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 Artificial intelligence (AI)-driven fault detection improves the reliability of 

solar energy by reducing the chances of system failures. However, existing 

single-stage object detection methods excel in accuracy but demand high 

computational resources, preventing seamless integration into embedded 

systems. This paper introduces a lightweight approach using YOLOv5, 

which incorporates a multi-backbone design, specifically tailored for 

accurate fault detection in solar cells. It evaluates YOLOv5 and 

TinyYOLOv5. The findings emphasize the effectiveness of YOLOv5l with 

Ghost backbone, particularly notable for its precision rates of 96% for faulty 

and 93% for non-faulty instances. Additionally, it showcases commendable 

mean average precision (mAP) scores, achieving 78% at an intersection over 

union (IoU) threshold of 0.5 and 72% at an IoU of 0.95. Additionally, 

YOLOv5_Ghost emerges as the optimal selection, showcasing competitive 

precision, processing speed of 42.1 giga floating point operations per second 

(GFLOPS), and remarkable efficiency with 2.4 million parameters. This 

evaluation underscores the effectiveness of YOLOv5 models, thereby 

leading to advanced solar energy technology significantly. 
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1. INTRODUCTION 

In recent years, solar power has surged as a primary renewable energy source, attracting global 

attention and investment. This shift emphasizes its potential to provide energy independence. Solar power's 

significance is particularly notable in addressing global energy demands while reducing reliance on fossil 

fuels [1]. Indeed, it can significantly mitigate greenhouse gas emissions and combat climate change. This is 

especially crucial in areas most affected by environmental degradation. Moreover, the economic benefits of 

solar power are substantial. The solar industry is experiencing rapid growth [2]. As the cost of solar panels 

continues to decline and government incentives encourage investment in solar infrastructure, the economic 

feasibility of solar power becomes increasingly evident. However, the effectiveness of solar energy systems 

faces significant challenges due to potential faults that can occur during the manufacturing or operation of 

solar cells [3]. Various faults, including microcracks, hot spots, soiling, shadowing, and bird droppings, pose 
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critical difficulty to the efficiency of solar energy systems within the photovoltaic (PV) system [4]. 

Addressing these faults is paramount for improving the efficiency of PV generation [5]. Consequently, the 

development of methods for smart detecting faults in solar cells holds significant importance [6]. In the 

literature, various techniques have been explored for detecting faults in solar cells, broadly categorized into 

image processing techniques, traditional methods such as visual inspection and I-V curve tracing, and 

artificial neural networks (ANNs) [7]. Each of these approaches has its own set of limitations: Conventional 

visual inspection of solar cells requires specialized equipment and manual examination, leading to labor-

intensive tasks and subjective outcomes [8]. Image processing techniques struggle with complex faults and 

environmental changes, primarily detecting surface-level issues. Infrared and Electroluminescence imaging, 

though effective, are costly and require specialized training, mainly suitable for surface-level detection [9]. 

Artificial intelligence (AI), particularly deep learning (DL) methods, is a powerful approach for fault 

detection in solar cells. However, it requires significant amounts of data and computational resources. 

Moreover, it faces limitations in environments where data is scarce or resources are constrained [10]. 

Leveraging AI, particularly DL, is essential for improving the performance and durability of solar 

energy systems by enabling the automated and precise identification of various faults in solar panels [11]. 

AI methods offer an efficient solution for early fault detection, capable of analyzing large datasets 

accurately and in a timely manner [12]. This led to significant research efforts focused on detecting 

anomalies in PV systems. Janarthanan et al. [13] presented a methodology in their study aimed at 

advancing the development of resilient fuzzy logic systems (FLSs) and ANNs for PV fault detection. Their 

research highlights the effectiveness of fault identification approaches in accurately identifying distinct 

fault categories, including impaired PV modules and partial shading of PV units. Akram et al. [14] 

conducted research on automating the detection of defects in PV modules using infrared images. Their 

study employed isolated DL and develop-model transfer learning techniques. They achieved a high 

average accuracy of 98.67% using a light CNN architecture for an isolated trained model. Additionally, 

they utilized transfer learning by pre-training a base model on electroluminescence images of PV cells and 

fine-tuning it on infrared images. Prabhakaran et al. [15] introduces the real-time multi variant deep 

learning model (RMVDM). The model demonstrates improved performance while requiring less 

computational time, underscoring its efficiency and practical applicability. Ramírez et al. [16] introduces 

an innovative method for monitoring PV panel condition by integrating a radiometric sensor with an 

unmanned aerial vehicle (UAV). This approach detects various faults, including hot spots and faulty cells, 

with commendable accuracy, advancing fault detection for PV systems. Han et al. [17] propose a cutting-

edge method for detecting solar panel defects using thermal imaging, employing principal component 

analysis (PCA) and independent component analysis (ICA) techniques. This facilitates easy defect 

identification without costly electrical detection circuitry, reducing time and costs associated with 

detection procedures. 

In this study, we introduce an improved YOLO detection model with an architecture fine-tuned for 

efficient and precise faults detection in PV modules. The contributing points of this research include, 

employing a range of data augmentation methods to offer practical suggestions for effective data 

augmentation, enhancing the accuracy of the training models. Exploiting the benefits of YOLOv5, we 

introduce an adopted YOLOv5 network designed for defect detection in PV panels. The objective is to create 

an automated detection system that excels in accuracy, computational efficiency, and model size 

compactness. Integrating a modified YOLOv5 tiny model by substituting the original backbone with ghost, 

MOBILENET, pre-processing and localization control (PPLC), SHUFFLE, and YOLOv5lEfficientLit 

architectures. The results of the proposed approach demonstrate that the YOLOv5Ghost-lightweight model 

successfully detects faults in PV systems, achieving the highest average precision of 95%, outperforming 

YOLOv5s which reached 74.8%. 

The rest of the document is structured as follows: section 2 outlines the YOLO models we propose. 

Section 3 contains the presentation and discussion of the experimental results. Lastly, in section 4, we delve 

into the conclusion and future work. 

 

 

2. METHOD 

The process begins with data acquisition, as shown in the Figure 1 describing the architectural 

blueprint of the proposed methodology, where a variety of data are collected from solar panel installations. 

This data is then processed and pre-processed to ensure its quality and suitability for training. Subsequently, 

the models are trained using advanced algorithms, leveraging techniques such as DL and pattern recognition 

to detect subtle faults within the solar panels. Through iterative training, the models learn to identify 

anomalies indicative of potential faults. The ultimate output of this comprehensive approach is a smart fault 

detection system capable of accurately identifying issues within solar panel arrays. 
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Figure 1. Comprehensive overview: architectural blueprint of the proposed methodology 

 

 

In this research, data acquisition involved utilizing a database from three PV module technologies 

monocrystalline (m-Si), polycrystalline (p-Si) and amorpha (a-Si) in Errachidia, Morocco as shown in  

Figure 2. Images captured with a high-resolution camera depicted various anomalies like dust accumulation, 

shading, cracks, and bird droppings as illustrated in Figure 3. The dataset was expanded to 6,300 images 

using augmentation techniques, with 80% allocated for training and 20% for testing. This dataset was merged 

with another Roboflow dataset to improve training [18]. Augmentation techniques included horizontal 

flipping, cropping with zoom (0%-20%), and brightness variation (-25% to +25%). 

 

 

 
 

 

    
Cracks Bird droppings Dust accumulation Shading 

 

Figure 3. An array of solar panel faults: a visual guide to common issues 

 

 

2.1.  YOLO: algorithms and architectural frameworks 

The YOLO architecture consists of three main components: the backbone, neck, and head [19]. 

These elements, which may vary across different YOLO versions, play crucial roles in determining the 

model's speed and accuracy [20]. This subsection offers an insight into the network architecture of YOLOv5, 

well-known for its advanced detection capabilities across diverse scales [21]. The core architecture, depicted 

in Figure 4, relies on a backbone serving as a feature extractor, employing a convolutional neural network 

(CNN) trained on extensive datasets such as ImageNet. YOLOv5 utilizes the CSPDarknet53 backbone, 

chosen for its effectiveness in capturing features from input images. Additionally, YOLOv5 integrates 
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techniques like feature pyramid network (FPN) and path aggregation network (PAN) [22]. FPN involves  

up-sampling the output feature map (C3, C4, and C5) from various convolutional down-sampling operations [23], 

generating multiple new feature maps (P3, P4, and P5) to enhance target detection across a variety of scales [24]. 

 

 

 
 

Figure 4. YOLOv5 architecture 

 

 

This paper focuses on Lightweight YOLOv5 models, aiming to enhance defect detection in solar 

panels. Various YOLOv5-Multibackbone models were utilized as shown in Figure 5, including 

YOLOv5lEfficientLite, YOLOv5lGhost, YOLOv5lMobilenetv3Small, YOLOv5lPP-LC, and 

YOLOv5lShuffle. YOLOv5lEfficientLite integrates a customized EfficientNetLite backbone, while 

YOLOv5lGhost features a Ghostnet-based backbone for multi-scale feature fusion. YOLOv5lPP-LC utilizes 

MobileNetv3Small architecture, and YOLOv5lPP-LCNet employs PP-LCNet architecture, both enhancing 

object detection capabilities. Lastly, YOLOv5lShuffleNetV2 uses ShuffleNetV2_InvertedResidual modules 

for feature extraction, each with specific parameters tailored for improved detection accuracy. 

 

 

 
 

Figure 5. General framework for fault detection in solar panels 

 

 

2.2.  Performance assessment 

To evaluate the effectiveness of each model, diverse performance metrics including accuracy, 

precision, recall, F1-score [25], and mean average precision (mAP) are calculated [26]. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
(𝑇𝑃 + 𝑇𝑁) 

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
 (1) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 (2) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃 

(𝑇𝑃 + 𝐹𝑁)
 (3) 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
 (4) 
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𝑚𝐴𝑃 =
1

𝑁
∑ 𝐴𝑃𝑖𝑁

𝑖=1   (5) 

 

Where 𝑁 is the total number of classes and 𝐴𝑃𝑖 is the average precision for class 𝑖. 
 

 

3. RESULTS AND DISCUSSION 

In examining the results of the proposed models for fault detection in solar panels, it is clear to focus 

on various critical aspects of their performance. Among these considerations, computational costs associated 

with training each variant emerge as a significant factor. Table 1 summarizes the performance metrics of 

YOLOv5, YOLOv5Light, and YOLOv8 models on the validation set. YOLOv5Ghost achieves the highest 

precision of 0.95, followed by YOLOv5EfficientNet with 0.92. YOLOv8 demonstrates the highest recall at 

0.89, while YOLOv5 and YOLOv5Light models exhibit recalls between 0.61 and 0.68. In terms of 

mAP@50, YOLOv8 leads with 0.94, followed closely by YOLOv5s with 0.85. YOLO_Ghost excels in 

processing speed at 42.1 giga floating point operations per second (GFLOPS), with 24,226,831 parameters. 

Despite having fewer parameters, YOLOv5Ghost maintains competitive precision and processing speed, 

making it a strong choice. YOLOv5Ghost stands out with a precision value of 0.95, showcasing its ability to 

minimize false positive detections defects on solar panels, closely followed by YOLOv5EfficientNet at 0.92. 

YOLOv8 excels in recall at 0.89. However, YOLOv5 and YOLOv5Light models show lower recall values 

(0.61 to 0.68), suggesting limitations in capturing true positive instances. YOLOv8 leads in mAP@50 with 

0.94, followed by YOLOv5s at 0.85, while YOLO Ghost among YOLOLight models scores 0.77. These 

results highlight various strengths and trade-offs across models. In terms of parameters and processing speed, 

YOLOGhost balances well with 24,226,831 parameters and a processing speed of 42.1 GFLOPS. Despite 

operating with more parameters (46,113,663 and 43,608,150), YOLOv5 and YOLOv8 exhibit faster 

processing speeds at 107.7 GFLOPS and 164.8 GFLOPS. This indicates YOLO_Ghost's commendable  

trade-off between parameters and processing efficiency. 

Figure 6 illustrates the experimental results, showcasing mAP50 and mAP95 performances. YOLOv8 

demonstrated the highest values, followed by YOLOv5. In the case of the light model, YOLOGhost exhibited 

the best performance, while YOLOShuffle showed lower values. Loss values for YOLOGhost and 

YOLOEfficient were around 0.006 as shown in Figure 7. This paper employs diverse methods to enhance 

backbones, explaining performance enhancements and potential applications. 

 

 

Table 1. The performance metrics of the proposed models 
Model backbone Precision Recall mAP@

0.05 

mAP@

0.95 

NP Model 

layers 

CPU 

time 

Processing speed 

(GFLOPS) 

YOLOv5l Ghost 95 63 77 70 24226831 552 45.5 42.1 

YOLOv5l Mobilenetv3 85 60 75 67 20317981 337 40.5 38.2 

YOLOv5lPP-LC 90 60 75 67 21588991 294 44.2 41.5 
YOLOv5l Shuffle 87 64 76 68 21210447 361 43.2 40.4 

EfficientLite 92 61 76 67 22958935 298 42.5 44 

YOLOv5l 96 68 84 79 46113663 267 48.4 107.7 

YOLOv3_tiny 94 64 78 66 8669002 38 32.7 12.9 

YOLOv8 90 89 94 89 43608150 268 30.2 164.8 

 

 

 
 

Figure 6. mAP50 and mAP95 of each models 
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Figure 7. Precision and recall of the models 

 

 

The precision-confidence curve and recall-confidence curve prominently exhibit elevated values, 

specifically 0.98 and 0.96, respectively, underscoring the model's efficiency in accurately identifying both 

faulty and non-faulty solar panels. These metrics reflect a robust performance in terms of precision and 

recall, crucial for ensuring a reliable identification process. Furthermore, the precision-recall values of 0.96 

for faulty panels and 0.90 for non-faulty panels, as illustrated in Figure 8, emphasize the model's ability to 

maintain high precision while effectively capturing instances of both faulty and non-faulty solar panels. 

These findings highlight the model's balanced performance in achieving accurate detection across diverse 

scenarios, contributing to its overall efficacy in solar panel defect detection. After examining the validation 

batch predictions, it becomes evident that the model accurately identifies and delineates defects like cracks, 

soiling, shadow, and bird dropping, as depicted in Figure 9. This underscores the proficiency of lightweight 

YOLO models in detecting and categorizing such anomalies. 

 

 

 
 

Figure 8. The precision-confidence curve and recall-confidence curve of the best light model 

 

 

 
 

Figure 9. Results of detected faults in solar panels 
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4. CONCLUSION 

In this study, the application of multiple YOLO models for defect detection on the surfaces of solar 

panels was explored. Considering the set of 5040 images used to train the models, the research results provide 

compelling evidence that the YOLOv5Gost-lightweight model successfully achieves the goal of defect 

detection in PV systems, with the highest average precision of 95% compared to YOLOv5s which reached 

74.8%. The comparative results between YOLOv5l Ghost and YOLOv5l highlight significant differences in 

terms of precision, number of parameters, CPU time, and processing speed. While YOLOv5l achieves a 

slightly higher precision of over 96%, YOLOv5l Ghost attains a precision of 95%. However, YOLOv5l Ghost 

features a lighter architecture with only 24,226,831 parameters compared to 46,113,663 for YOLOv5l, which 

can be advantageous for embedded systems with limited resources. Future directions include exploring a more 

concise backbone structure and an efficient feature fusion method for improved speed. 
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