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 This study investigates the application of swarm intelligence algorithms, 

specifically particle swarm optimization (PSO), ant colony optimization 

(ACO), and cat swarm optimization (CSO), to optimize long short-term 
memory (LSTM) networks for sentiment analysis in the context of 

cryptocurrency. By leveraging these optimization techniques, we aimed to 

enhance both the accuracy and computational efficiency of LSTM models by 

fine-tuning critical hyperparameters, notably the number of LSTM units. 
The study involved a comparative analysis of LSTM models optimized with 

each algorithm, evaluating performance metrics such as accuracy, loss, and 

execution time. Results indicate that the PSO-LSTM model achieved the 

highest accuracy at 86.08% and the lowest loss at 0.57, with a reduced 
execution time of 58.43 seconds, outperforming both ACO-LSTM and CSO-

LSTM configurations. These findings underscore the effectiveness of PSO 

in tuning LSTM parameters and emphasize the potential of swarm 

intelligence for enhancing neural network performance in real-time 
sentiment analysis applications. This research contributes to advancing 

optimized deep learning techniques in high dimensional data environments, 

with implications for improving cryptocurrency sentiment predictions. 
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1. INTRODUCTION 

The global finance sector has increasingly turned its attention to cryptocurrencies, a class of digital 

assets known for rapid value fluctuations and decentralized control mechanisms. Cryptocurrencies have 

gained widespread popularity as highly volatile digital assets that offer both high risk and potential reward 

for investors. The rapid and often unpredictable fluctuations in cryptocurrency prices are influenced by 

various factors, including market sentiment, technological advancements, regulatory changes, and influential 

social media activities. Bitcoin, the first cryptocurrency, saw an extraordinary rise in value in 2017, 

increasing by over 2,000% to reach $20,000 [1]. Cryptocurrencies like bitcoin offer secure, direct 

transactions without intermediaries, facilitated by blockchain technology [2]. However, they present unique 

challenges, such as high energy consumption due to mining activities, and have been associated with illicit 

activities, which have led to regulatory responses from various governments [3], [4]. These challenges 

contribute to cryptocurrency market volatility, as regulatory news and advancements in cryptocurrency 

infrastructure (e.g., proof of stake implementations and exchange-traded fund (ETF) approvals) continue to 
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influence price movements [5]–[8]. With platforms like Twitter/X playing a significant role in shaping public 

opinion, sentiment analysis has emerged as a valuable tool for assessing investor sentiment and predicting 

cryptocurrency trends [9]. However, conducting accurate sentiment analysis in this field poses challenges due 

to the high dimensionality and noisy nature of social media data, which necessitates advanced machine 

learning models capable of handling such complexity [10], [11]. 

Sentiment analysis on social media data is typically conducted using three approaches: lexicon-based, 

machine learning-based, and hybrid methods. Lexicon-based methods are suitable for unsupervised data, 

while machine learning approaches require labeled datasets [12]. Hybrid approaches that integrate lexicons 

with machine learning have demonstrated improved accuracy, with studies reporting up to 10% gains over 

conventional methods [13]. Recent research highlights the effectiveness of deep learning algorithms, 

particularly long short-term memory (LSTM) networks, which can capture temporal dependencies and 

complex patterns in sequential data like social media posts [14], [15]. Studies have shown that LSTM 

outperforms traditional machine learning models in sentiment analysis, making it a suitable choice for 

analyzing high dimensional and noisy data [11], [16], [17]. 

Despite LSTM's advantages, improving its performance for sentiment analysis on large social media 

datasets requires feature selection techniques to manage data dimensionality and reduce noise. However, the 

effectiveness of LSTM models is highly dependent on their hyperparameters, such as the number of LSTM 

units. Traditional methods of hyperparameter tuning can be time-consuming and may not always yield 

optimal configurations, especially in high dimensional sentiment analysis tasks. In recent years, swarm 

intelligence algorithms, such as particle swarm optimization (PSO), ant colony optimization (ACO), and cat 

swarm optimization (CSO), have been utilized to improve optimization processes across various domains due 

to their ability to efficiently explore large search spaces [18], [19]. Prior studies have used swarm intelligence 

algorithms to improve accuracy in machine learning applications, with PSO increasing accuracy for SVM 

models from 78.70% to 86.20% [20], and adaptive particle swarm optimization (APSO) improving LSTM 

accuracy from 95.1% to 97.8% in sentiment classification [21]. Studies comparing PSO and CSO have 

shown that CSO can deliver even better accuracy and faster processing times in sentiment analysis [11]. 

However, research integrating these algorithms specifically with LSTM for cryptocurrency sentiment 

analysis remains limited, presenting a gap that this study aims to fill. This study aims to address the 

limitations of traditional LSTM tuning methods by employing PSO, ACO, and CSO algorithms to optimize 

LSTM networks specifically for cryptocurrency sentiment analysis. By fine-tuning the LSTM units and other 

key hyperparameters, we aim to enhance the model's accuracy, reduce processing time, and improve overall 

performance.  

The remainder of this paper is organized as follows: section 2 presents the methodology, detailing 

the data pre-processing steps, the swarm intelligence-based optimization techniques applied, and optimizing 

LSTM using hyperparameter tuning. Section 3 discusses the experimental results, including a best model 

performance analysis, confusion matrix and classification metrics, discussion, and limitations and 

implications for future research. Finally, section 4 concludes with a summary of the findings and potential 

applications in cryptocurrency market analysis. 

 

 

2. METHOD 

The methodology of this study, as illustrated in Figure 1, consists of several key stages to prepare 

and optimize an LSTM model for cryptocurrency sentiment analysis. Each stage, from data preprocessing to 

model evaluation, is outlined to facilitate understanding and reproducibility. This structured approach ensures 

that each component of the model development process is systematically addressed, leading to more reliable 

and insightful sentiment predictions. 

 

2.1.  Data collection 

Data for this study was collected from Twitter/X using the tweet-harvest tool, configured with 

parameters such as twitter_auth_token, search_keyword, and limit to streamline data extraction.  

The keywords included terms like "cryptocurrency," "crypto," and "bitcoin," as well as related terms that 

capture public sentiment on cryptocurrencies. The data collection was limited to 1,000 tweets per day to 

ensure a manageable dataset with a broad range of opinions. Over the data collection period, from  

December 31, 2023, to January 31, 2024, a total of 9,884 tweets were successfully gathered, providing a 

robust dataset for sentiment analysis. This period was specifically chosen to capture discussions around the 

U.S. SEC’s BTC ETF approval on January 10, 2024, an event anticipated to significantly influence 

cryptocurrency sentiment and public discussion [22]. 
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Figure 1. Proposed architecture 

 

 

2.2.  Data pre-processing 

The collected Twitter/X data required extensive pre-processing to ensure consistency and reduce 

noise, thereby improving the accuracy of the sentiment analysis model. Each stage in this process is outlined 

in following subsection. This process includes data cleaning, text normalization, and removal of irrelevant 

elements to produce higher quality input for the model. 

 

2.2.1. Remove URLs, mentions, hastags, special characters, and number 

The first step involved removing URLs, mentions, hashtags, special characters, and numbers from 

the tweets. URLs and mentions (e.g., https://example.com, @username) often contain non-sentiment-bearing 

information, while hashtags and special characters add noise to the data. Numbers were also removed to 

focus the analysis on textual content relevant to sentiment. For example, the tweet “Check this out! 

https://crypto.com @crypto #bitcoin123” would be reduced to “Check this out bitcoin” [23]. 

 

2.2.2. Remove punctuation and convert to lowercase 

All punctuation was removed, and the text was converted to lowercase. This step ensures that 

similar words with different cases (e.g., “Bitcoin” and “bitcoin”) are treated uniformly, reducing variability 

and vocabulary size. For instance, the text “Bitcoin, the future!” becomes “bitcoin the future,” ensuring 

consistency across the dataset [23], [24]. 

 

2.2.3. Tokenization 

Tokenization was applied to split each tweet into individual words or tokens, making it easier  

for the model to analyze textual data more effectively. This process involves breaking down sentences into 

smaller components, such as words or symbols, which allows machine learning algorithms to handle and 

interpret the text systematically. For instance, the sentence “Bitcoin is the future” would be tokenized into 

[“bitcoin”, “is”, “the”, “future”], enabling the model to evaluate each token separately and identify patterns 

or sentiments associated with individual words [25]. 

 

2.2.4. Remove stop words 

Commonly used words that do not contribute to sentiment, known as stop words (e.g., "is," "and," "the"), 

were removed. This step reduces data complexity by allowing the model to focus on sentiment-relevant 

words. After stop word removal, the phrase “Bitcoin is the future” would retain only ["bitcoin", "future"], 

highlighting the core sentiment-bearing words [23]. 

 



                ISSN: 2252-8938 

Int J Artif Intell, Vol. 14, No. 4, August 2025: 2753-2764 

2756 

2.2.5. Lemmatization 

Lemmatization was applied to convert words into their base forms, ensuring that variations of the 

same word are treated as one. For instance, “rising” and “rose” were both converted to “rise.” This step 

improves the model’s ability to recognize different forms of the same word, thereby enhancing consistency 

and reducing dimensionality in the data [23]. 

 

2.2.6. Remove words with length < 3 

Lastly, words with fewer than three characters were removed, as they typically provide limited 

sentiment information and can add noise. Short words such as “it” and “an” were excluded to streamline the 

dataset further and focus the analysis on meaningful terms. This filtering improves the model’s efficiency by 

reducing unnecessary data elements [26]. 

 

2.3.  Data labeling 

Data was labeled using the valence aware dictionary and sentiment reasoner (VADER), a sentiment 

analysis tool that performs well on social media data by accounting for emoticons, abbreviations, and other 

informal language features commonly used on Twitter/X. VADER assigns sentiment scores that categorize 

each tweet as positive, negative, or neutral [26]. For this study, only positive and negative sentiments were 

retained, as these are most indicative of the buy-or-sell decisions in cryptocurrency trading, while neutral 

sentiments were excluded to maintain a focus on directional sentiment that impacts trading behavior  

[27], [28]. Table 1 represents a sample of the labeled data using the VADER on top 5 data that have 

undergone data pre-processing. 

 

 

Table 1. Labeled data using VADER 
Processed text VADER sentiment 

BTC honestly dont think matter target get past ath drop back still bullish close Positive 

official happy new year crypto community praying may year bring green candle amp every coin Positive 

financial market analyst cryptocurrency blockchain amp web researcher Negative 

money broken low interest rate fake money lead people treat real estate investment entered chat Negative 

absolutely outrageous bankmanfrieds pac essentially paid francis conoles democratic primary 

campaign stolen crypto fund conole eked narrow win fix one held accountable 

Negative 

 

 

2.4.  Data splitting 

The labeled dataset was split into training and testing sets, with 80% of the data allocated for 

training and 20% for testing. This split enables the evaluation of model generalizability. Referring to study 

that compared the ratios of training and testing data in sentiment analysis for cryptocurrencies using tweet 

data, the ratio of 80:20 yielded the best performance compared to ratios of 90:10 and 70:30 [29]. The training 

data is used to train the classification model for both the objective function and sentiment classification, 

while the testing data is used to validate the trained model. 

 

2.5.  Feature selection using swarm intelligence algorithms 

The feature selection stage in sentiment analysis is used to choose relevant features because data 

extracted from social media generally has high dimensional characteristics. Swarm intelligence is one of the 

components of feature selection that utilizes the hybrid method. Due to its suitability for the research 

objective, this study employs the hybrid method of feature selection based on swarm intelligence to optimize 

the LSTM model. Swarm intelligence algorithms PSO, ACO, and CSO were employed to optimize the 

number of LSTM units. Each algorithm aimed to identify an ideal configuration that maximizes accuracy 

while reducing computational time. The hyperparameter tuning process focused on the LSTM units, as this 

parameter critically impacts the model's ability to capture sequential patterns in sentiment data. However, to 

get the LSTM units we must use the objective function. The objective function is designed to train the LSTM 

model intelligently, and it has been proven to effectively adjust the weights in the LSTM model, minimizing 

loss and facilitating efficient model learning [30]. 

 

2.5.1. Particle swarm optimization 

Optimization technique inspired by the social behavior of birds or fish when searching for food. 

Birds do not know the exact location of food, so they generally follow other birds considered close to the 

food source [31]. In PSO, each bird is referred to as a particle, and each particle has a fitness function  

(square of error). A group of particles is known as a swarm. PSO algorithm is shown in Pseudocode 1.  

The working principle of PSO is as follows: in each iteration, the algorithm first finds the best solution found 
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within the swarm, which is stored as personal best (pbest). Then, global best (gbest) is updated to be the best 

solution found across all iterations. The discovery of pbest and gbest is determined by (1) [31]. 

 

{
𝑣𝑖 ⇐ 𝑣𝑖 + 𝑈⃗⃗⃗(0, 𝜙1) ⊗ (𝑝𝑖 − 𝑥⃗𝑖) + 𝑈⃗⃗⃗(0, 𝜙2) ⊗ (𝑝𝑔 − 𝑥⃗𝑖)

𝑥⃗𝑖 ⇐ 𝑥⃗ⅈ + 𝑣𝑖

 (1) 

 

Where 𝑣𝑖 represents the particle's velocity, 𝑥⃗𝑖 represents the particle's position, 𝑈⃗⃗⃗(0, 𝜙ⅈ) signifies a sequence 

of uniformly distributed random numbers between 0 and 𝜙, in freshly generated for each particle at every 

iteration, ⊗ denotes the operation of multiplying elements correspondingly [32]. To ensure balance, each 

velocity vector component 𝑣𝑖 is confined within the minimum and maximum velocity thresholds, donoted as 
[−𝑉𝑚𝑎𝑥 , +𝑉𝑚𝑎𝑥] [33]. 

 

Pseudocode 1. Particle swarm optimization algorithm [33] 

1) Set up an array of particles with random coordinates and speeds across ‘D’ dimensions. 

2) Begin iteration. 

3) For each particle within the iteration, determine the value of the targeted optimization function in ‘D’ 

variables. 

4) Assess the fitness of the particle and compare it with its best recorded position (pbest). If the new 

evaluation is superior, update pbest to this newer measurement and record the particle’s current 

coordinates as its best spot within the ‘D’ dimensional grid. 

5) Recognize the most successful particle in the vicinity and assign the index of this particle to a variable 𝑔. 

6) Modify each particle’s motion and location using (1), which incorporates the best positions identified by 

the individual particle and its neighbors. 

7) Persist with the iteration until a certain-requirements is fulfilled, which could be an acceptable level of 

fitness or a ceiling on iteration counts. 

8) Terminate the iteration loop. 

 

In the context of feature selection, the PSO algorithm is designed to find an optimal subset of features that 

improves the model's performance by reducing the data's dimensionality while maintaining or enhancing 

classification accuracy [34]. 

 

2.5.2. Ant colony optimization 

Optimization technique inspired by the foraging behavior of ants. As ants search for food, they leave 

pheromone trails that serve as a route to guide them back to the nest [31]. The number of ants travelling 

through that path influences the density of pheromone deposition and evaporation. The quality and quantity 

of food brought by the ants also affect pheromone deposition. Therefore, the ants can identify the optimal 

path by following the trail with the maximum pheromone density. The discovery of the optimal path (2) and 

the update of the pheromone (3) by the ants are determined by the following equations [31]. 

 

𝑃 (
𝑐𝑖

𝑠
) =

[𝜏𝑖]𝛼⋅[𝑛(𝑐𝑖)]𝛽

𝛴𝑐𝑗∈𝑁(𝑠)[𝜏𝑗]
𝛼

[𝑛(𝑐𝑗)]
𝛽          ∀𝑐𝑖 ∈ 𝑁(𝑠) (2) 

 

𝜏𝑖 ← (1 − 𝜌)𝜏𝑖 + 𝜌 ⋅ 𝛴 {𝑠 ←
𝑠𝑢𝑝𝑑

𝐶𝑖𝐸𝑠
} 𝑤𝑠 ⋅ 𝐹(𝑠) (3) 

 

Here is the explanation of pheromone deposition 𝜏𝑖 in which it represents the pheromone deposition 

at the ⅈ𝑡ℎ node. 𝑛 is an optional weighing function, 𝑐𝑗 represents each feasible solution, 𝛼 and 𝛽 are positive 

parameter. On the other hand, pheromone updation 𝑠𝑢𝑝𝑑 is the solution used for pheromone update. 𝑤𝑠 is the 

weight of solution 𝑠, 𝜌 is the evaporation constant, 𝐹(𝑠) is the quality function. Based on these equations, 

Pseudocode 2 is the ACO algorithm. 

 

Pseudocode 2. Ant colony optimization algorithm [35] 

1) Initialize pheromone trails 

2) While (termination criteria not met) do 

3) For each ant 

4) Build a solution path based on pheromone trails and heuristic information (2) 

5) Calculate the fitness of the solution 

6) Update the local pheromone trail (3) 

7) End iteration 
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8) Update the global pheromone trail based on the best solution found 

9) End 

 

In feature selection, ACO is used to find a subset of features that yields the best performance for the 

model by mimicking how ants find the shortest path from the nest to a food source [19]. Virtual ants iterate 

through the features, constructing solutions by selecting features based on probabilities influenced by 

pheromone levels. This increases the likelihood of selecting features that contribute positively to improved 

classification accuracy [36]. 

 

2.5.3. Cat swarm optimization 

Optimization technique inspired by the behavior of cats, utilizing two specific behaviors known as 

the seeking mode and tracing mode [11]. Each cat has a position consisting of M dimensions in the search 

space, where each dimension has its velocity. The fitness value represents how well a set of solutions (cats) 

performs. Additionally, there is a flag used to classify cats into seeking mode or tracing mode. The working 

principle of CSO involves determining the number of cats involved in each iteration and running them through 

the algorithm. The best cat in each iteration is stored in memory, and the cat in the final iteration represents the 

final solution. The CSO algorithm aims to find the optimal solution in the search space by utilizing the seeking 

and tracing behaviors inspired by cats. In the seeking mode, cats randomly explore or observe their 

surroundings to find better positions. On the other hand, in the tracing mode, cats move towards the target with 

a mathematically calculated velocity. The tracing mode CSO algorithm is expressed in (4) and (5) [37]. 

 

𝑥𝑗𝑑𝑛𝑒𝑤 = (1 + 𝑟𝑎𝑛𝑑 ∙  𝑆𝑅𝐷) ∙ 𝑥𝑗𝑑𝑜𝑙𝑑 (4) 

 

𝑃ⅈ =
|𝐹𝑆𝑖−𝐹𝑆𝑏|

𝐹𝑆𝑚𝑎𝑥−𝐹𝑆𝑚𝑖𝑛
 , 𝑤ℎ𝑒𝑟𝑒 0 < ⅈ < 𝑗 (5) 

 

The seeking mode of CSO mimics the resting behavior of cats. There are four important parameters 

in this mode: seeking memory pool (SMP), seeking range of the selected dimension (SRD), count of 

dimensions to change (CDC), and self-position considering (SPC), which are manually set values. In each 

iteration of CSO, randomly select CDC dimensions to be mutated. Add or subtract a random value within 

SRD from the current value, replacing the old position 𝑥𝑗𝑑𝑜𝑙𝑑 with the new position 𝑥𝑗𝑑𝑛𝑒𝑤, as shown in (4). 

Here, 𝑥𝑗𝑑𝑛𝑒𝑤 represents the next position, 𝑗 denotes the cat index, 𝑑 means the dimension, and 𝑟𝑎𝑛𝑑 is a 

random number in the interval between 0 and 1. Based on probabilities, select one of the candidate points to 

be the following position for the cat. The candidate points with a higher fitness value are more likely to be 

chosen, as shown in (5). However, if all fitness values are equal, set the probability of selecting each 

candidate point to 1. If the goal is minimization, set 𝐹𝑆𝑏 = 𝐹𝑆𝑚𝑎𝑥 otherwise, if the goal is maximization, 

specify 𝐹𝑆𝑏=𝐹𝑆𝑚𝑖𝑛. Pseudocode 3 is the CSO algorithm in seeking mode. The seeking mode CSO algorithm 

is expressed in (6) and (7) [37]: 

 

𝑉𝑘,𝑑 = 𝑉𝑘,𝑑 + 𝑟1𝑐1(𝑥𝑏𝑒𝑠𝑡,𝑑 − 𝑥𝑘,𝑑) , 𝑤ℎ𝑒𝑟𝑒 𝑑 = 1,2, . . . , 𝑀 (6) 

 

𝑉𝑘,𝑑 = 𝑉𝑘,𝑑 + 𝑉𝑘,𝑑 (7) 

 

Pseudocode 3. Cat swarm optimization algorithm in seeking mode [37] 

1) Create 𝑗 instances of the current position of the cat, where 𝑗 =  𝑆𝑀𝑃. If SPC is a true condition, let  

𝑗 =  (𝑆𝑀𝑃 − 1), maintain the current position as an option among the possible candidates. 

2) For each instance, according to CDC, randomly increase or decrease SRD percents of the existing values 

and replace the former ones. 

3) Calculate the fitness values of all candidate points. 

4) If the case where not all fitness value are identical, calculate the selecting probability of each candidate 

point by (5) otherwise set all the selecting probability of each candidate point be 1. 

5) Randomly pick the point to move to from the candidate points, and replace the position of the cat 𝑘. 

 

In the first iteration of the tracing mode, the velocity values are randomly assigned for all 

dimensions of the cat's position. However, the velocity values need to be updated for each dimension 

according to (6) for the subsequent steps. If the velocity exceeds the maximum allowed value, it is set to the 

maximum velocity. Update the cat's position based on (7). Pseudocode 4 is the CSO algorithm in tracing 

mode referring to (6) and (7).  
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Pseudocode 4. Cat swarm optimization algorithm in tracing mode [38] 

1) Update the velocities for every dimension 𝑉𝑘,𝑑 as shown in (6). 

2) Verify that the velocities are within the maximum allowed velocities range. Adjust any velocity 

exceeding this range back to the maximum limit. 

3) Adjust the location of the cat 𝑘, according to (7). 

 

Based on two modes in the CSO algorithm, namely, seeking mode and tracing mode. Pseudocode 5 is the 

combination of the two modes. 

 

Pseudocode 5. Cat swarm optimization algorithm [38] 

1) Initialize by creating ‘N’ cats in the algorithm 

2) Place the cats randomly within an ‘M’-dimensional search area, assigning velocities that are within the 

predefined maximum bounds. Randomly determine a number of cats to engage in tracing mode based on 

the Mixing Ratio (MR), positioning the rest in seeking mode. 

3) Compute the fitness for each cat using the fitness function which measures their proximity to the 

objective, and memorize the location of the most optimal cat 𝑥𝑏𝑒𝑠𝑡. 

4) Relocate the cats based on their assigned modes: those in seeking mode undergo a different process, 

while those in tracing mode adjust their velocity and position according to specific formulas. 

5) Selectively switch a number of the cats back to tracing mode as per the MR, and the remainder continue 

in seeking mode. 

6) Check if the end conditions of the algorithm have been met; if so, stop the algorithm, otherwise cycle 

through steps 3 to 5 again. 

 

In the context of feature selection, the CSO algorithm operated by exploring the feature space to 

discover the optimal feature combinations. Through iterations between the seeking and tracing modes, CSO 

adaptively explored and utilized information from the feature space to identify feature subsets that provided 

the best performance for the used model. In this process, the algorithm aimed to balance exploration 

(searching for different feature combinations) and exploitation (following promising positions) to obtain an 

optimal solution. 

 

2.6.  Optimizing long short-term memory using hyperparameter tuning 

The hyperparameter tuning process was specifically directed towards optimizing the LSTM model 

to improve its performance in sentiment analysis. The primary hyperparameter adjusted in this study was the 

number of LSTM units, which determines the dimensionality of the cell state within the model and directly 

influences its ability to capture sequential dependencies in the data. An LSTM model was configured to 

classify the sentiment of the preprocessed cryptocurrency-related data. The optimized model configurations 

determined by PSO, ACO, and CSO were compared against a baseline LSTM without optimization. 

Evaluation metrics included accuracy, loss, and execution time, which provide insights into the model’s 

effectiveness and efficiency. The LSTM model’s performance was evaluated using accuracy, loss, and 

execution time. Accuracy measures the percentage of correct predictions; loss indicates model convergence 

and execution time assesses computational efficiency. Each metric was compared across the PSO-LSTM, 

ACO-LSTM, CSO-LSTM, and baseline LSTM models to determine the most effective optimization 

technique. The optimal configuration of the model was determined through hyperparameter tuning, as 

summarized in Table 2. 

 

 

Table 2. Hyperparameter tuning 
Algorithm Parameters Values 

LSTM Embedding input dimension 7818 

Embedding output dimension 300 

Embedding input length 25 

LSTM unit 256 (optimized by each swarm intelligence algorithms) 

LSTM dropout 0.2 

LSTM recurrent dropout 0.2 

Dense classes 2 

Dense activation sigmoid 

Optimizer Adam 

PSO, ACO, CSO n_particle, n_ants, n_cats 15 

num_iterations 50 

lb; ub 16; 256 
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3. RESULTS AND DISCUSSION 

3.1.  Experimental results 

Table 3 presents a comparison of each LSTM model configuration, including a standard LSTM 

model without optimization and LSTM models optimized using PSO, ACO, and CSO algorithms. Each 

configuration baseline, PSO-LSTM, ACO-LSTM, and CSO-LSTM was evaluated based on accuracy, loss, 

and execution time. The results of this tuning process, guided by each swarm intelligence algorithm, 

demonstrated that adjusting the LSTM units using swarm-based optimization significantly improved model 

performance. Each algorithm provided a unique perspective on optimal LSTM unit selection, reflecting the 

strengths of swarm intelligence in hyperparameter optimization. 

 

 

Table 3. Comparison of sentiment classification models 
LSTM optimizer Num LSTM unit Loss Accuracy Execution time (s) 

- 256 0.930019 0.853225 139.465759 

PSO 16 0.570487 0.860843 58.430918 

ACO 16 0.602706 0.853225 56.374625 

CSO 29 0.662189 0.859319 65.443925 

 

 

As shown in Table 3, the PSO-optimized LSTM achieved the highest accuracy at 86.08% with the 

lowest loss value of 0.570487 and a relatively low execution time of 58.43 seconds. Compared to the baseline 

LSTM model without optimization, which has a loss value of 0.930019 and an accuracy of 85.32%, the  

PSO-LSTM demonstrates improved performance, especially in terms of accuracy and efficiency. The  

PSO optimizer effectively identified a configuration with only 16 LSTM units, thereby balancing model 

performance and execution time. The ACO and CSO algorithms also achieved comparable results, though 

their accuracy and loss values were slightly lower than those of PSO. Nevertheless, both ACO and CSO 

significantly reduced execution time relative to the non-optimized model, demonstrating the effectiveness of 

swarm intelligence algorithms in accelerating the training process. 

 

3.2.  Model performance analysis 

The performance of the PSO-LSTM model during training and validation is shown in Figure 2. The 

left plot illustrates the model accuracy across epochs, with the training accuracy increasing to nearly 100% 

by the end of the training epochs. The validation accuracy stabilizes around 85%, indicating a potential issue 

with overfitting. This result suggests that the model might be learning features specific to the training data 

that do not generalize well to unseen data, which could impact its effectiveness in real-world applications. 

 

 

 
 

Figure 2. Model accuracy and model loss of LSTM using the PSO algorithm 

 

 

The right plot shows the training and validation loss over the epochs, where the training loss 

decreases rapidly, nearing zero by the final epoch. In contrast, the validation loss initially decreases but then 
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begins to rise slightly after the third epoch. This pattern of increasing validation loss alongside decreasing 

training loss indicates that the model may be memorizing the training data rather than learning generalizable 

patterns. To address this issue in future experiments, regularization techniques such as dropout could be 

employed to prevent overfitting and improve the model's robustness. 

 

3.3.  Confusion matrix and classification metrics 

Figure 3 presents the confusion matrix for the PSO-LSTM model, which reveals that the model 

correctly classified 831 instances as negative and 864 instances as positive. However, it also produced  

147 false positives and 127 false negatives. These results allow us to calculate important classification 

metrics that evaluate the model's performance. The overall accuracy of the model is 85.5%, reflecting its 

ability to correctly predict both positive and negative classes in most cases. The precision for the positive 

class, which measures the proportion of correct positive predictions out of all predicted positives, stands at 

approximately 85.5%. This high precision indicates that the model is generally reliable in identifying true 

positives, minimizing the occurrence of false alarms. 

 

 

 
 

Figure 3. Confusion matrix of LSTM using the PSO algorithm 

 

 

In terms of recall, which assesses the model's sensitivity to correctly identify actual positive cases, 

the PSO-LSTM model demonstrates a strong capability in detecting positive instances. However, there are 

still cases where the model fails to capture some positive examples, as evidenced by the false negatives in the 

confusion matrix. Finally, the F1-score, which balances precision and recall into a single metric, provides a 

comprehensive view of the model’s classification performance. The F1-score is especially useful in cases 

where there is a trade-off between precision and recall, as it reflects the model’s effectiveness in maintaining 

both a high precision and a strong recall. Overall, these metrics confirm that the PSO-LSTM model performs 

well, though it exhibits a minor tendency to misclassify certain instances, particularly when distinguishing 

between similar negative and positive cases. 

 

3.4.  Discussion 

Swarm intelligence algorithms effectively optimized the LSTM model by fine-tuning the number of 

units in the LSTM layer. This optimization, particularly through PSO, allowed for a significant reduction in 

execution time without compromising model accuracy. Such improvements underscore the potential of 

swarm intelligence in deep learning applications, especially for tasks involving high dimensional data like 

cryptocurrency sentiment analysis. 

 

3.5.  Limitations and implications for future research 

While the optimized models show promising results, the study is limited to cryptocurrency 

sentiment data and a fixed set of swarm intelligence algorithms. Future research could expand by integrating 
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hybrid optimization techniques and testing across diverse sentiment analysis tasks. The current findings lay 

the groundwork for further exploration of swarm intelligence in neural network optimization. 

 
 

4. CONCLUSION 

This study explores the effectiveness of integrating swarm intelligence algorithms namely PSO, 

ACO, and CSO with LSTM networks for sentiment analysis tasks. Each of these optimization techniques was 

employed to fine-tune the LSTM model, specifically adjusting the number of LSTM units to enhance 

performance metrics. Comparative analysis reveals that the PSO-LSTM model outperformed both the  

ACO-LSTM and CSO-LSTM models, achieving the highest accuracy of 86.08% and the lowest loss of 0.57, 

alongside the shortest execution time of 58.43 seconds. These results suggest that PSO optimization 

effectively enhances LSTM model performance, delivering superior accuracy and faster processing times 

compared to the other swarm intelligence algorithms used in this study. The analysis also underscores the 

value of using swarm intelligence algorithms in deep learning contexts. By applying these optimizations, it 

was possible to refine the LSTM architecture, leading to significant improvements in sentiment classification 

accuracy and computational efficiency. Additionally, the use of the PSO algorithm demonstrated robust 

parameter tuning capabilities, providing a balance between model complexity and accuracy that is suitable 

for sentiment analysis applications. Given the volatile and sentiment-driven nature of cryptocurrency 

markets, accurate and efficient sentiment analysis models are valuable for understanding public sentiment 

and making data-driven predictions. The integration of PSO with LSTM networks offers promising potential 

for real-time cryptocurrency sentiment analysis, which could support better decision-making in trading and 

investment. Future research could explore the application of other optimization techniques to further improve 

model performance in this domain. 
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