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 Computational methods have transformed the field of drug discovery, which 

significantly helped in the development of new treatments. Nowadays, 

researchers are exploring a wide ranger of opportunities to identify new 

compounds using machine learning. We conducted a comparative study 

between multiple models capable of predicting compounds to target non-

small cell lung cancer, we focused on integrating protein expressions to 

identify potential compounds that exhibit a high efficacy in targeting lung 
cancer cells. A dataset was constructed based on the trials available in the 

ChEMBL database. Then, molecular descriptors were calculated to extract 

structure-activity relationships from the selected compounds and feed into 

several machine learning models to learn from. We compared the 
performance of various algorithms. The multilayer perceptron model 

exhibited the highest F1 score, achieving an outstanding value of 0,861. 

Moreover, we present a list of 10 drugs predicted as active in lung cancer, all 

of which are supported by relevant scientific evidence in the medical 
literature. Our study showcases the potential of combining protein 

expression analysis and machine learning techniques to identify novel drugs. 

Our analytical approach contributes to the drug discovery pipeline, and 

opens new opportunities to explore and identify new targeted therapies. 
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1. INTRODUCTION 

Drug discovery plays a fundamental role in the healthcare sector, as developing new compounds 

demands a multidisciplinary approach to provide novel therapeutic interventions. Despite this, the process is 

often complex, time-consuming, and requires an enormous effort to validate new treatments. Moreover, 

traditional methods of drug discovery are not only resource-intensive but also limited in their scope [1]. 

Recent advancements in computational biology have completely transformed drug discovery 

pipelines. The combination of biology with computational methods offers new insights to accelerate the 

identification and evaluation of novel compounds. Therefore, computational techniques have emerged as 

powerful tools in the field of pharmacological medicine [2], and revealed great success compared to 

traditional methods. Besides, these techniques have found widespread application in various healthcare 

domains, including disease classification [3] and surgical enhancements [4]. 

Nowadays, a large amount of biological data is stored in public databases and enables researchers to 

explore a wide range of methodologies. Furthermore, the integration and analysis of this biological data ease 

https://creativecommons.org/licenses/by-sa/4.0/
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the study of new hypotheses [5], for example, predictive modeling using machine learning (ML) techniques 

is one of the most explored methodologies and has gained prominence. ML models can effectively classify 

drugs into relevant therapeutic categories, accurately detect and classify tumor stages [6], and design new 

drugs based on chemical properties [7]. Consequently, ML-based methods are capable in detecting patterns 

and identifying correlations within large and complex datasets with numerous variables. 

Furthermore, bioinformatic methods have been crucial in the drug discovery pipelines, allowing 

researchers to study molecules from a system-level perspective. By integrating knowledge from various 

domains such as genomics, proteomics, transcriptomics, population genetics, and molecular phylogenetics, 

bioinformatic analysis eases drug target identification, drug candidate screening, prediction of drug 

resistance, and minimization of side effects. Thus, ML algorithms are employed alongside bioinformatics to 

predict interactions among biological entities [8] and design customized drugs for specific treatments, 

ultimately advancing precision medicine. 

However, researchers have to face several challenges to build ML models in drug discovery. 

Biological data often varies in quality and always needs preprocessing before it can be used for learning 

purposes [9]. Additionally, cancer classification problems typically involve imbalanced datasets, 

characterized by both excessive noise and a deficiency of labeled data, which significantly affects the 

learning process. Evaluating the efficacy of ML models in such scenarios becomes complex, particularly 

when confronted with limited or biased data [10]. 

Our contribution aims to develop a ML-based classifier capable of predicting active compounds that 

can target non-small cell lung cancer (NSCLC). First, we curated a dataset by extracting bioactivity data from 

ChEMBL [11] database based on proteins expressed in NSCLC. Second, molecular descriptors of the 

selected compounds were calculated and used as input feature for several models. Then, numerous ML 

models were fed with this data and trained to learn from the structure and chemical characteristics of the 

molecules. Finally, we performed a comparative analysis to identify the optimal model. 

The rest of the paper is organized as follows: section 2 provides an overview of related works in the 

field. Section 3 presents our approach, including data collection and the methodology employed. Section 4 

discusses the results obtained from our analysis, followed by the conclusion in section 5. 

 

 

2. RELATED WORK 

Nowadays, many studies have been conducted to explore and understand the biological aspects of 

cancer cells using ML models. In particular, these studies aim to better explain the mechanisms of different 

signaling pathways that transmit signals within cells and affect genes regulation. Proteins such as Ras play an 

important role in regulating various biomolecular interactions in the cell’s lifecycle [12]. The Ras pathways 

transmit signals to activate genes that promote cell growth and division. Mutations in genes associated with 

these pathways can lead to different types of cancers [13], [14]. Therefore, there is a growing interest in 

identifying new anti-Ras therapeutic strategies.  

In a study conducted by Way et al. [15], three types of biological data were explored: gene 

expressions, mutation counts, and mutation copies found in various types of cancers using ML methods to 

predict the activation of the Ras pathways. The authors of this study were able to design a model capable of 

predicting RNA sequences that activate the Ras pathways. Similarly, Knijnenburg et al. [16] employed 

genomic and molecular data to predict the activation of p53 pathways. The gene TP53 contains instructions 

for regulating a protein called p53, which functions as a tumor suppressor and interacts with the apoptosis 

mechanism [17]. Consequently, mutations in the gene TP53 can lead to metastatic cancer [18]. 

Some metastatic cancers are associated with the loss of phenotypic traits expressed by stem cells 

[19]. In this context, to elucidate the relationship between tumor differentiation phenotype and tumor 

propagation or genetic alterations, Malta et al. [20] introduced an ML model aimed at predicting cancer 

development within specific cellular tissues. They relied on data from stem cells and their progenitor cells to 

construct a classifier for genetic expression traits. Subsequently, they applied this classifier to a cell sample to 

predict the expressed traits. They were able to identify cancer cells within the sample, but they did not 

provide detailed information about the learning methodology used to build the classifier. 

Mutations in the epidermal growth factor receptor (EGFR) have been known to cause uncontrolled 

cell proliferation [21]. Numerous studies aim to identify small inhibitory molecules that target the EGFR 

gene. Qureshi et al. [22] proposes a personalized model for predicting drug response in lung cancer patients. 

Specifically, this model was tested to predict the response to US Food and Drug Administration (FDA)-

approved small molecules, such as Erlotinib and Gefitinib. To construct their model, the authors assembled 

various types of data: EGFR mutations found in lung cancer patients, clinical data including patient survival 

and clinical response to drugs, demographic data such as age, sex, and smoking history, and the 3D structure 

of EGFR gene mutations found in patients.  
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A decision tree-based classifier was trained using this data to predict the level of drug response 

among four categories: no response, partial response, moderate response, and strong response. The authors 

found that demographic data had a weak impact on the learning outcome of the model. Only EGFR mutations 

and structures showed a good predictive response level of drug response. The authors did not further use this 

model to test the response level of molecules that were not used during the learning phase. Yang et al. [23] 

aiming to determine the data that can establish an ML model to predict EGFR mutations in lung cancer, the 

authors compared the performance of several learning algorithms random forest (RF), light gradient boosting 

machine (LightGBM), support vector machine (SVM), multilayer perceptron (MLP), and extreme gradient 

boosting (XGB) using multiple clinical and demographic data. They found that tobacco consumption,  

sex, cholesterol, age, and the albumin/globulin ratio were among the top five variables related to EGFR 

mutation, which differed slightly from the results obtained in the study [22], where the impact of 

demographic data was weak. 

Widyananda et al. [24] investigate the potential of Quercetin, a natural compound found in fruits 

and vegetables, to combat glioblastoma multiforme. By examining databases like national center for 

biotechnology information (NCBI), super-enhancer archive (SEA), comparative toxicogenomics database 

(CTD), and search tool for the retrieval of interacting genes/proteins (STRING), the study identifies four key 

proteins serine/threonine kinase 1 (AKT1), matrix metallopeptidase 9 (MMP9), ATP binding cassette 

subfamily B member 1 (ABCB1), and vascular endothelial growth factor A (VEGFA), that Quercetin directly 

affects. Using STITCH, SEA, and STRING, the study constructs protein-protein interaction networks, 

highlighting connections between these proteins. Functional annotation analysis through the DAVID web 

server clarifies the biological processes influenced by these proteins. Molecular docking simulations with 

AutoDock Vina [25] provide insights into how Quercetin interacts with these proteins, extending our 

understanding of its potential as a glioblastoma multiforme treatment. The study not only uncovers 

Quercetin’s impact on crucial glioblastoma multiforme related proteins but also emphasizes its potential as a 

targeted therapeutic option against glioblastoma multiforme. 

 

 

3. METHODOLOGY 

Quantitative structure-activity relationship (QSAR) modeling leverages the relationships between 

the chemical structure and the biological activity of molecules [26]. QSAR models employ molecular 

descriptors, which capture the physical and chemical properties distinguishing one molecule from another 

[27]. These models provide valuable insights into the chemical properties that are crucial for the inhibition of 

specific biological processes. Thus, aiding biologists and chemists in the design of robust molecules with 

optimized properties. Utilizing ML-based QSAR analysis and molecular docking, Iresha et al. [28] explores 

medicinal plant compounds as inhibitors for HIV-1 reverse transcriptase, addressing resistance issues. 

Similarly, our study aims to use ML models to predict active compounds based on the genes expressed in 

NSCLC through QSAR analysis.  

To construct our dataset, First, we selected a set of genes that have been extensively associated  

with NSCLC in various studies [6], [7]. After gathering the target proteins related to these genes from  

the ChEMBL database, we selected their bioactivities and computed their molecular descriptors to analyze 

the chemical structure and identify patterns in active compounds. Afterwards, we trained several models 

using the constructed descriptors and evaluated their performance based on the confusion matrix and  

the achieved F1 score. These evaluation metrics provide a comprehensive assessment of the models’ 

predictive abilities. 

Figure 1 illustrates our proposed methodology, and the experimental procedure established. The 

term “targets” in the ChEMBL database refers to proteins or organisms that compounds act upon. 

Biologically, these compounds engage in interactions with the targeted proteins, resulting in a modulatory 

activity. Such activity may encompass the activation or inhibition of the targeted protein. The overall 

approach is followed to predict compounds’ activity to target NSCLC.  

In step 1 the expressed genes are identified from the medical literature [29], this includes 8 

expressed genes: b-raf proto-oncogene, serine/threonine kinase (BRAF), EGFR, kirsten rat sarcoma virus–

proto-oncogene, GTPase (KRAS), phosphatase and tensin homolog (PTEN), receptor tyrosine kinase 

(ROS1), v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 2, also known as HER2 and neu 

(ERBB2), MET proto-oncogene, receptor tyrosine kinase (MET), and anaplastic lymphoma kinase (ALK). In 

step 2, bioactivity data of the target protein is extracted from ChEMBL database. In step 3, molecular 

descriptors of the bioactivity data are calculated. In step 4, several ML models are trained on these molecular 

descriptors. Finally, in step 5, the models are evaluated to assess their predictive accuracy for determining 

compound activity to target NSCLC. 
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Figure 1. Proposed methodology for predicting compound activity to target NSCLC using bioactivity data, 

molecular descriptors, and ML models 

 

 

3.1.  Molecular descriptors 

Molecular descriptors are numerical representations that capture various physicochemical and 

topological properties of molecules. These descriptors provide valuable quantitative information about the 

characteristics and behavior of chemical compounds. By analyzing and comparing molecular descriptors, 

researchers can gain insights into the structure-activity relationships of molecules and make predictions about 

their properties, reactivity, and potential biological activities. 

One commonly used tool for computing molecular descriptors is PaDEL-descriptor [30].  

It is a software program that calculates a comprehensive set of molecular descriptors based on simplified 

molecular input line entry system (SMILES) notations [31]. SMILES is a compact string representation of a 

molecule’s structure, which encodes key structural features including atom types, bond connections, and their 

spatial arrangement within the molecule. The PaDEL-descriptor utilizes algorithms and mathematical 

formulas to generate a wide range of descriptors, including constitutional, topological, and physicochemical 

descriptors. 

Constitutional descriptors capture basic molecular features, such as the number of atoms, bonds,  

and functional groups. Topological descriptors assess molecular connectivity and shape, providing 

information about the arrangement of atoms and the presence of specific structural motifs. Physicochemical 

descriptors quantify properties such as molecular weight, solubility, lipophilicity, hydrogen bonding 

potential, and electronic properties. In our studying, we used the descriptors defined by the PubChem 

database [32], which primarily focus on the structural and physicochemical properties of compounds.  

These descriptors are typically encoded in a byte array. Table 1 provides a description of the PubChem 

descriptors bytes. 

 

3.2.  Learning tasks 

To construct our dataset, 84.078 molecules were selected from ChEMBL database and classified them 

into active and inactive sets based on their inhibition concentration value at 50% (IC50). Initially, we used a 
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threshold of 100 nM, and after iterative training of the ML models with varying thresholds, we observed that 

lowering the IC50 threshold improved the models’ predictive performance. Further experimentation revealed that 

setting the threshold at 77 nM yielded the highest F1 score, indicating optimal model performance that allows the 

model to effectively explore the structure of compounds to determine its activity. Thus, choosing this threshold 

was crucial to enhance the predictive capability of the ML algorithms used in this study. Consequently, molecules 

with an IC50 value lower than or equal to 77 nM were considered active, denoted by an assigned activity level  

of 1, while those greater than 77 nM were considered inactive, represented by an activity level of 0. 

 

 

Table 1. Summary description of PubChem descriptors 
PubChem bit position range Description 

From 0 to 114 These binary units examine the presence or abundance of specific chemical 

atoms. 

From 115 to 262 These binary units assess the presence of cyclic structures. 

From 263 to 326 These binary units examine the presence of connected pairs of atoms, disregarding 

their quantity and arrangement. 

From 327 to 448 These binary units assess the presence of atom nearest neighbor patterns, 

considering the relevance of aromaticity and significant bonding. 

From 445 to 459 These binary units examine complex atom neighborhood patterns, irrespective 

of their quantity, with specific consideration given to bond orders. 

From 460 to 712 These binary units evaluate the presence of straightforward SMILES arbitrary 

target specification (SMARTS) patterns, without considering their quantity, but 

with specific attention given to bond orders and the compatibility of bond 

aromaticity with both single and double bonds. 

From 713 to 880 These binary units examine the presence of complex SMARTS patterns, 

irrespective of their quantity, with particular emphasis on specific bond orders 

and bond aromaticity. 

 

 

To train our models, 90% of the data was allocated to the training set, while the remaining 10% was 

used for the test set. Molecular descriptors are going to serve as input features, while the target feature is the 

activity level in NSCLC. Given the complexity introduced by this extensive array of input features, we 

implemented a preprocessing step to refine the dataset, to make the ML models more precise and to depict 

the patterns of the most important molecular descriptors. In this regard, before feeding the data into the ML 

models, we performed an initial step to reduce the number of input features. Initially, there were 881 features; 

by applying a variance threshold of 0.16, we removed molecular descriptors with low variance, which 

showed 84% similarity in their values. This resulted in a final set of 160 features with higher variance, 

enabling the model to detect meaningful patterns within the dataset. 

We trained several ML models on the computed molecular descriptors, including MLP, XGB, RF, 

SVM, and naive Bayes (NB). Firstly, the MLP neural network model is used with an input layer of 100 units 

and uses the rectified linear unit (ReLU) as an activation function. This is followed by some hidden layers 

with 50, 20, and 5 units, respectively, also using the ReLU activation function. And the output layer has a 

single unit with a sigmoid activation function, allowing for binary classification. During training, we utilized 

the Adam optimizer with a learning rate of 0.001 and employed the binary cross-entropy as a loss function. 

The model was trained for 100 epochs with a batch size of 100 samples. Furthermore, the training data was 

split into training and validation subsets, with a 5% validation split. 

We also trained two tree-based classifiers, including XGB and RF models. These models, 

constructed using the sklearn implementation, are based on ensemble learning techniques that combines 

multiple decision trees to make predictions. To construct the models, we used various parameters to optimize 

their performance. We used a max depth of 2 levels, for each constructed individual decision tree. 

Additionally, we utilized a learning rate of 0.01, to control the step size at each boosting and bagging 

iteration. The number of estimators was set to 1,000, indicating the number of decision trees to be created in 

the ensemble. This value was chosen from a list that included 50, 200, 400, 600, 800, and 1,000 estimators. 

The receiver operating characteristic (ROC) curves were subsequently drawn for each model trained  

with a distinct number of estimators to assess their impact on the model’s performance. Notably, as the 

number of estimators increased from 50 to 1,000, we observed a progressive improvement of the area under 

the curve (AUC). The achieved AUC values stood at 0.621 for XGB and 0.596 for RF as shown in  

Figures 2 and 3 respectively. We also adjusted the class weights to address class imbalance and enhance the 

model’s performance, particularly on the minority class by assigning a higher weight to samples from the 

minority class. 
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Figure 2. ROC curves for XGB with varied numbers of estimators 

 

 

 
 

Figure 3. ROC curves for RF with varied numbers of estimators 

 

 

Furthermore, we built an SVM model using different kernel functions. This includes linear, radial 

basis function (RBF), polynomial, and sigmoid functions shown in Figure 4. It appears that for linear, RBF, 

and polynomial kernels, the training score is relatively high when using few samples for training and 

decreases when increasing the number of samples. In contrast, the cross-validation score starts at a moderate 

level and shows a slight increase when adding samples. Whereas the plot for Sigmoid kernel, the training 

score remains low regardless of the size of the training set. On the other hand, the cross-validation score 
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decreases with the size of the training dataset. Indeed, it decreases to a point where it reaches a plateau. The 

polynomial and RBF kernels enables us to classify the data with complex relationships. The model was 

trained to find the best boundary that separates the active and inactive molecules. We set the regularization 

parameter to 10 to strike a good balance between training accuracy and classification precision, and we used 

the ‘scale’ option for gamma to ensure a smooth decision boundary. These choices allow our SVM model to 

perform effectively, overcoming the challenge of class imbalance inherent in the data. Lastly, we utilized the 

sklearn library to implement a NB classifier, which is a probabilistic classifier that assumes feature 

independence, making it efficient and suitable for large datasets. The default implementation in sklearn 

employs the Gaussian NB algorithm, assuming a Gaussian distribution for the features. 

 

 

 
 

Figure 4. Learning curves for SVM with different kernels (RBF, poly, linear) 

 

 

4. RESULTS AND DISCUSSION 

This section presents the key findings from our study, which focuses on comparing different 

algorithms to find the best model capable of predicting the activity of compounds targeting a specific protein. 

Although numerous models exist in the literature, there is a notable gap in identifying the optimal one. Our 

study addresses this gap by evaluating various models using performance metrics. Table 2 provides a 

comprehensive summary of the overall accuracy, precision, recall, and F1 score. In contrast, Figure 5 displays a 

heatmap illustrating the accuracy, precision, and recall achieved by each model across different classes. 

 

 

Table 2. Overall performance metrics of trained ML models 
Model Accuracy Precision Recall F1 score 

MLP 0.865 0.878 0.845 0.861 

XGB 0.604 0.601 0.605 0.603 

RF 0.564 0.551 0.658 0.600 

SVM 0.593 0.595 0.598 0.597 

NB 0.558 0.546 0. 649 0.593 
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Figure 5. Heatmap showcasing the accuracy, precision, and recall scores attained by each model 

 

 

The MLP model achieved an accuracy of 0.865, indicating that it correctly predicted the activity of 

compounds for inhibiting NSCLC in a large majority of cases. It had a precision of 0.878, meaning that when 

it predicted a compound as effective against NSCLC it demonstrated the model’s ability to exclude irrelevant 

cases. The F1 score of 0.861, which is the harmonic mean of precision and recall, indicates the good overall 

balanced performance of the model. These results suggest that the MLP model performed the best among the 

tested models in predicting the activity of compounds for inhibiting NSCLC. 

The XGB model achieved an accuracy of 0.604, indicating moderate performance in predicting the 

activity of compounds for inhibiting NSCLC. It had a precision of 0.601, recall of 0.605 and an F1 score of 

0.603, suggesting a relatively balanced performance. While the accuracy of the XGB model is lower 

compared to the MLP model, it still provides a reasonable level of predictive ability in identifying potential 

compounds for NSCLC inhibition. 

The RF model achieved an accuracy of 0.564, which is lower than the MLP and XGB models. It had 

a precision of 0.551, indicating a higher rate of false positives compared to the other models. However, the 

recall value of 0.658 suggests that the RF model successfully identified a higher proportion of true positives 

(compounds with NSCLC inhibitory activity) compared to other models. The F1 score of 0.600 reflects a 

moderately balanced performance between precision and recall. Overall, while the RF model shows potential 

in capturing true positive cases, it suffers from a higher rate of false positives, impacting its overall accuracy 

in predicting compounds for NSCLC inhibition. 

The SVM and NB models exhibit weaker performances compared to more advanced models, such 

as MLP. The SVM model achieved an accuracy of 0.593 with a balanced precision of 0.595, recall of 0.598, 

and an F1 score of 0.597. While the SVM model demonstrates potential in capturing compounds with and 

without NSCLC inhibitory activity, its accuracy falls below that of the MLP model, suggesting limitations in 

accurately predicting compound activity. Similarly, the NB model demonstrates a balance between precision 

of 0.546 and recall of 0.649, resulting in a moderately balanced F1 score of 0.593. The NB model, while 

providing some predictive ability, lags behind other models in terms of accuracy and precision. This analysis 

highlights the challenges faced by both SVM and NB models in effectively capturing the complexities of the 

data for accurate predictions in NSCLC inhibition. 

Among these models, the MLP model performed the best with the highest accuracy of 0.865, 

indicating its ability to make accurate predictions. It also achieved the highest precision and F1 score values. 

On the other hand, the NB model performed the least with an accuracy of 0.558, indicating a lower level of 

prediction accuracy compared to the other models. It had the lowest precision and F1 score values, 

suggesting its limitations in accurately predicting the activity for NSCLC. Using the MLP model, we ranked 

top-10 highly active molecules in NSCLC. Table 3 shows a list of these drugs. The ranking method is based 

on the probabilities returned by the MLP Model, where these probabilities represent the percentage of 

belonging to the positive class, demonstrating the likelihood of a compound’s activity against NSCLC. 

The list of drugs predicted by our MLP model to target NSCLC aligns well with the drugs 

mentioned in the medical literature. Several of the drugs in the top-10 list, such as Osimertinib, Brigatinib, 

Alectinib, Erlotinib, Ceritinib, Afatinib, Trastuzumab, Adagrasib and Gefitinib that are recognized as 

important therapeutic agents for NSCLC [33]. The literature highlights the effectiveness of these drugs in 

various settings, including advanced NSCLC with specific genetic mutations (such as EGFR mutations, 

ALK-positive or ROS-1-positive NSCLC) and metastatic NSCLC. The literature also provides supporting 
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evidence for the efficacy of these drugs, with information on overall survival, and improved survival  

time [33]. Moreover, the fact that some of the drugs in the top-10 list are approved such as Osimertinib [34], 

Brigatinib [35], Alectinib [36], Erlotinib [37], Ceritinib [38], Afatinib [39], and Gefitinib [40], underscores their 

established efficacy in NSCLC treatment. While other drugs such as Sotorasib [41], Trastuzumab [42], and 

Adagrasib [43] are currently undergoing clinical trials further confirms their relevance in NSCLC treatment. 

 

 

Table 3. Top-10 ranked drugs in lung cancer 
Rank Drug name 

1 Osimertinib 

2 Brigatinib 

3 Alectinib 

4 Erlotinib 

5 Ceritinib 

6 Afatinib 

7 Sotorasib 

8 Trastuzumab 

9 Adagrasib 

10 Gefitinib 

 

 

5. CONCLUSION 

Our study showed the potential of integrating protein expression analysis and ML techniques for 

active compounds discovery in lung cancer treatment. By leveraging gene expression data and targeted 

protein analysis, we successfully identified bioactive compounds that specifically target proteins associated 

with NSCLC. Through using various ML models, including MLP, XGB, RF, SVM, and NB, we compared 

their performances in predicting the activity of compounds. Among these models, the MLP model exhibited 

the highest F1 score, achieving an impressive value of 0.861, denoting its ability to accurately predict active 

compounds for NSCLC treatment. Furthermore, our study provides a list of 10 drugs predicted as active in 

NSCLC, all of which are supported by relevant scientific evidence. These findings contribute to the drug 

discovery pipeline for lung cancer, offering valuable insights into the development of targeted therapies. 

Accordingly, the integration of computational methods with bioinformatic tools provides a powerful 

approach to accelerate the identification and evaluation of novel compounds, ultimately advancing precision 

medicine in the treatment of lung cancer. Future research will focus on validating the predicted compounds in 

preclinical and clinical studies to further confirm their efficacy. 
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