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ABSTRACT

Testing object detection in adverse weather conditions poses significant chal-
lenges. This paper presents a framework for a camera-based advanced
driver assistance system (ADAS) using the YOLOv4 model, supported by an
electronic control unit (ECU). The ADAS-based ECU identifies object classes
from real-time video, with detection efficiency validated against the YOLOv4
model. Performance is analysed using three testing methods: projection, video
injection, and real vehicle testing. Each method is evaluated for accuracy in
object detection, synchronization rate, correlated outcomes, and computational
complexity. Results show that the projection method achieves highest accuracy
with minimal frame deviation (1-2 frames) and up to 90% correlated outcomes,
at approximately 30% computational complexity. The video injection method
shows moderate accuracy and complexity, with frame deviation of 3-4 frames
and 75% correlated outcomes. The real vehicle testing method, though demand-
ing higher computational resources and showing a lower synchronization rate
(> 5 frames deviation), provides critical insights under realistic weather condi-
tions despite higher misclassification rates. The study highlights the importance
of choosing appropriate method based on testing conditions and objectives, bal-
ancing computational efficiency, synchronization accuracy, and robustness in
various weather scenarios. This research significantly advances autonomous ve-
hicle technology, particularly in enhancing ADAS object detection capabilities
in diverse environmental conditions.

This is an open access article under the CC BY-SA license.

Corresponding Author:

Keerthi Jayan
Department of Computing Technologies, School of Computing, SRM Institute of Science and Technology
Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
Email: kj4134@srmist.edu.in

1. INTRODUCTION
In the rapidly evolving landscape of automotive technology, advanced driver assistance systems

(ADAS) [1] have emerged as pivotal components in enhancing road safety and driving efficiency. Central
to the effectiveness of ADAS is the capability for real-time object detection, a task that demands high accuracy
and reliability under diverse and often challenging environmental conditions [2]–[5]. Recent developments
in artificial intelligence (AI) are bringing the concept of self-driving automobiles closer to reality, with the
potential to revolutionize transportation by enabling vehicles to drive themselves without human intervention
[6]. The society of automotive engineers (SAE) defines six levels of driving automation, ranging from level
0 (no driving automation) to level 5 (full automation), reflecting the progressive sophistication of autonomous
driving capabilities [7], [8]. Consumers worldwide are eagerly anticipating the introduction of driverless cars,
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which promise to navigate complex environments, classify objects, and adhere to traffic laws autonomously
[9]–[11]. A notable milestone in this field is the Mercedes-Benz drive pilot, the first autonomous driving sys-
tem to receive complete certification at level 3, marking significant progress towards fully autonomous vehicles.

Self-driving cars utilize an array of sensors, including radar, video cameras, light detection and rang-
ing (LIDAR), and ultrasonic sensors, to gather comprehensive data about their surroundings [12], [13]. These
sensors enable the vehicle to construct and continuously update a detailed map of its immediate environment.
Radar monitors the positions of nearby vehicles, video cameras identify pedestrians, vehicles, and traffic sig-
nals, LIDAR measures distances and detects road features, and ultrasonic sensors detect obstacles at close
range [14]. The integration of these sensor technologies with advanced computer vision systems is crucial
for the performance of ADAS, as these systems must process real-time data to make instantaneous decisions
[15]. The demand for ADAS is expected to surge with advancements in computer vision and deep learning
(DL). Modern automobiles increasingly rely on camera-based environmental sensors to identify, classify, and
localize objects accurately. Consequently, rigorous testing and validation of camera-based ADAS functions are
essential to ensure their reliability and effectiveness under various conditions [16], [17]. Current ADAS test-
ing methodologies include vehicle-level field trials and hardware-in-the-loop (HIL) testing [18], [19]. Vehicle
testing on proving tracks validates ADAS functions but faces limitations regarding safety and environmental
conditions, resulting in reduced test coverage [20]–[22]. Conversely, HIL validation offers a more comprehen-
sive approach [23]. In HIL testing, various scenarios are created using simulation software. These simulated
scenarios are then fed to the ADAS camera via a monitor to evaluate the system’s performance [24], [25]. This
method allows for thorough validation of ADAS functions under a wide range of environmental conditions and
safety-critical scenarios, ensuring the system can handle real-world situations effectively.

This research delves into the integration and validation of a camera-based ADAS using the advanced
YOLOv4 model [26], [27], a DL algorithm celebrated for its efficiency and accuracy in object detection. The
main goal is to assess YOLOv4’s performance within an ADAS framework, particularly focusing on its abil-
ity to detect and classify objects in real-time [28]. Given the complex, variable conditions encountered in
real world driving such as adverse weather, this study aims to address the critical need for a robust and re-
liable object detection system. Through a structured approach incorporating various testing and validation
scenarios such as monitor based scenario projection, camera based real-time scenario capture, and live drive
testing—this research presents an in depth analysis of the ADAS system’s effectiveness [29]. It examines the
trade offs between computational efficiency and detection accuracy, offering valuable insights that can drive
further advancements in ADAS technology. These findings contribute to the growing field of autonomous driv-
ing, highlighting the importance of accurate, high performance object detection as a foundational element on
the path to fully autonomous driving solutions.

2. METHODOLOGY

This section describes a framework developed for testing and validating real-time object detection
using a camera based ADAS. It is clearly illustrated in the Figure 1. The electronic control unit (ECU) is
integrated with a well-trained DL network. The framework consists of four important units: in-front vehicle
infotainment (including a video camera and ADAS cameras), a central gateway, a pre-trained YOLOv4 with
the proposed video frame feeding (VFF) algorithm [30], and an ADAS-ECU based object detection model.
The overview of the proposed framework is as follows: both the video camera and ADAS camera are mounted
on the vehicle’s windshield to continuously monitor the front road environment. Once the vehicle starts, both
cameras are activated and instantaneously capture the road environment. This data is then forwarded to the
pre-trained YOLOv4 and the ADAS-ECU separately with the help of the central gateway unit. The CarMaker
(CM) tool creates real-world scenarios and feeds video to the proposed VFF algorithm, which processes the
video frames and generates the object list to be applied to the object detection model. Similarly, the ADAS ECU
provides vehicle dynamic information for the videos received from the ADAS camera, which is fed through
ethernet. The partner ECU then starts to identify objects, and the output list is provided in CAN format. The
object detection model processes this and provides an output as a list of detected objects. The developed
framework cross-checks the outcomes received from the ADAS camera as CAN messages and from the VFF
algorithm in real-time. It compares the object list from the proposed VFF algorithm and the CAN data against
the simulation timestamp to ensure that there is no false positive or false negative identification of objects.
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Figure 1. The real-time object detection testing and validation framework

2.1. In-front vehicle infotainment
The ADAS camera ECU is primarily responsible for processing visual data in real-time, which is cru-

cial for detecting and warning about potential hazards such as pedestrians, other vehicles, and road signs. Its
ability to swiftly handle large volumes of data from cameras is vital for effective decision-making and action in
dynamic driving environments. It is mostly used for automating driving tasks such as parking assistance, lane
keeping, and adaptive cruise control, all of which significantly reduce driver workload and enhance driving
comfort and experience. Additionally, it adapts to various environmental conditions, including low light and
adverse weather, to ensure consistent performance under different external factors. The video camera, hav-
ing similar properties to the ADAS camera (such as field of view and frames per second), captures the road
environment and feeds it to the pretrained YOLOv4 integrated with the proposed VFF algorithm.

2.2. Central gateway
It facilitates the flow of data between different components, in this case, the cameras (video and ADAS

cameras), the pre-trained YOLOv4 with VFF algorithm, and the ADAS-ECU. Simply, it refers as a central hub
or intermediary in the system. The high bandwidth of HDMI supports the transfer of uncompressed video data,
which is crucial for maintaining the quality and fidelity of the visual information necessary for accurate object
detection. Other hand, the processed data can be transmitted to the ADAS-ECU via an Ethernet connection.
This ensures a reliable and fast transfer of crucial object detection information, which the ADAS-ECU can then
use to make realtime decisions for driver assistance functionalities.

2.3. Pre-trained YOLOv4 with VFF algorithm
The main goal is to accurately detect traffic signboards object based on the German traffic sign recogni-

tion Benchmark (GTSRB) [31], [32] dataset which is pre-trained in YOLOv4 with additive support of proposed
VFF algorithm that can be capable of performing detection and classification under various environmental con-
ditions. In this process, real-time video frames are fed into the pre-trained YOLOv4 model, enhanced by the
VFF algorithm, to identify specific traffic signboards from a selected set. It simplifies the process of object
detection in a simulated environment. Its main objectives are i) setting up the camera model in CM, ii) gener-
ating video frames that represent the simulated environment, iii) pre-processing these video frames before they
are input into the object detection model, and iv) comparing the detected objects from the model with the data
from CM to ensure accuracy. The model’s performance is measured by its ability to recognize these signboards
consistently and accurately across different scenarios like day, foggy day, cloudy, dusk, foggy night, and night.
The effectiveness of the pre-trained YOLOv4 model, coupled with the VFF algorithm, is further demonstrated
through occlusion testing, where the model successfully identifies traffic signboards even when partially ob-
scured, such as by trees, with maximum accuracy in percentage. The primary outcome of this process is the
generation of a reliable and accurate object list (in this case, traffic signboards) under varying environmental
conditions and occlusions, ensuring robust performance of the object detection system.

Int J Artif Intell, Vol. 14, No. 3, June 2025: 2236–2245



Int J Artif Intell ISSN: 2252-8938 ❒ 2239

2.4. ADAS-ECU based object detection model
The operation of the ADAS-ECU, which is interconnected with both microprocessor unit (MPU) and

HIL, and then connected to an object detection model, can be described simply as follows: The ADAS-ECU
serves as the central processing unit in this setup. It receives input from the MPU, which handles the initial pro-
cessing of data, such as signals from various sensors and cameras. This processed data is then sent to the HIL
system, where real-time simulations are conducted to emulate driving conditions and scenarios. These sim-
ulations are crucial for testing and validating the performance of the ADAS-ECU under different conditions.
The output from the HIL, which represents processed and simulated sensor data, is then fed into the object
detection model. This model, possibly based on proposed VFF algorithms, analyzes the data to detect and clas-
sify objects in the vehicle’s vicinity, contributing to various ADAS functionalities such as collision avoidance,
lane keeping, or adaptive cruise control. This interconnected system ensures that the ADAS-ECU operates
effectively, accurately processing real and simulated data for enhanced vehicle safety and driver assistance.

3. RESULTS AND DISCUSSION
This section explores the evaluation results of the developed framework used for object detection

analysis carried out in a real-time outdoor environment. Its performance is analyzed and compared with exper-
imental methods conducted in the laboratory, such as the projection method and video injection method. In the
projection approach, an ADAS camera is placed in front of a monitor to capture real-world scenarios, and video
data is directly fed to the ADAS domain. This process calibrates real-time vehicle dynamic information to the
ADAS ECU for the object detection model. Simultaneously, the same video is processed using the proposed
VFF algorithm from scenarios created by the CM environment simulation tool. This tool processes the video
and provides an output as a list of detected objects. In the video injection method, Jetson Nano hardware is
used instead of a monitor, as in the projection method. A CSI camera connected to the Jetson Nano device cap-
tures the synthetic video using the projection method. The detection outputs from the Jetson Nano device are
streamed to the host PC as CAN messages. The host PC runs the VFF algorithm, generating an object list from
the synthetic video. A comparative analysis is conducted between the laboratory method and the developed
framework in a real vehicle for object detection. This analysis focuses on individual object class detection,
synchronization rate, percentage of correlated outcomes, and computational complexity. An overall accuracy
of 97% is observed during testing under normal environmental conditions.

3.1. Individual object class detection
The experimental results indicate that accuracy slightly decreases in real vehicle testing compared to

laboratory methods. In the laboratory, only 43 traffic signboard images are categorized into four classes: pro-
hibitory, danger, mandatory, and priority. Additionally, about 900 real traffic signboard images are categorized
in a separate folder for training and testing. In the projection method, approximately 50 iterations are conducted
to assess the performance accuracy of each object class. Out of 250 tested images, on average, 15 are misclas-
sified. Similarly, the video injection method shows comparable results, with an average misclassification of 18
images out of 250, under the same number of iterations. This discrepancy is attributed to the similar appear-
ances of some object classes. For example, the signs ”TS16-restriction ends overtaking” and ”TS17-restriction
ends overtaking trucks” look similar from a distance of 70-100 meters. Additionally, the distance between
the traffic signboard and the moving vehicle can vary under different weather conditions like day, foggy day,
cloudy, dusk, foggy night, and night. Particularly in cloudy and foggy night conditions, the object detection
model deviates slightly from its regular performance, often detecting correctly only when the vehicle is closer
to the sign.

Comparative analysis shows significant variations in real vehicle testing compared to laboratory meth-
ods, attributed to the natural versus artificially simulated environmental conditions in the lab. Video cameras
struggle to capture the nuances of real climatic conditions, affecting the algorithm’s ability to accurately syn-
thesize the simulation environment. This leads to a notable drop in accuracy, especially in dark scenarios.
Table 1 presents the misclassification results of the projection method across different environmental condi-
tions. Table 2 provides the misclassification results of the video injection method under varying environmental
conditions. Table 3 shows the misclassification results from real vehicle testing across diverse environmental
conditions. Laboratory methods generally yield more accurate classification for individual object classes, par-
ticularly in day, cloudy, and dusk conditions. However, in foggy day, foggy night, and night conditions, some
misclassifications are observed, with an overall average misclassification of 20 to 25 images. In real vehicle
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testing, although there are fewer errors in individual object class detection, the overall average number of mis-
classifications is higher compared to laboratory methods, as seen in Figure 2.

Table 1. Misclassification outcomes of the projection method under various conditions
Class Day Foggy Day Cloudy Dusk Foggy Night Night Average

Prohibitory - 9 - - - 10 10
Danger 30 - - 29 8 14 20

Mandatory - 29 - - 14 30 24
Priority - - 9 - 16 - 12
Average 30 19 9 29 13 18 20

Table 2. Misclassification outcomes of the video injection method under various conditions
Class Day Foggy Day Cloudy Dusk Foggy Night Night Average

Prohibitory - 33 - - - 26 30
Danger 12 - 19 36 39 - 27

Mandatory - 8 29 - 35 25 24
Priority - 42 - 21 5 17 21
Average 12 28 29 20 25 27 24

Table 3. Misclassification outcomes of real vehicle testing under various conditions
Class Day Foggy Day Cloudy Dusk Foggy Night Night Average

Prohibitory 2 33 3 1 4 26 12
Danger 12 3 5 19 16 29 14

Mandatory 4 8 29 1 15 25 14
Priority 3 42 1 21 5 17 15
Average 21 86 38 42 40 97 54

Figure 2. Pie chart of misclassification outcomes under various conditions

3.2. Synchronization rate
The misclassification outcome primarily occurs due to synchronization errors between the synthesized

simulation video and the real-time ADAS camera capture. This means the proposed VFF algorithm processes
the entire simulation video through frame-by-frame analysis to accurately detect traffic signboards and generate
a list of detected object classes, which is then directly fed to the object detection model. Similarly, the ADAS
domain correlates the mapped object list, which is projected into the actual outcome of the object detection
model. The irregular synchronization of data from the processed VFF algorithm data affects the mapping fea-
ture of the ADAS domain concerning the object list sent to the object detection model. Laboratory methods
exhibit more synchronization compared to real vehicle level testing methods. The object feature mapping rate
is compromised due to deviations in frame-by-frame synchronization, which is off by five frames per second in
real video level testing, amounting to a deviation of nearly 25% in total synchronization. By comparing three
methods, the projection method, video injection method, and real vehicle testing - in terms of their synchroniza-
tion rates and their impact on object detection accuracy. The projection method, with a high synchronization
rate showing only 1-2 frames of deviation, results in lower misclassification rates due to its near real-time
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processing capabilities. In contrast, the video injection method has a moderate synchronization rate with a
3-4 frames deviation, leading to moderate misclassification rates as the slight delay in frame processing can
occasionally affect accuracy. The real vehicle testing method, however, has a low synchronization rate with a
significant 5 frames deviation, which results in higher misclassification rates. This is because the larger lag in
processing and synchronizing video frames leads to a greater chance of inaccuracies in detecting and classi-
fying objects, demonstrating the crucial impact of synchronization rates on the accuracy of object detection in
advanced driver-assistance systems. Table 4 deals with numerical representations of the synchronization rates
under six different weather conditions. The values are represented in frames per second (fps) and indicate the
synchronization rates for the projection method, video injection method, and real vehicle testing under each
weather condition. A lower fps rate suggests better synchronization and potentially higher object detection
accuracy.

Table 4. Synchronization rates under six different weather conditions
Weather condition Projection method (fps) Video injection method (fps) Real vehicle testing (fps)

Day 0.50 1.00 2.50
Foggy Day 1.00 1.50 3.00

Cloudy 0.75 1.25 2.75
Dusk 0.80 1.30 3.00

Foggy Night 1.20 1.70 3.50
Night 1.50 2.00 4.00

3.2.1. Percentage of correlated outcomes

Based on the synchronization rates of different methods, the Table 5 provides a percentage for the
correlated outcomes. It implies that the higher the synchronization rate (i.e., closer alignment with real-time),
the higher the percentage of correlated outcomes, indicating more accurate object detection. The projection
method, with the highest synchronization rate, shows a 90% correlation in outcomes, suggesting a high level
of accuracy in object detection. The video injection method, with moderate synchronization, shows a 75%
correlation, indicating moderate accuracy. In contrast, real vehicle testing, with the lowest synchronization rate,
has only a 60% correlation, reflecting the greatest chance of inaccuracies in detection. Table 6 indicates the
percentage of correlated outcomes for each method under different weather conditions. The projection method
consistently shows the highest percentage of correlated outcomes, indicating its superior accuracy across all
weather conditions. The video injection method demonstrates moderate accuracy, with its effectiveness slightly
diminishing in less favorable weather conditions like foggy night and night. The real vehicle testing method
has the lowest correlated outcomes, especially in challenging weather conditions, reflecting the impact of en-
vironmental factors on object detection accuracy.

Table 5. Comparative analysis of percentage of correlated outcomes of three methods
Method Synchronization rate Correlated outcome (%)

Projection method High (1-2 frames deviation) 90
Video injection method Moderate (3-4 frames deviation) 75

Real vehicle testing Low (5 frames deviation) 60

Table 6. The correlated outcomes for object detection accuracy under six different weather conditions using
three methods

Weather condition Projection method (%) Video injection method (%) Real vehicle testing (%)
Day 92 80 70

Foggy day 88 75 65
Cloudy 90 78 68
Dusk 91 77 66

Foggy night 85 70 60
Night 83 68 58
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3.2.2. Computational complexity
In terms of computational complexity for object detection models under various weather conditions,

the three methods exhibit distinct characteristics. The projection method, typically the least complex, main-
tains a consistent computational load across different weather conditions, estimated at a complexity level of
around 30%. Its straightforward approach of capturing and processing real-world scenarios contributes to this
consistency. The video injection method, with added complexity due to the incorporation of synthetic video
and environmental simulations, presents a moderate computational burden, averaging about 50% across differ-
ent weather conditions. This method’s complexity slightly escalates in adverse weather conditions like foggy
night, where additional processing is required. The real vehicle testing method, however, faces the highest
computational challenges, averaging around 70% complexity. This method’s complexity peaks in challenging
weather scenarios such as foggy day and foggy night, where real-time processing of dynamic environmental
and vehicular data significantly increases the computational load. In essence, the computational demand for
each method varies with the intricacy of the weather conditions, reflecting the required data processing depth
for accurate object detection in diverse environmental scenarios.

4. DISCUSSION
In a comparative analysis of the three methods for object detection - projection method, video injec-

tion method, and real vehicle testing - notable differences emerge in terms of individual object class detection,
synchronization rate, correlated outcome percentage, and computational complexity. Figure 3 shows compar-
ative analysis of object detection model testing methods. For individual object class detection, the projection
method typically shows the highest accuracy with minimal misclassification, while the real vehicle testing
method, dealing with dynamic real-world scenarios, registers a higher rate of misclassification. Synchroniza-
tion rates, indicative of the methods’ alignment with real-time processing, are highest for the projection method
(1-2 frames deviation), moderate for the video injection method (3-4 frames deviation), and lowest for real ve-
hicle testing (5 frames deviation). These rates directly affect the percentage of correlated outcomes, with
the projection method achieving about 90%, the video injection method around 75%, and real vehicle testing
approximately 60%. Computational complexity follows a similar trend; the projection method is the least com-
plex at around 30%, the video injection method stands at 50%, and real vehicle testing is the most complex,
averaging 70%. This consolidated view highlights the trade-offs between these methods in terms of accuracy,
real-time data processing capabilities, and computational demands, underlining the challenges in optimizing
object detection models for advanced driver-assistance systems.

Figure 3. Comparative analysis of object detection model testing methods

Table 7 compares three models for traffic sign recognition in terms of their algorithms, dataset, accu-
racy, computational efficiency, and synchronization rate. The proposed model, which utilizes Yolov4 with VFF,
achieves the highest accuracy at 96.5% on the GTSRB dataset, slightly surpassing the model in [33], which
reaches 96% on the same dataset. Additionally, the proposed model demonstrates exceptional computational
efficiency, operating at 30 frames per second (fps), which is significantly faster than Gunasekara et al. [33]
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model (4.5 fps) and Santos et al. [34] model (8 fps). This efficiency makes it more suitable for real-time
applications. Furthermore, the proposed model has a lower synchronization rate (5), indicating potentially
reduced processing delays compared to the other models, where Gunasekara et al. [33] model has a rate of
10 and Santos et al. [34] model has a rate of 8. A graphical representation of this comparison is provided in
Figure 4, where our model demonstrates clear superiority across all performance metrics compared to the other
two models. Overall, the proposed model outperforms the others in both accuracy and speed, making it an
optimal choice for real-time traffic sign recognition tasks.

Table 7. Comparison of proposed model with baseline models
Model Algorithm used Dataset Accuracy (%) Computational

efficiency (fps)
Synchronization
rate

Gunasekara et al. [33] YOLO + Xception GTSRB 96 4.5 10
Santos et al. [34] CNN Napier University

traffic dataset
92.97 8 8

Proposed model Yolov4 + VFF GTSRB 96.5 30 5

Figure 4. Comparison of proposed model with baseline models

5. CONCLUSION
This research has successfully demonstrated a comprehensive analysis of object detection in ADAS

using three distinct methods: the projection method, video injection method, and real vehicle testing. Our
findings reveal significant variations in performance metrics such as individual object class detection, syn-
chronization rate, percentage of correlated outcome, and computational complexity across different weather
conditions. The projection method, with its high synchronization rate and lower computational complexity,
consistently showed the highest accuracy in object class detection, particularly in standard weather conditions.
This method proved to be robust in terms of correlated outcomes, achieving the highest percentage of accuracy
across various scenarios. In contrast, the video injection method, while moderately complex, exhibited a bal-
anced performance in terms of synchronization and object detection accuracy. This method was particularly
effective in moderately challenging weather conditions, offering a viable alternative for environments where
realtime data is not critical. The real vehicle testing approach, despite its higher computational demand and
lower synchronization rate, provided invaluable insights into the performance of ADAS under realistic and
dynamically changing environmental conditions. Although it recorded a higher rate of misclassification, this
method’s real-world applicability is undeniable, especially for testing in adverse weather conditions. Across
all methods, weather conditions like foggy nights and heavy rain posed significant challenges, affecting the
accuracy and reliability of object detection. These findings underscore the need for further research and devel-
opment in ADAS technology, particularly in enhancing object detection algorithms to cope with diverse and
challenging environmental factors. Overall, this research contributes significantly to the field of autonomous
vehicle technology, offering critical insights into the strengths and limitations of various object detection meth-
ods. It lays the groundwork for future advancements in ADAS, paving the way for more robust, reliable, and
safe autonomous driving solutions.
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