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 The increasing global demand for food necessitates the adoption of 

sustainable agricultural practices. Hydroponic farming, while efficient in 

resource utilization, faces challenges in accurately predicting stock levels 

and sales due to dynamic, ever-changing factors. This research presents an 

optimized ensemble framework for forecasting hydroponic stock levels and 

sales by integrating linear regression (LR), random forest (RF), and 

XGBoost, further enhanced through an evolutionary algorithm (EA). The 

proposed framework is evaluated using root mean square error (RMSE) and 

mean absolute error (MAE), demonstrating significant accuracy 

improvements over individual models. The ensemble model achieves an 

RMSE reduction of 43.82% for stock prediction and 55.3% for sales 

forecasting compared to the best-performing individual model. Additionally, 

local interpretable model-agnostic explanations (LIME) are employed to 

offer stakeholders clear insights into decision-making processes, such as 

identifying "number of harvested crops" and "sales data" as key drivers of 

prediction outcomes. This framework supports sustainable development 

goals (SDGs) 9.3, 12.3, and 12.C by promoting resource efficiency, reducing 

food waste, and improving small-scale farmer market access. Future 

research will explore real-time data integration for dynamic adaptation and 

further model enhancements. 

Keywords: 

Evolutionary algorithm 

Hydroponic farming 

Optimized ensemble model 

Predictive analytics 

Sustainable agriculture 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Ressa Priskila 

Department of Informatics Engineering, Faculty of Engineering, University of Palangka Raya  

Yos Sudarso st., Palangka Raya, Indonesia 

Email: ressa@it.upr.ac.id 

 

 

1. INTRODUCTION 

The increasing demand for sustainable agriculture has led to the rise of hydroponic farming, a 

resource-efficient cultivation method. However, hydroponic farms face significant challenges in stock 

management, including overstocking, understocking, and food waste [1]. Studies indicate that improper 

forecasting leads to up to 30% of produce spoilage in urban hydroponic farms due to inaccurate demand 

prediction and supply chain inefficiencies [2]. These inefficiencies highlight the critical need for advanced 

predictive analytics to optimize production and reduce losses. 

Existing forecasting models often struggle with the unique complexities of hydroponic farming, 

such as dynamic plant growth cycles, fluctuating weather conditions, and resource constraints [3], [4]. These 

challenges make it difficult to maintain optimal stock levels, often resulting in inefficiencies and financial 

losses. Traditional statistical models and single-machine learning approaches fail to capture the intricate, 

nonlinear relationships in hydroponic data, leading to inaccurate predictions [5], [6]. 

https://creativecommons.org/licenses/by-sa/4.0/
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To address this research gap, this study proposes an optimized ensemble framework that integrates linear 

regression (LR), random forest (RF), and XGBoost. These models complement each other by leveraging their 

unique strengths: LR captures linear trends in stock movement [7]. RF enhances robustness by handling nonlinear 

interactions and feature importance [8]. XGBoost improves accuracy through gradient boosting techniques [6]. 

The integration of an evolutionary algorithm (EA) optimizes model weighting to enhance predictive 

performance [9]. This method dynamically adjusts model contributions, reducing forecasting errors and 

improving adaptability. Additionally, the adoption of local interpretable model-agnostic explanations (LIME) 

enhances transparency by identifying key predictive factors, enabling stakeholders to make informed 

decisions regarding inventory control and demand forecasting [10], [11]. This research aligns with 

sustainable development goals (SDGs) by supporting SDG 12.3 (reducing food waste), SDG 9.3 (enhancing 

market access for small-scale farmers), and SDG 12.C (optimizing resource allocation). The proposed 

ensemble framework enhances prediction accuracy, helping farmers make data-driven decisions to minimize 

waste and optimize resources. Additionally, the interpretability provided by LIME improves transparency, 

ensuring that stakeholders can effectively manage production cycles for a more sustainable and efficient 

hydroponic farming ecosystem. 

The remainder of this paper is organized as: section 2 outlines the proposed methodology, including 

data acquisition, preprocessing, and model development. Section 3 presents the results and discussion, 

evaluating the performance of the proposed framework. Section 4 concludes with key insights, implications, 

and potential future research directions. 
 
 

2. METHOD 

This research consists of four main steps: data acquisition, model development, model evaluation, 

and interpretability. Figure 1 provides additional details on the process. Further explanations are available in 

the subsequent subsections. 
 

 

 
 

Figure 1. The development of an ensemble framework 
 

 

2.1.  Data acquisition 

The dataset used in this study was collected from a hydroponic farm over a span of 28 weeks. It 

includes key variables such as the number of crops planted, the number of crops harvested, and sales records. 

Data preprocessing involved handling missing values by calculating the remaining stock based on available 

data, such as harvest and sales quantities, and adding it to the stock for the following week, and splitting the 

dataset into an 80% training set and a 20% testing set to ensure the reliability of the model [12], [13]. 
 

2.2.  Model development 

The EA used in this study adjusts the weights of individual models-LR [14], RF [15], and XGBoost 

[16] to minimize prediction errors. Rather than assigning equal weights to these models, the EA dynamically 

optimizes their contributions based on their performance. The goal is to find the optimal weight for each 

model by minimizing prediction errors using performance metrics such as root mean square error (RMSE) 

and mean absolute error (MAE). This approach ensures that models with higher individual accuracy have a 

greater influence on the final prediction while maintaining the robustness of the ensemble. 

The optimization process begins by initializing a population of 100 individuals, each representing a 

unique combination of weights. Fitness evaluation is conducted to assess each individual’s performance 

based on RMSE and MAE, allowing the algorithm to identify the most effective weight assignments. Once 

the optimal weight combination is found, the ensemble model is evaluated using various performance 

metrics. Additionally, LIME is applied to explain the model's predictions, providing stakeholders with 

actionable insights into the factors driving stock and sales forecasts. 
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The selection mechanism retains the top 50% of individuals with the best performance for the next 

generation. To maintain diversity and avoid premature convergence, crossover and mutation operations are 

employed to introduce genetic variations. Crossover occurs with a probability of 50%, allowing weight 

combinations to share information, while mutation occurs with a 20% probability, introducing small variations to 

explore new potential solutions. The optimization process runs iteratively for 50 generations, gradually refining 

weight distributions until convergence is achieved. Through this iterative approach, the model dynamically 

adjusts the contributions of each algorithm to minimize prediction errors [9], [17]. The optimized weight 

assignments enhance the model’s adaptability, improving forecasting accuracy and decision-making efficiency. 
 

2.3.  Model evaluation 

The models were evaluated using RMSE and MAE scores. A comparative analysis was conducted 

to measure the differences in performance between individual models and the optimized ensemble. This 

analysis aimed to assess improvements in predictive accuracy and reliability [18]–[20]. 
 

2.4.  Interpretability with local interpretable model-agnostic explanations 

To ensure transparency, LIME was employed to analyze feature importance such as number 

harvested, sales data, remaining stock, and number of plants planted. This method helps explain prediction 

outcomes by illustrating the influence of key variables. By providing clearer insights, LIME enhances 

stakeholder trust in stock and sales predictions [21], [22]. 
 

 

3. RESULTS AND DISCUSSION 

This section presents the performance evaluation of the proposed ensemble framework, its 

interpretability, comparisons with prior research, and its implications for sustainable agricultural practices. 

The findings demonstrate the effectiveness of EA-based optimization in improving the predictive accuracy of 

hydroponic stock and sales forecasting. Additionally, the integration of LIME enhances the model’s 

transparency, making it more actionable for stakeholders. 
 

3.1.  Model performance evaluation 

Model performance was evaluated using RMSE and MAE to assess the accuracy of stock and sales 

predictions. Table 1 shows the RMSE and MAE values for each individual model and the ensemble model. 

The ensemble approach consistently outperforms LR, RF, and XGBoost in both metrics, demonstrating its 

ability to handle the complexities of hydroponic sales forecasting. Figure 2 visualizes the predicted versus 

actual remaining stock levels, highlighting the model's accuracy. Overall, the ensemble model provides more 

consistent predictions that are closer to the actual values. 
 

 

Table 1. Model performance comparison 
Model Remaining stock Sales 

RMSE MAE RMSE MAE 

LR 1.78 1.04 5.39 2.17 
RF 2.89 1.49 6.53 2.12 

XGBoost 4.27 1.19 16.60 3.32 

Ensemble model 1.00 0.93 2.41 1.66 

 

 

 
 

Figure 2. The predicted versus actual remaining stock levels 
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The ensemble model, optimized using an EA for weight adjustment, significantly reduces both 

RMSE and MAE values. This improvement demonstrates the effectiveness of combining multiple models 

through optimized weighting, leading to more reliable predictions. These enhancements are particularly 

valuable for small-scale hydroponic farmers, as they improve inventory management and sales forecasting, 

ultimately minimizing waste and optimizing resources [23]–[25]. For stock prediction, the optimized weights 

are 0.92 for LR, 0.52 for RF, and -0.26 for XGBoost. For sales prediction, the weights are 0.03 for LR, 0.72 

for RF, and 0.26 for XGBoost. The weight optimization process improves prediction accuracy, supporting 

more efficient stock management and reducing food waste. 

The ensemble model handles non-linearity and feature interactions by utilizing the strengths of RF 

and XGBoost. While LR captures only linear relationships, RF and XGBoost are capable of modeling 

complex, non-linear patterns and interactions between features. Therefore, even though LR does not account 

for feature interactions, the ensemble model combines the benefits of all three models, enabling it to capture 

both non-linearity and feature interactions effectively. 
 

3.2.  Interpretability of predictions 

To enhance the transparency of model decisions, LIME was employed to analyze the impact of 

various features on prediction outcomes as shown in Figure 3. The results indicate that "number harvested" 

and "sales data" are the most influential factors in determining remaining stock Figure 3(a), while "number 

harvested" and "remaining stock" play a crucial role in predicting sales Figure 3(b). For remaining stock 

predictions Figure 3(a), if the number of harvests is less than or equal to 974.25, the prediction decreases by 

5.68 units, indicating a strong negative impact. Conversely, if sales data is less than or equal to 975.00, the 

predicted stock increases by 4.30 units, suggesting that stock levels are expected to be higher when recent 

sales stay within this threshold. The number of plants planted has a negligible effect on this prediction. These 

findings highlight those fluctuations in harvest size and recent sales trends significantly influence stock 
availability, allowing farmers to better anticipate inventory levels. 

For sales predictions Figure 3(b), when the number of harvests is less than or equal to 974.25, the 

predicted sales decrease by 10.50 units, confirming the direct correlation between harvest size and sales 

volume. Additionally, if remaining stock exceeds 6.00 units, the prediction drops by 1.77 units, indicating 

that surplus inventory does not necessarily translate to higher sales. Similar to the stock prediction, the 

number of plants planted has an insignificant influence on the sales forecast. These insights demonstrate that 

maintaining an optimal harvest size and managing inventory effectively are critical for maximizing sales. By 

interpreting predictions through LIME, the framework provides actionable insights that enable farmers to 

make data-driven adjustments in production strategies. Understanding these feature contributions helps 

optimize inventory control, improve demand forecasting, and enhance resource allocation, leading to more 

efficient and sustainable hydroponic farming [26], [27]. 
 

 

 
(a) 

 

 
(b) 

 

Figure 3. LIME analysis for (a) remaining stock prediction and (b) sales prediction 
 
 

3.3.  Comparison with previous studies 

Previous research on hydroponic forecasting has predominantly utilized single machine learning 

models or statistical methods, which often struggle to adapt to diverse environmental conditions and market 
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fluctuations. These methods often lack generalizability and robustness, limiting their effectiveness in real-world 

hydroponic systems. Idoje et al. [28] emphasize the limitations of traditional machine learning algorithms when 

applied to hydroponic data, highlighting the need for more adaptive and optimized approaches. 

In contrast, our proposed EA-optimized ensemble framework overcomes these limitations by 

dynamically adjusting model weights, resulting in higher predictive accuracy, robustness, and interpretability. 

The improvements are supported by the lower RMSE and MAE scores, demonstrating the effectiveness of the 

optimization process. Compared to conventional approaches, our method optimally integrates multiple models, 

ensuring greater stability and improved generalization across diverse datasets [29]. 

Additionally, explainability has been largely overlooked in previous hydroponic forecasting 

research. Unlike earlier studies that focused solely on prediction accuracy, our work incorporates LIME to 

enhance model transparency. Razak et al. [30] highlighted, explainable artificial intelligence (XAI) is crucial 

for agricultural decision-making, as it allows stakeholders to understand the rationale behind predictions. Our 

framework ensures that model outputs are not only accurate but also interpretable, making it practical for 

real-world implementation. 
 

3.4.  Implications for sustainable practices 

The proposed framework contributes to sustainable agricultural practices by utilizing advanced predictive 

analytics. Improved forecasting capabilities enable better stock management, waste reduction, and support small-

scale hydroponic farmers in making informed decisions. By integrating machine learning and EA-based 

optimization, the framework enhances efficiency and adaptability in agricultural operations. A key contribution of 

this framework is its alignment with SDGs. It supports SDG 12.3 (reducing food waste) by optimizing stock 

management, which minimizes overproduction and spoilage. By providing more accurate predictions of supply 

and demand, the system helps reduce unnecessary resource consumption and financial losses. 
Furthermore, the framework contributes to SDG 9.3 (supporting small-scale farmers) by providing 

data-driven decision-making tools. These tools empower farmers with actionable insights, allowing them to 

make more strategic decisions and compete more effectively in the market. With improved forecasting and 

inventory control, small-scale hydroponic farmers can enhance productivity and reduce operational risks. 

Additionally, the framework advances SDG 12.C (improving resource efficiency) by fostering 

efficient resource use. By optimizing agricultural processes, it ensures that resources such as water, nutrients, 

and energy are utilized effectively. This contributes to a more sustainable approach to hydroponic farming, 

reducing environmental impact while enhancing productivity. Overall, the proposed framework promotes 

data-driven agriculture by improving efficiency, productivity, and sustainability. By minimizing 

inefficiencies and facilitating better decision-making, it benefits individual farmers and contributes to broader 

sustainability efforts in agricultural practices [31]. 
 

 

4. CONCLUSION 

This study demonstrates the effectiveness of an optimized ensemble framework combining LR, RF, 

and XGBoost models, refined through EA-based weight optimization, for accurately forecasting hydroponic 

stock and sales. By integrating LIME, the framework also enhances model interpretability, empowering 

informed decision-making. The improved predictive accuracy has significant implications for small-scale 

hydroponic farmers, supporting better inventory management, waste reduction, and resource optimization, 

which align with sustainable agriculture practices and contribute to achieving the SDGs. Future work will focus 

on incorporating real-time data and adaptive modeling techniques to further improve forecasting performance, 

responsiveness, and the overall effectiveness of the system in dynamic agricultural environments. 
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