- 
0.0002 

rbf 
rbf 

96.33 
96.94 

96.62 
97.13 

96.33 
96.93 

96.30 
96.91 

0.278 
269 

Random search 8.74 0.0002 rbf 96.88 97.06 96.87 96.86 119 

Bayesian opt. 37.51 0.95 poly 95.21 96.86 96.83 96.88 21 

Genetic algorithm 9.56 0.0003 rbf 97.27 97.43 97.27 97.26 120 
CRO algorithm 10.0 0.0004 rbf 97.38 97.55 97.38 97.38 117 

Wine Default 

hp.parameters 

Grid search 

1.00 

0.10 

- 

0.001 

rbf 

linear 

66.34 

96.11 

60.13 

96.44 

62.87 

96.31 

60.35 

96.20 

0.015 

120 

Random search 2.12 0.32 linear 96.67 96.99 97.06 96.72 16 

Bayesian opt. 5.90 0.86 poly 96.67 93.75 93.75 93.75 21 

Genetic algorithm 1.47 0.24 linear 96.67 96.99 97.06 96.72 120 

CRO algorithm 2.03 0.006 linear 96.67 96.99 97.06 96.72 5 

Breast 
cancer 

Wisconsin 

Default 
hp.parameters 

Grid search 

1.00 
9.00 

- 
0.90 

rbf 
linear 

91.22 
95.43 

92.66 
95.36 

88.92 
94.94 

90.12 
95.09 

0.022 
994 

Random search 9.41 0.91 linear 95.43 96.45 96.06 96.23 504 

Bayesian opt. 4.17 0.13 linear 95.36 92.86 94.43 93,60 674 

Genetic algorithm 9.12 0.95 linear 95.25 95.11 94.80 94.90 6660 
CRO algorithm 9.01 0.91 linear 95.43 95.36 94.94 95.09 203 

Credit card 

fraud 

detection 

Default 

hp.parameters 

1 - rbf 99.73 0.00 0.00 0.00 20 

Grid search 0.1 0.0001 linear 99.80 66.67 40.00 50.00 9315 

Random search 83.82 4.50 linear 99.91 60.00 50.00 54.54 18927 
Bayesian opt. 30.09 0.032 linear 99.91 69.23 90.00 78.26 1174 

Genetic algorithm 21.52 0.165 linear 99.92 75.00 90.00 81.00 20713 

CRO algorithm 8.79 0.1308 linear 99.94 76.92 100.00 86.95 960 

 

 

  
  

Figure 4. Performance of the GS algorithm Figure 5. Performance of the RS algorithm 
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Figure 6. Performance of the GA Figure 7. Performance of the CRO algorithm 

 

 

 
 

Figure 8. Compare the performance metrics and computation times for five algorithms 

 

 

4. CONCLUSION 

This manuscript presents five algorithms for hyperparameters of the SVM model optimization. The 

GS algorithm utilizes exhaustive techniques, combining all possible parameters to find the optimal set. 

Consequently, this algorithm is suitable only for cases where the parameter's value domain is discrete and 

contains few values. When the parameter's value domain is extensive, the search time can become 

significantly lengthy. The RS algorithm randomly selects combinations of hyperparameters from within the 

defined search space. It doesn't follow any specific pattern or order; instead, it randomly samples 

combinations. The search space can be discrete and continuous. Therefore, the RS algorithm can be more 

efficient than the GS algorithm because it doesn't exhaustively search through all possible combinations of 

hyperparameters. Instead, it explores a randomly selected subset of the search space. The GA mimics natural 

evolution using three operators: natural selection, crossover, and mutation. Each potential solution is 

represented as a set of parameters, often called a chromosome or an individual. After several generations, the 

best individual with the highest fitness value becomes the solution to an optimization problem. The CRO 

algorithm is a metaheuristic optimization algorithm inspired by the principles of chemical reactions and the 

behavior of molecules in a chemical system. It is based on four basic reactions: on-wall ineffective collision, 

decomposition, inter-molecular ineffective collision, and synthesis. In CRO, each potential solution is 

represented as a set of parameters, often called a molecule. After a series of chemical reactions, the best 

molecule with the smallest KE is found, representing the solution to an optimization problem. Five 
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algorithms are applied for hyperparameters of the SVM model optimization. The study has discovered that 

the dataset's feature variance is large, and using the default model, SVM will achieve low performance for 

prediction. Furthermore, the results from this study suggest that the CRO algorithm provides the best 

classification accuracy in the training and testing phases for all datasets in the experiment and decreases 

computational time significantly. This achievement is obtained because the CRO combines both advantages 

of the GA algorithm and SA and is energy-aware of the chemical reaction process. This research can also be 

applied to optimize CNN hyperparameters, such as the filter size in each convolutional layer and the number 

of neurons in fully connected layers, aiming to simplify the network architecture while maintaining high 

prediction accuracy. In the future, the authors plan to experiment with more complex datasets to extract 

valuable insights, test CRO with more complex models like deep learning algorithms and apply the CRO to 

other types of machine learning tasks such as regression or unsupervised learning. 
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