IAES International Journal of Artificial Intelligence (13-Al)
Vol. 14, No. 5, October 2025, pp. 3542~3553
ISSN: 2252-8938, DOI: 10.11591/ijai.v14.i5.pp3542-3553 O 3542

Temporal context of lightweight network model for detecting
boats approaching the tsunami early warning system

Wayan Wira Yogantara?, Suprijanto?, Anak Agung Ngurah Ananda Kusuma?*, Yuki Istianto®
!Master's Program of Instrumentation and Control, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung, Indonesia
2Instrumentation, Control and Automation Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung, Indonesia
®Research Center for Electronics, National Research and Innovation Agency, Jakarta, Indonesia
“Research Center for Telecommunications, National Research and Innovation Agency, Jakarta, Indonesia
SResearch Center for Artificial Intelligence and Cyber Security, National Research and Innovation Agency, Jakarta, Indonesia

Article Info

ABSTRACT

Article history:

Received May 22, 2024
Revised Jul 4, 2025
Accepted Aug 6, 2025

Keywords:

Lightweight WaSR-T

Maritime computer vision
MobileNetV3

Network marine object detection
Tsunami early warning system

The tsunami early warning system (TEWS) is a device that detects potential
tsunamis. However, a boat that approaches TEWS is a source of
communication disturbance. A convolutional neural network (CNN), as part
of intelligent computer vision, is one solution for detecting boats and
providing a warning to move away from the TEWS area. Water
segmentation and refinement-temporal (WaSR-T), as the current advanced
CNN network, exhibits impressive performance in detecting object obstacles
in the marine domain, although it requires a powerful computational device.
In the paper, we propose a modification of WaSR-T, replacing the most
computationally intensive stages with a lightweight version called
lightweight WaSR-T. On the proposed lightweight WaSR-T, the previous
encoder of WaSR-T was replaced with MobileNetV3, and some feature
layer maps were reduced as input to the decoder. For training and validating
the lightweight WaSR-T, the image dataset representing the open sea and
our extended dataset from Indonesia's ocean region were used. Based on the
quantitative results and evaluation of the computational load, the sensitivity
to detect a boat for WaSR-T and lightweight WaSR-T is 95.71% and
90.00%, respectively. The lightweight WaSR-T required less memory at
32.57%, resulting in a 0.0761% reduction in total processing time compared
to the original WaSR-T. Therefore, our proposed lightweight WaSR-T is
promising for use as the central part of an intelligent maritime computer
vision system in TEWS.
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1. INTRODUCTION

A tsunami early warning system (TEWS) is crucial for minimizing the potential damage and loss of
life caused by natural disasters. TEWS based on tsunami buoys are deployed in the deep ocean close to a
possible location of sea earthquakes and equipped with pressure sensors to detect changes in water level [1].
When a tsunami passes over the buoy, it registers the pressure change and sends this data to monitoring
stations, which can then assess the potential threat from the tsunami. The quality of data transfer using
acoustic link communication depends on the distance range between an ocean bottom unit (OBU) and a
surface buoy, as well as noise interference due to undesired acoustic waves. The presence of unauthorized
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boats in the installation area of the tsunami buoy system is a source of disturbance that must be avoided.
A device that detects unauthorized boats approaching the surface buoy is required to prevent disruption to the
function of this tsunami detection system. The device has not yet been installed on the existing TEWS system
in the Indonesian open sea.

Various sensors, such as marine radar and optical sensor-based cameras, are commonly used for
object detection on the sea surface [2]. A device with an optical camera is gaining prominence as a leading
object detection method when supported by proper computer vision methods [3]-[5]. Previous classical
computer vision methods for object detection rely on simple clustering of features related to specific groups
of objects, which are not expressive enough for accurate detection in object detection environments [6].
A current intelligent computer vision method for object detection is based on classifying every pixel in an
image using a convolutional neural network (CNN) to provide valuable information for scene understanding
and object detection [7]-[9]. The state-of-the-art (SOTA) CNN network for intelligent computer vision object
detection has become an established approach in autonomous ground vehicles [10]-[14]. However,
the existing SOTA CNN network, primarily developed in terrestrial ground scenes, is inadequate in the
maritime domain.

The water segmentation and refinement (WaSR) [15]-[17] is one of the SOTA CNN networks that
has good performance for unmanned surface vehicles (USVs). The WaSR network consists of a contracting
path (encoder) and an expansive path (decoder) comprising several information fusion and feature scaling
blocks. The WaSR decoder was designed to fuse inertial measurement unit (IMU) and visual image
information to increase the accuracy of positive object detections. The architecture upgrade of the WaSR
network was proposed to extract the temporal context from a sequence of frames to differentiate objects from
reflections, and it is called WaSR-T [18]. WaSR-T has been reported to reduce the number of false positive
(FP) detections compared with WaSR.

We required a SOTA CNN network to detect unauthorized boats approaching tsunami buoys as part
of an intelligent computer vision system. WaSR-T is one of the best-performing maritime obstacles for USVs
[17]. Therefore, WaSR-T is one of the candidates for the unauthorized ship detection system. While
achieving impressive object detection results for USVs, the WaSR-T network requires a powerful
computational device [6].

In this work, we proposed a modification of WaSR-T with replacements for the most
computationally intensive stages, called the lightweight WaSR-T. The objective of lightweight WaSR-T is to
classify and label each pixel of a recorded image as an unauthorized boat with a background sea or area
interface between the sea and the sky that approaches TEWS with inexpensive computational resources and
good performance. For the training and validation of the lightweight WaSR-T, a unique dataset was utilized
that accurately represents the open sea. This dataset was selected from the open dataset maritime semantic
segmentation training [18], [19], and from datasets available on an open website. We also created an
extensive dataset from the Indonesian TEWS area, which is installed in the open sea. Then, the ability of
WaSR-T and lightweight WaSR-T to detect an unauthorized boat using these datasets was performed.

This paper is structured as follows: section 2 introduces the material and methods, including the
concept of unauthorized boat detection for TEWS, the datasets used for developing the SOTA CNN network,
and a review of the existing architecture, WaSR-T, and lightweight WaSR-T. Section 3 describes the details
of the experiment procedures. The results and discussion are described in section 4. Finally, in section 5, we
draw our conclusions.

2. METHOD
2.1. The concept of unauthorized boat detection for the tsunami buoy system

The typical tsunami buoy system consists of two main parts: an OBU that measures changes in sea
level height at the seabed and a surface buoy that transmits measurement data to a tsunami data center as
shown in Figure 1. The OBU and surface buoy exchange information using acoustic communication modems
that are very susceptible to noise interference, for example, from the ship's propellers. In some cases, a
surface buoy is used as a boat mooring, which can create problems in acoustic link communication due to the
shifting position of the buoy system. It may also impact the communication channel between the OBU and
the surface buoy [20]. An unauthorized boat approaching the TEWS installation area is a source of
disturbance. Boats or other objects approaching the installation area must be warned to leave immediately
and notify the data center office of the resulting disturbances. An intelligent computer vision system is one of
the solutions that may be installed on the highest surface of the boys as shown in Figure 1.

The SOTA CNN network, as the central part of an intelligent computer vision system, must be
developed based on the concept of semantic segmentation [21]-[23]. Semantic segmentation is used to
classify and label each pixel of a recorded image as either an unauthorized boat, a background water
surface, or an area interface between the sea and sky. This SOTA CNN network must be able to detect
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static and dynamic unauthorized boats of various shapes and sizes, including those not seen during
training. Additionally, the SOTA CNN network must be highly adaptable to challenging and dynamic
water features, allowing TEWS to operate effectively. Due to environments and conditions, an intelligent
computer vision and SOTA CNN network must work for real-world small-sized energy-constrained
TEWS. Therefore, a lightweight network that can be run on a device with limited memory and a small
architectural device is required.
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Figure 1. Configuration of the Indonesian TEWS

2.2. Open sea image datasets for the development of SOTA CNN network

Detecting objects on maritime open seas with CNNs presents several challenges, like the
complexity of objects, environmental conditions, data availability, class imbalance, anomaly detection,
small object detection, and model robustness. Large datasets relevant to the open sea domain are required
to support the development of the SOTA CNN network as the central part of an intelligent computer vision
system for TEWS. We cannot rely solely on currently available maritime datasets, such as the maritime
semantic segmentation training dataset [19], because most existing images show sea conditions in calm
areas such as bays, harbors, rivers, or estuary areas. In contrast, the available dataset is relatively limited
for open sea conditions.

The proposed CNN network must be trained with an image dataset relevant to open-sea
environments. Therefore, in the study, open-sea domain data sets were recorded directly from the location in
the open sea of the Indonesian Ocean, where TEWS was currently installed, to obtain actual sea conditions.
Additional datasets of marine domains relevant to conditions on the open sea were also collected from an
open website.

2.2.1. Open datasets

A dataset containing image frames typical of conditions on the open sea is required to develop the
SOTA-CNN algorithm for unauthorized boat detection on TEWS. Openly accessible image training datasets
for the marine domain have been available for tailoring to develop obstacle detection methods in small-sized,
USVs. For example, MaSTr1325 is the dataset that contains 1325 diverse images captured over two years
with real USV, covering a range of realistic conditions encountered in a coastal surveillance task [19]. The
extended dataset of MaSTr1325 added 153 images (including their preceding frames) and used the codename
MaSTr1478 for this additional dataset. MaSTr1478 training images represent challenging objects due to
mirroring, reflections, and sun glitters [18]. The entire dataset was explicitly created for training the USV;
Lately, the primary purpose of this USV is to survey vessels in a coastal domain, so that sea conditions, such
as those in bays, river estuaries, and harbors, dominate the main frame images.

Additional datasets of marine domains relevant to conditions in the open sea were also collected
from an open-access website [24]. We selected 150 images that closely resemble the typical conditions and
objects captured by the camera on the open sea. The selected images represent various shapes and sizes of
boats captured within the specific field of view of the camera, under different weather conditions. Examples
of selecting open-sea frame images from the MaSTr1325 and MaSTr1478 datasets, as well as from the open
website, are shown in Figure 2.
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Figure 2. An example of selecting open sea frame images from the MaSTr1325, MaSTr1478 datasets,
and the open website

2.2.2. Recording image datasets from the open sea in Indonesian territory

TEWS primarily operates in the open sea of Indonesian territory, which is relatively far from the
coast. New datasets were recorded from locations close to the operational area of TEWS. The Indonesian
TEWS are primarily operated in the open sea of the Indian Ocean, in the southern region of Java Island, and
on the west coast of Sumatra Island. The five existing TEWS locations are illustrated in Figure 3(a) and the
tsunami buoy deployment process at sea is shown in Figure 3(b).

The new dataset was recorded from the camera installed on the Baruna Jaya research vessel, which is
responsible for recovering and maintaining the TEWS system. We systematically recorded images representing
various conditions on the open sea near the TEWS system, including morning, afternoon with peak sunlight,
and evening as the sun sets. An example of recorded images used for training and testing our proposed SOTA
CNN network is shown in Figure 4. These images represent various shapes and sizes of unauthorized boats
captured in the specific field of view of the camera installed on the Baruna Jaya research vessel.

@ (b)

Figure 3. The five existing TEWS locations are marked with (a) BKG, SUN, CXP, MLG, and DPS, and
(b) an example of the tsunami boys as part of TEWS on location SUN

—_ *

Figure 4. Example of images used for training and testing our proposed network from the camera installed
on the Baruna Jaya research vessel

Temporal context of lightweight network model for detecting boats approaching ... (Wayan Wira Yogantara)



3546 O3 ISSN: 2252-8938

2.3. SOTA CNN network for boat detection in the open sea

Modern CNN architectures at the forefront of maritime object detection typically employ semantic
segmentation methods. These approaches process visual input at the pixel level, categorizing each pixel into
distinct classes—commonly sea, sky, or obstructive elements such as vessels, buoys, or floating debris [6].
This granular classification allows for accurate identification and localization of objects within the complex
and often unpredictable maritime environment.

To perform effectively in real-world conditions, these advanced algorithms must be highly
adaptable to the dynamic and visually challenging nature of ocean surfaces. Variations in lighting, reflections
from sunlight, shifting wave patterns, and atmospheric disturbances can drastically alter the visual
characteristics of the sea and sky, complicating object recognition. Therefore, the models must be resilient to
such fluctuations and capable of generalizing across diverse scenarios not encountered during training.

In addition, detection systems must be proficient in recognizing a wide array of obstructive
or hazardous objects, which may differ greatly in form, scale, texture, and orientation. This includes
both familiar maritime hazards and novel or previously unseen items absent from the training data.
A comprehensive and diverse dataset that captures extreme and varied sea conditions is essential to
support this capability.

Achieving robust generalization demands advanced feature extraction and representation learning
within CNN frameworks, often enhanced through techniques such as data augmentation and transfer
learning. The overarching objective is to ensure consistent and accurate detection performance across a
broad spectrum of operational environments. Thereby contributing to safer navigation and more effective
maritime surveillance.

2.3.1. Architecture analysis WaSR-T and lightweight WaSR-T

The WaSR [15]-[17] is one of the SOTA CNN networks that perform well for object detection in the
maritime domain. The WaSR decoder was designed to fuse IMU and visual image information to increase the
accuracy of positive object detections. However, WaSR still needs to improve its performance in cases where a
single image is quite challenging to distinguish the reflective properties of the water surface and objects that
often occur on the open sea. The modified architecture of the WaSR network, called WaSR-T, is a
modification of the encoder to accommodate multiple sequence image frames as input, which has been
proposed to extract spatio-temporal texture and cope with reflections [18]. The WaSR-T network architecture
is shown in Figure 5(a). The encoder backbone of WaSR-T utilizes a ResNet-101 backbone featuring atrous
convolutions. During network retraining, all layers are expanded, allowing the residual parts of the network
to delve deeper into the feature space of the input image. In the context of an encoder for WaSR-T,
ResNet-101 comprises four residual convolutional blocks (Res2, Res3, Res4, and Res5). This architecture of
WaSR-T has been utilized to encode the varied appearance of open sea scenes, including elements like boats,
water, and sky, and to classify each region within the target image frame XeR”(3xHxW). To improve the
prediction accuracy, the role of ResNet-101 has been extended to encode discriminative temporal information
about local feature appearance change of the region of the target image over T preceding context frames
capped by M elements of double-struck cap R, MERNTx3xHxW) as shown in Figure 5(a).

The image input (X) and context frame (M) are first encoded with a Resnet-101 encoder network
that produces per-frame feature maps frame X_FeRMNNxHxW) and M_FeRMNNxHxW), where N is the
number of channels of feature maps. The temporal context module (TCM) extracts temporal information
from the embeddings of the context and target frames. To maintain the structure and quantity of input
channels to the decoder, TCM initially decreases the dimensionality of per-frame feature maps XF and MF
into N/2-dimensional per-frame representations. Finally, the output from TCM is fed to the first fusion block
called the attention refinement module (ARM 1 and ARM 2 in Figure 5(a)). ARM 1 is used to adjust the
weights of input feature channels based on their content within the channels. The individual weights for each
channel are determined by taking the average of the input features across spatial dimensions. This process
yields a 1x1 feature vector, which then undergoes a 1x1 convolution and passes through a sigmoid activation
function. The second fusion block is denoted as a feature fusion module (FFM). It combines features from
various network branches by concatenating them, followed by a 3x3 convolution. The third major block is
referred to as atrous spatial pyramid pooling (ASPP) and SoftMax. ASPP simultaneously utilizes
convolutions with varying dilation rates and combines the generated representations to effectively capture the
object and image context at various scales as shown in Figure 5(a).

One of the potential problems in using WaSR-T to detect unauthorized boats approaching TEWS is
its requirement for a powerful computational machine. The encoder of WaSR-T is primarily responsible for
memory consumption due to its utilization of the ResNet-101 as the backbone. One strategy to address the
issue is to replace the encoder with a lightweight backbone that can operate on low-power devices.
MobileNets is one of a class of lightweight architectures currently used in various applications [24]-[26].
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MobileNet is preferred as an encoder backbone for image segmentation networks for various applications
[27]-[29]. Compared with ResNet-101, MobileNet has fewer parameters and requires less memory and
storage, which can be advantageous, especially in deployment scenarios. However, limited research has been
reported on the applications of MobileNet in the marine domain. The WaSR-T with an encoder using
MobileNet is referred to as the lightweight WaSR-T, with its network architecture illustrated in Figure 5(b).

MobileNets [24], [30], [31] factorize convolutions into deep and precise convolutions, proposing
hard-swish activation functions, squeeze-and-excite blocks [32], and future neural architecture search
(NAS) to find the best architecture for mobile CPUs. MobileNets factorizes convolutions into depthwise
convolutions and proposes a hard swish activation function (h-swish). The h-swish nonlinearity is
employed to minimize the number of training parameters and reduce the model complexity and size.
Unlike the standard use of convolution in ResNet, depthwise separable convolution splits the computation
into two steps: a depthwise convolution applies a single convolutional filter to each input channel, and
pointwise convolution is used to create a linear combination of the output of the depthwise convolution.
The depthwise convolutional kernel is a learnable parameter applied to each input channel separately,
increasing model efficiency and reducing computation costs in the MobileNets network. It is also shared
across all input channels.

Furthermore, to search for the best kernel size in the depthwise convolution, NAS was employed to
find the best architectures to fulfill the low-resourced hardware platforms in terms of size, performance, and
latency [6], [30], [31]. On the lightweight WaSR-T, the encoder begins with a stem block that processes the
input image to extract fundamental features. The shape of the resulting feature map is influenced by
downsampling operations, typically involving stride-2 convolutions. For an input image of 512x384x3
(widthxheightxchannels), this downsampling would yield a feature map size of 256x192x3 at the output
stage 1. We utilize the skip connection from the first and second residual blocks of MobileNetV3, similar to
the WaSR-T architecture, where the skip connection is located at stages 2 and 3. Unlike the original
WaSR-T, the latent feature dimension of the FFM was reduced from 1024 to 128, and the FFM output was
96x128 to reduce the computational load in the decoder parts.
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Figure 5. Two different WaSR-T network architecture (a) WaSR-T and (b) lightweight WaSR-T network
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3. EXPERIMENT PROCEDURES
3.1. Image dataset for training and evaluation

The datasets used for training the SOTA CNN network were selected from 126 images (including
their preceding frames) chosen from MaSTr1325, MaSTr1478, and supplemented with 164 images (including
their preceding frames) from the extended image dataset of the open sea in Indonesia's territory. The
annotation image for training the proposed SOTA CNN network was available from the datasets of
MaSTr1325 and MaSTr1478. Therefore, the extended image datasets from the open website and the extended
image dataset were manually annotated per pixel for three semantic components: sea, sky, and boat. The
labeling for the extended dataset is conducted using over 164 selected images for the training process of the
lightweight WaSR-T network. The annotation process was carried out using the LabelMe tools [33]. An
example of an annotation process using LabelMe is shown in Figure 6. Labels in ground-truth annotation
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masks correspond to the following values, i.e., boat, sea, and sky are given labels 1 (Figure 6(a)), Figure 6 (b)
gives 2 (value two), and Figure 6(c) gives 3 (value three), successively.

(A)

(@) (c)

Figure 6. Example of an annotation process using LabelMe: (a) the process of a manual annotation of image,
(b) manually annotated per pixel for three semantic components: sea, sky, and boat,
and (c) image masking that represents the label class

3.2. Training setup lightweight WaSR-T

The proposed lightweight WaSR-T was trained using 290 image datasets, including their preceding
frames with T=3, as well as the corresponding annotation images. The size of input images for training was
512x384x3. The dataset was divided into mini-batches of 10 images to improve the efficiency of the training
process. The adaptive moment estimation (Adam) optimizer utilizes a square gradient to adapt learning rates.
Hyperparameter training was conducted through various configurations to achieve the best possible results,
which are summarized in Table 1.

Table 1. The hyperparameter training of the Adam-optimizer

Parameter Value
Learning rate 107°6
Learning rate decay 0.9
Weights decay 10706
Epoch 500
Batch size 6
Momentum value 0.9
Patience 50

The training of the lightweight WaSR-T was performed using a facility in the laboratory of
high-performance computing at the Indonesian National Research and Innovation Agency, equipped with an
NVIDIA DGX1. The optimized network parameters of lightweight WaSR-T, based on the criterion of
minimum train/loss value, are 0.0009. A val/accuracy of 0.995 can be achieved using the hyperparameter
training of Adam-optimizer with 290 epochs. After the training process, the lightweight WaSR-T was tested
to detect unauthorized boats with various shapes and sizes that may have been uncovered in training datasets.
The testing datasets consist of 140 images selected from an open website and datasets recorded from the
Baruna Jaya research vessel in Indonesia's territory, in addition to the datasets used for data training. As a
reference for evaluating detection accuracy, the pre-training original WaSR-T models are publicly available
on GitHub [34]. The pre-trained original WaSR-T was also assessed to detect boats using similar datasets to
those used for lightweight WaSR-T.

As mentioned in the annotation process for the image dataset, the network's target output consists of
three class labels: boat, sea, and sky. The objective of the proposed network for detecting a boat approaching
the TEWS is to identify the area of pixels labeled by the output network that corresponds to a class label of
the boat's ground truth, with the background image serving as the label class: sea or the interface between sea
and sky. The performance of lightweight WaSR-T in comparison with the original WaSR-T was evaluated
using visual quality assessments [35], [36] with criteria as follows:

— If the output of the network produces a class label of a boat that perfectly overlaps with the location and
an area of the pixels label of a boat is aligned to the boat ground truth, it is a subjective assessment as a
true positive (TP).

— If the output of the network produces a class label of a boat with insufficient overlap with the location,
and the area of the pixels labeled as a boat is slightly spread relative to the boat ground truth, it is a
subjective assessment as a FP.
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— If the output of the network produces a class label of a boat that lies outside the location and an area of
the pixels label of a boat is spread relative to the boat ground truth, it is a subjective assessment as a false
negative (FN).

Overall metrics to measure model network performance between lightweight WaSR-T and original WaSR-T

- . . TP f .
were evaluated using Precision = and Recall = based on overall testing of image datasets.
TP+FP TP+FN

4. RESULTS AND DISCUSSION

Unlike previous approaches that focus on enhancing existing object detection methods by introducing
new algorithms while using the same dataset, this study takes a different direction. We evaluate the performance
of a pre-established object detection model by applying it to an entirely new dataset distinct from the one used
during its original development. The only modification made to the model is the replacement of its backbone
encoder: ResNet-101 is substituted with MobileNetVV3. This change is intended to assess the impact on
detection speed, particularly in the context of deployment on resource-constrained devices. Prior research has
demonstrated that using a lighter backbone encoder can significantly accelerate the detection process [6],
although this often comes at the cost of reduced accuracy when operating on low-power hardware.

In line with the methodology presented in [6], we conducted a comparative analysis using
MobileNet V3 a more lightweight encoder backbone than ResNet-101 and evaluated both architectures on a
newly introduced open ocean dataset that had not previously been available. Both networks' performance to
detect boats was evaluated when testing 140 image datasets run using laptop computers with an Intel Core i7-
10510U (quad-core HT 1.8 GHz, turbo 4.9 GHz) and 16 GB RAM. While running the program, we evaluate
some computational load parameters. i.e., percentage of CPU resources used by a process (% CPU),
percentage of physical memory used by a process (% memory), total processing time and rate segmentations
per iteration (s/it) in the context produces a class label of boat to testing all image datasets. The summary of
computational load parameters is shown in Table 2.

Table 2. Summary of computational load parameters between lightweight (L)-WaSR-T and WaSR-T
Model Testing images CPU (%) Memory (%)  Total processing time  Rate (s/it)
WaSR-T 140 190 13.2 1:13:56 20.07
L-WaSR-T 140 160 43 0:02:45 1.33

Furthermore, the example quantitative results of lightweight WaSR-T and original WaSR-T from
training image datasets of the open sea in Indonesia’s territory and an open website are sequentially shown in
Figure 7. The four target frame images from each type of dataset were evaluated using visual quality
assessment to determine the TP, FP, and FN rates. The summary of the visual quality assessment of the
original WaSR-T and lightweight WaSR-T, which detects the class label of a boat from eight testing image
datasets as shown in Table 3. The visual quality assessment of both networks to detect the class label of a
boat from eight testing image datasets as shown in Figure 7 was tabulated in Table 3, which describes the
output of both networks based on criteria TP, FP, and FN. The summary of qualitative results, including
lightweight WaSR-T and WaSR-T for all training image datasets, is shown in Table 4.

A B (o] D
i- : >'.—.

Figure 7. Example of qualitative results of lightweight WaSR-T and original WaSR-T from a
testing image dataset

Target Frame

WaSR-T

Lightweight WaSR-T

Temporal context of lightweight network model for detecting boats approaching ... (Wayan Wira Yogantara)



3550 O3 ISSN: 2252-8938

Based on the qualitative results in Tables 3 and 4, if the visual quality assessment is determined as
TP, lightweight WaSR-T produces a class label for a boat, similar to the original WaSR-T. The area of the
pixel label of the boat is completely detected. If the network output results in a visual quality assessment of
FP, lightweight WaSR-T produces an area of pixel labeled as a boat that is slightly spread or smaller relative
to the ground truth of the boat label. In the visual quality assessment as FP, the number of false detections
produced by the WaSR-T is smaller than that of the lightweight WaSR-T. The most common source of false
detections is due to the reflection of the water on the sea or the interface between the sea and the sky. In this
case, the area of the pixel label of the boat is still detected. Therefore, if the class label of the boat can be
detected, this information can still be used to generate an alarm. Hence, the quantitative results of lightweight
WaSR-T, along with subjective assessment in terms of TP and FP, are useful for intelligent computer vision
in TEWS.

Based on this condition, we also proposed an additional evaluation criterion to measure whether the
network could generate an alarm due to unauthorized boats approaching TEWS. The sensitivity of generating a
TEWS alarm is formulated as the ratio between the sum of TP and FP and the total training image dataset.
The sensitivity of generating TEWS alarms for WaSR-T and lightweight WaSR-T performance results are
95.71% and 90.00%, respectively. Although the sensitivity of generating the TEWS alarm of WaSR-T is
slightly better than that of lightweight WaSR-T, the computational load of lightweight WaSR-T is significantly
lower than that of WaSRT. Based on the testing results tabulated in Table 2, lightweight WaSR-T required less
memory, at 32.57%, and the total processing time was reduced to 0.0761% compared to the original WaSR-T.

Table 3. The summary of visual quality assessment of original WaSR-T and lightweight WaSR-T

Target Assessment Assessment Remarks
frame  results WaSRT  results L-WaSRT
A TP FN Lightweight WaSR-T produces the false class label of a boat that is a reflection
of light on the sea. (marked with the red circle).
B TP FP Lightweight WaSR-T detected the label area of the boat (marked with the dot

arrow line). In this case, lightweight WaSR-T detected the class label of the sky
with the sea on the interface between sea and sky (marked with the red circle).

C TP FP Lightweight WaSR-T detected the label area of the boat (marked with the dot
arrow line). However, the pixel label of a boat is slightly spread relative to the
ground true label of the boat. In this case, a reflection of light on the sea is
detected as the pixel label of a boat (marked with the red circle).

D TP FP Lightweight WaSR-T detected the label area of the boat (marked with the dot
arrow line). However, the pixel label of a boat is slightly spread relative to the
ground true label of the boat. In this case, a reflection of light on the sea is
detected as the pixel label of a boat (marked with the red circle).

Table 4. Qualitative results lightweight WaSR-T and WaSR-T for all training image datasets

Model TP FP FN Precision (%)  Recall (%)
WaSR-T 94 40 15 70.15 86.24
Lightweight WaSR-T 77 49 14 61.11 86.14

5. CONCLUSION

The development and implementation of the proposed lightweight WaSR-T networks to detect
unauthorized boats approaching TEWS as an integral part of an intelligent computer vision system in an open
sea domain have been discussed. Based on the quantitative results and evaluation of the computational load,
lightweight WaSRT, designed as the central part of an intelligent computer vision system in TEWS, showed
promise for further implementation in computational devices with a small architectural footprint. Future work
will focus on real-world testing of the lightweight WaSR-T network on buoy platforms in diverse water
environments. Additional experiments under extreme weather conditions should be conducted to ensure the
network's robustness. Furthermore, to improve lightweight WaSR-T performance, we enhance dataset
augmentation, preprocessing techniques, and the implementation of lightweight WaSR-T, which currently
utilizes a large MobileNetV3 with parallel processing on a small GPU architecture, such as the NVIDIA
Jetson Nano.
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