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 Botnets are a common cyber-attack method on the internet, causing 

infrastructure damage, data theft, and malware distribution. The continuous 

evolution and adaptation to enhanced defense tactics make botnets a strong 

and difficult threat to combat. In light of this, the study's main objective was 

to find out how well techniques like principal component analysis (PCA), 

synthetic minority oversampling technique (SMOTE), and long short-term 

memory (LSTM) can help find botnet attacks. PCA shows the ability to 

reduce the feature dimensions in network data, allowing for a more efficient 

and effective representation of the patterns contained. The SMOTE 

addresses class imbalances in the dataset, enhancing the model's ability to 

recognize suspicious activity. Furthermore, LSTM classifies sequential data, 

understanding complex network patterns and behaviors often used by 

botnets. The combination of these three methods provided a substantial 

improvement in detecting suspicious botnet activities. We also evaluated the 

effectiveness using performance metrics such as accuracy, precision, recall, 

and F1-score. The results showed an accuracy of 96.77%, precision of 

88.95%, recall of 88.58%, and F1-score of 88.64%, indicating that the 

proposed model was reliable in detecting botnet traffic compared to other 

deep learning models. Furthermore, LSTM can classify sequential data, 

understanding complex network patterns and behaviors often used by 

botnets.  
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1. INTRODUCTION 

A botnet is a group of computers hacked and controlled through the internet using malware malware 

[1]–[3] by hackers without the knowledge of their owners. Specifically, hackers use botnets for various 

malicious activities like distributed denial of service (DDoS) attacks, data theft, email infiltration, and 

malware distribution [4], [5]. It comprises three main components. The first is the botmaster, an individual or 

entity that controls, manages, and organizes the infected network's operations. The command and control 

(C&C) server is the second component, which functions as a central server to record or control the computers 

infected by malware. This server facilitates communication between the botmaster and the bots dispersed 

throughout the network. Finally, bots refer to computers or devices infected with malware that are capable of 

https://creativecommons.org/licenses/by-sa/4.0/
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executing instructions given by the C&C server. The botmaster, C&C server, and bots' network 

communication system allow them to control and direct the bots remotely [4], [5]. 

Machine learning methods such as naive Bayesian, Bayesian networks, and decision trees performed 

botnet attack detection in previous investigations [6], [7]. The results demonstrated the efficient 

implementation of supervised learning algorithms for attack classification. Nearest neighbors, naïve Bayesian, 

support vector machine (SVM), artificial neural networks (ANN), and Gaussian-based classifiers were used in 

other studies to look at network traffic related to host and flow features [8]–[11]. Meanwhile, some scientific 

studies have identified weaknesses in applying machine learning methods for detecting botnets, particularly in 

attack classification. The rapid evolution and variety of botnet attacks often complicate the selection of 

features used in model training, leading to the main weaknesses. The development of increasingly complex 

attacks leads to a diverse range of features that may indicate botnets, adding to the complexity of classification. 

To address these weaknesses, certain studies have proposed the application of deep learning methods such as 

long short-term memory (LSTM) for detecting cyber attacks [12]–[15]. 

LSTM is an ANN architecture capable of effectively understanding and modeling temporal patterns 

of sequential data [13], [16]. It excels at processing long, sequential data by efficiently retaining and 

managing both long-term and short-term information. These features make LSTM highly suitable for tackling 

botnet detection issues, particularly where network traffic data tends to be sequential and dynamic [17]. The 

system can learn suspicious behavior patterns from network traffic, including unusual communication 

between devices, abnormal activity on rarely used ports, and unnatural coordination. Additionally, it can 

address class imbalance issues where the number of positive samples (botnet attack) is usually smaller than 

the number of negative samples (benign activity). This fact shows that the use of LSTM for botnet detection 

is an effective step in building a security system that is adaptive and responsive to continuously evolving 

cyber attacks. By using artificial intelligence and sequential pattern modeling, LSTM enhances the detection 

and response capabilities against botnet attacks efficiently and effectively. 

By integrating dimension reduction techniques like principal component analysis (PCA) and class 

imbalance handling, such as the synthetic minority oversampling technique (SMOTE), we can optimize the use 

of LSTM in botnet attack detection [18]. Several studies have shown that LSTM has some problems, such as the 

chance of overfitting data with many features and issues with class imbalance [19]–[21]. Therefore, integrating 

PCA can help reduce the dimensions of complex features and mitigate the risk of overfitting. The use of 

SMOTE is also capable of improving the balance between classes in the dataset, allowing LSTM to learn better 

patterns related to botnet attacks [18], [22]–[25]. We anticipate that this combination will enable LSTM to 

generate more informative feature representations, surmount botnet attack detection challenges, and boost the 

accuracy and reliability of the deployed detection system. Thus, this paper proposes the stacked LSTM 

incorporation into intrusion detection systems (IDS) to address the accuracy issue in detecting botnet malware. 

 

 

2. RELATED STUDIES 

Researchers have conducted several studies on the use of machine and deep learning to detect botnet 

attacks and enhance network security. These efforts involve the development of various methods to create 

models that can detect attacks with optimal accuracy and speed. Table 1 summarizes some important works 

on the existing detection and classification methods. 
 

 

Table 1. Related studies 
Author Method Dataset Result (%) 

Jagadeesan and Amutha [26] ESVNN CTU-13 86.84 

Bijalwan et al. [27] Ensemble ISCX 93.37. 
Hoang and Nguyen [28] Naïve Bayes 

C4.5 

KNN 
RF 

Domain name and T1 training set Naïve Bayes = 86.50 

C4.5 = 90.10 

KNN = 90.30 
RF = 90.80 

Kudugunta and Ferrara [29] LSTM Cresci 96.33 

Saurabh et al. [30] Stacked LSTM UNSW NB15 and BoTIoT datasets 99.99 

 

 

Jagadeesan and Amutha [26] introduced a new detection model known as the enhanced support 

vector neural network (ESVNN). To improve classification accuracy, we enhance this model by selecting 

appropriate features from the dataset's data traffic flow. Observing constant response packets allows us to 

identify features such as bot response packet ratio, initial packet length, ratio, and small packets. We then use 

these features as inputs for the proposed ESVNN classifier or prediction model, and apply the artificial flora 

(AF) algorithm to improve the performance of support vector neural network (SVNN). The results show that 
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this botnet detection model achieves better accuracy and F-measure, showing a precision of 0.8709, recall of 

0.8636, accuracy of 0.8684, and F-score of 0.8669. 

Bijalwan et al. [27] used the ISCX dataset to train and test ensemble classifier algorithms to identify 

bots. The results showed that using the voting method of the ensemble classifier increased accuracy to 

96.41% from 93.37%. We also conducted investigations to test multiple machine learning algorithms on a 

domain dataset. The results showed accuracy for various models, where naïve Bayes achieved 86.50%, C4.5 

had 90.10%, k-nearest neighbors (KNN) reached 90.30%, and random forest (RF) was 90.80% [28]. 

Kudugunta and Ferrara [29] reported that they used the LSTM algorithm on the Cresci dataset to detect bots. 

racted contextual features from user metadata as additional inputs for the LSTM network, showing an 

accuracy of 96.33%. On the other hand, Saurabh et al. [30] created a network intrusion detection systems 

(NIDS) model using stacked and bidirectional LSTM variants, as well as the UNSW_NB15 and BoT-internet 

of things (IoT) datasets. Their model was 97% accurate.  

 

2.1.  Botnet 

A botnet is a network of computers infected by malware and controlled remotely by an unauthorized 

individual, known as a botmaster [31]. Botnets pose a severe threat to internet security because they can obtain 

data for illegal activities like DDoS attacks, spamming, data theft, and malware distribution. The ability to 

control botnets through a C&C infrastructure sets them apart from other types of malware [32], [33]. Due to 

differences in time zones, languages, and applicable laws, cyber security authorities find it challenging to trace 

and handle the distributed infected hosts of botnets worldwide. The flexibility, scalability, and evasion 

methods employed by botnets present a significant threat that necessitates international cooperation and 

coordinated efforts to counter. Moreover, Figure 1 shows an illustration of a botnet lifecycle. 

 

 

 
 

Figure 1. Botnet lifecycle 

 

 

The botnet has several possible C&C communication topologies that affect how the botmaster 

communicates with infected hosts. These include the centralized C&C model, which has a central point for 

managing and relaying messages between bots and the botmaster. The model is relatively easy to implement and 

customize, but due to the identifiable central point, it is vulnerable to detection as an attack. Furthermore, there is 

the peer-to-peer (P2P)-based C&C model, which is an evolution from the centralized model. An unstructured 

C&C model is also available, where bots do not actively contact other bots or the botmaster. This model monitors 

each incoming connection from the botmaster and randomly forwards encrypted messages to other bots. Based 

on the method, the botmaster can remain effectively hidden, although greater effort is required in monitoring and 

managing incoming communications. Understanding the various suitable C&C models becomes crucial in 

combating botnets to facilitate the development of effective detection and protection strategies [34]. 

 

2.2.  Long short-term memory 

LSTM as shown in Figure 2, is a variant of recurrent neural network (RNN) designed to address the 

issues of vanishing and exploding gradients in RNN [35]. It uses hidden units that function to store input over 

long periods [36] and comprises three gates, namely the input, the forget, and the output. Specifically, the 

forget gate is responsible for discarding old memories, the input gate receives new data by determining 

memory updates. The output gate combines short-term and long-term memory to produce the current memory 

output [35], [37]. The equations for the LSTM gates are expressed as in (1) to (6) [37]. For the input gate it, the 
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equation is detailed in (1). Where xt represents the input value at time t, W is the weight matrix at each gate,  

hi-1 is the hidden state at the previous time step, and b is the bias value for each gate. For the forget gate ft, the 

equation is detailed in (2). For the output gate ot, the equation is detailed in (3). Where �̃�𝑡
⬚ is the cell candidate 

computed at each time step to update the memory cell, the equation is detailed in (4). Therefore, from these (1) 

to (4), the current cell memory (ct), and hidden state (ht) can be detailed in (5) and (6).  
 

𝑖𝑡 = 𝜎(𝑊𝑖[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (1) 
 

𝑓𝑡 = 𝜎(𝑊𝑓[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (2) 

 

𝑜𝑡 = 𝜎(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (3) 
 

�̃�𝑡
⬚ = 𝑡𝑎𝑛ℎ(𝑊𝑐[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) (4) 

 

𝑐𝑡 = 𝑓𝑡 ∗ 𝑐𝑡−1 + 𝑖𝑡 ∗ �̃�𝑡
⬚ (5) 

 

ℎ𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ 𝑐𝑡 (6) 
 

 

 
 

Figure 2. LSTM architecture [21], [38], [39] 
 

 

3. METHOD 

3.1.  Proposed models 

In this study, the models were tested using the CSE-CIC-IDS2018 dataset, which was filtered to 

extract botnet attack traffic and benign. The SMOTE method was applied to address the imbalance in the 

amount of data. Furthermore, the data was divided into training and testing datasets with a certain ratio after 

completing the preprocessing process. After the preparation stage, the study proceeded with the construction 

and testing of the models by processing data using LSTM, and their performance was evaluated based on 

specific parameters. The final stage included analyzing the results of the previous evaluations and the 

conducted process, as shown in Figure 3. 
 

 

Labeling

SMOTE LSTM Network

IDS Model Detection of attack

Feature extraction

PCA
Dataset
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Testing dataset

Optimal 

performance

Update hyperparameter
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Figure 3. Study method 
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3.2.  Dataset  

This study uses the CSE-CIC-IDS 2018 dataset from the University of New Brunswick (UNB) or 

the Canadian Institute for cyber security. The dataset comprises seven categories, namely brute force, web 

attack, DoS attack, DDoS attack, botnet, infiltration, and benign. The attack infrastructure consisted of 50 

machines, while the victims included 5 departments with 420 machines and 30 servers. This dataset 

comprises each machine network traffic and system logs [40], including a list of attack types and their 

duration. All attack scenarios were collected in Pcaps files and event logs from each machine. This data 

extracted 83 network traffic features, as shown in Table 2. To view the details of the feature list in the 

dataset, please refer to CSE-CIC-IDS2018 on web [40]. 

 

 

Table 2. Network traffic features dataset CSE-CIC-IDS 2018 [25], [41] 
Feature Number Description 

01 to 04 Fundamental characteristics of network connections 
05 to 16 Characteristics of network packets 

17 to 22 Attributes of network flows 

23 to 45 Statistics of network flows 
46 to 63 Traffic features related to content 

64 to 67 Characteristics of network subflows 

68 to 79 General traffic features 
80 to 83 Fundamental features of network connections 

 

 

3.3.  Data preprocessing 

Preprocessing stage, including data cleaning and transformation, is carried out to prepare data 

effectively for model training and testing contexts. Specifically, data cleaning is performed to ensure data 

integrity, consistency, and relevance within a dataset. This process includes identifying and correcting errors 

as well as removing meaningless data that could impact the analysis and models. The initial step in data 

cleaning is removing duplicates, where entries with identical values are identified and eliminated to maintain 

model accuracy. Additionally, inaccurate or irrelevant data (noisy data) is removed, focusing on identifying 

entries that do not fit the dataset structure. Data cleaning serves as a crucial step to ensure the data quality 

used in analysis and producing accurate results. This is followed by data transformation, which includes two 

important steps, namely data encoding and normalization.  

 

3.4.  Classification model 

Classification model predicts the class of data, categorizing attack as binary or multi-class to 

distinguish between benign and malicious network traffic in the context of intrusion detection system (IDS). 

This complexity puts pressure on algorithms in terms of computational power and time. Each dataset is 

evaluated and categorized as benign or botnet in the classification process, which is used to identify unusual 

patterns, detect anomalies, and recognize misuse. In this study, the architecture of the model is stacked 

LSTM, with the design presented in Figure 4. Specifically, LSTM layers are stacked to ensure that the lowest 

and highest hidden layers are fully connected in a feedforward relationship.  
 

 

 
 

Figure 4. Stacked LSTM architecture design 
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Input 
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Stacked LSTM is designed based on the principle that multiple layers of nonlinear mapping between 

input and output are used for learning hierarchical systems. In Figure 4, the output from the hidden layers 

propagates forward, serving as one of the inputs to the next LSTM layer. Specifically, each layer receives 

input from the previous and produces output that becomes the input for the next layer. Through this process, 

the model can extract increasingly complex feature representations from sequential data. The main advantage 

of stacked LSTM is the ability to handle the processing of long and complex sequence data effectively. 

Furthermore, it has the capability to learn more abstract patterns, perform better prediction, classification, or 

sequential data analysis. The general formula for stacked LSTM is not significantly different from a single 

LSTM but considers the relationships between each stacked layer. The formula can be represented in terms 

of forget gate, input gate, output gate, candidate cell state, cell state, and hidden state. The step-by-step 

process is as follows, the input at time t(𝑥𝑡) is fed into the first LSTM layer. Moreover, the 3 main gates that 

control the flow of information gate in each layer include the forget, input, and output. In (8), the forget gate 

determines which information needs to be discarded from the previous cell state (𝑐𝑡−1). This is performed by 

multiplying the previous cell state by the output of a sigmoid function using weights 𝑊𝑓, 𝑈𝑓, and bias 𝑏𝑓, 

which applied to input 𝑥𝑡 as well as the previous hidden state (ℎ𝑡−1) (8). In (9), the input gate determines the 

new information stored in the cell state. This is performed by computing the sigmoid function of weights 𝑊𝑖, 

𝑈𝑖, and bias 𝑏𝑖, applied to the input 𝑥𝑡  and the previous hidden state (9). In (10), the candidate cell value 

(�̃�𝑡
⬚) is calculated using the tanh function, which combines the input 𝑥𝑡 and the previous hidden state with 

weights 𝑊𝑐, 𝑈𝑐, and bias 𝑏𝑐. In (11), the cell state is updated by combining the previous cell state modified 

by the forget gate with the candidate cell value modified by the input gate. In (12), the output gate determines 

the output of the hidden state based on the updated cell state. This is carried out by computing the sigmoid 

function of weights 𝑊𝑜, 𝑈𝑜, and bias 𝑏𝑜,: in the input 𝑥𝑡  and the previous hidden state. In (13), the hidden 

state(ℎ𝑡) is obtained by multiplying the output gate with the tanh function of the updated cell state. 

After the process in the first layer is completed, the obtained hidden state (ℎ𝑡) is used as the input 

(𝑥𝑡) for the next LSTM layer, which is repeated for others. The lower layers capture simpler and more local 

patterns, while the upper layers capture more complex and global patterns. Through these stages, stacked 

LSTM can handle long and complex data sequences more effectively compared to single LSTM. 

Additionally, stacked allows each layer to process and extract higher-level features, enhancing the model's 

ability to understand and predict sequential data.  

 

𝑓𝑡
(𝑙)

= 𝜎(𝑊𝑓
(𝑙)

𝑥𝑡 + 𝑈𝑓
(𝑙)

ℎ𝑡−1
(𝑙)

+ 𝑏𝑓
(𝑙)

) (8) 

 

𝑖𝑡
(𝑙)

= 𝜎(𝑊𝑖
(𝑙)

𝑥𝑡 + 𝑈𝑖
(𝑙)

ℎ𝑡−1
(𝑙)

+ 𝑏𝑖
(𝑙)

) (9) 

 

�̃�𝑡
(𝑙)

= tanh(𝑊𝑐
(𝑙)

𝑥𝑡 + 𝑈𝑐
(𝑙)

ℎ𝑡−1
(𝑙)

+ 𝑏𝑐
(𝑙)

) (10) 

 

𝑐𝑡
(𝑙)

= 𝑓𝑡
(𝑙)

∗ 𝑐𝑡−1
(𝑙)

+ 𝑖𝑡
(𝑙)

∗ �̃�𝑡
(𝑙)

 (11) 

 

𝑜𝑡
(𝑙)

= 𝜎(𝑊𝑜
(𝑙)

𝑥𝑡 + 𝑈𝑜
(𝑙)

ℎ𝑡−1
(𝑙)

+ 𝑏𝑜
(𝑙)

) (12) 

 

ℎ𝑡
(𝑙)

= 𝑜𝑡
(𝑙)

∗ tanh(𝑐𝑡
(𝑙)

) (13) 

 

 

4. EXPERIMENTS 

4.1.  Experiment setup 

This study used the CSE-CIC-IDS 2018 dataset shown in Figure 5(a), which includes various 

network attacks, including botnet. The primary focus of data processing was to handle missing values, feature 

normalization, and encoding categorical variables. Relevant features were selected for botnet detection using 

PCA and the dataset was split into training and testing sets, with a standard ratio of 80:20. This division 

maintains the distribution of botnet attack instances to avoid class imbalance. 

The botnet dataset was obtained from CSE-CIC-IDS2018, consisting of 286,191 data samples 

shown in Figure 5(b). The benign data samples were selected from the dataset and combined with botnet data 

samples. This combination was performed in a balanced proportion between benign and botnet data to ensure 

that the resulting dataset could be effectively used for training and evaluating botnet detection models. 

Additionally, the study applied the SMOTE to increase the number of samples in the minority class, which is 

the botnet data. This process ensures balancing the proportion between the two classes to avoid an imbalance 

that could affect the model's performance in detecting botnet attack. The experiments were conducted under 
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several scenarios and on hardware with specifications detailed in Table 3. The first scenario includes 

selecting input features to be used, while other scenarios were designed based on the combination of 

hyperparameter configurations for stacked LSTM.  

 

 

 
(a) 

 

 
(b) 

 

Figure 5. Dataset overview and statistics: (a) distribution of class data in CSE-CIC-IDS2018 and (b) 

comparison of benign and botnet 

 

 

Table 3. Hardware specifications for processing stacked LSTM 
Component Specification 

CPU 16 Core 
Memory 32 GB 

Hardisk 1 TB 

Networks 1 Gbps 

 

 

The hardware infrastructure described in this study ensured optimal performance for processing 

stacked LSTM models, using high computational capabilities and fast data access speeds. Python was used 

for data processing tasks, model training, and evaluation. Data manipulation and analysis were facilitated 

using Pandas, primarily for dataset handling, while NumPy performed numerical operations and array 

handling. Scikit-learn assisted in data preprocessing tasks, including scaling, dataset splitting, and evaluation 

metrics. Data visualization and graph construction were based on Matplotlib and Seaborn libraries, while 

TensorFlow and Keras were used for building, training, and evaluating stacked LSTM models. Interactive 

development and visualization of results were supported by Jupyter Notebook, while Anaconda simplifies the 

management of the Python environment and its dependencies. This integrated method ensures the efficient 

development and evaluation of stacked LSTM models for various applications. 
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4.2.  Tuning hyperparameter 

In the design of stacked LSTM network, this study explores various configurations to determine the 

most optimal model. In Table 4, several LSTM parameters were used such as nodes, dropout, batch size, 

learning rate, and epochs. Methods such as grid search were used for hyperparameter optimization to 

determine the best combination for stacked LSTM model with the highest performance in botnet detection 

tasks. 

 

 

Table 4. Hyperparameter configuration 
Hyperparameter Value 

LSTM Node 32, 64, 128, 256, 512 

Dropout 0.1, 0.2, 0.3, 0.4, 0.5 

Batch Size 128, 256, 512, 1,024, 2,048 
Learning Rate 0.01, 0.001,0.0001, 0.00001, 0.000001 

Loss function Binary cross entropy 

Activation Function Sigmoid 
Number of epochs 10, 20, 30, 40, 50 

 

 

Testing was conducted by inputting parameters into the model to be tested to determine the best 

hyperparameter, which would be used as the main parameters. From the experiments with tunning 

hyperparameters shown in Table 5, it was observed that increasing the number of node units in the neural 

network (LSTM) model leads to decreased prediction accuracy. The results suggested that increasing the 

model complexity by adding more node units did not improve performance, showing the potential to cause 

decreased accuracy and overfitting on the training data. This showed the need for adjusting and managing the 

model complexity to avoid excessively capturing noise signals from irrelevant training data. Subsequently, 

testing was conducted on the dropout parameter to examine its impact on model performance, with the results 

listed in Table 6.  

 

 

Table 5. Tuning hyperparameters of number of nodes 
Unit, banodes Dropout Activation Function Learning rate Batch size Epoch Accuracy (%) 

32 0.1 Sigmoid 0.01 128 10 94.34 
64 0.1 Sigmoid 0.01 128 10 96.49 

128 0.1 Sigmoid 0.01 128 10 96.29 

256 0.1 Sigmoid 0.01 128 10 95.82 
512 0.1 Sigmoid 0.01 128 10 95.52 

 

 

Table 6. Tuning hyperparameter dropout 
Unit nodes Dropout Function activation Learning rate Batch size Epoch Accuracy (%) 

32 0.1 Sigmoid 0.01 128 10 91.34 
32 0.2 Sigmoid 0.01 128 10 92.62 

32 0.3 Sigmoid 0.01 128 10 94.34 

32 0.4 Sigmoid 0.01 128 10 94.12 
32 0.5 Sigmoid 0.01 128 10 94.21 

 

 

The impact of dropout on model performance requires consideration, as a regularization method 

used to prevent overfitting by randomly deactivating some neurons during the training process. In this 

dataset, dropout was increased from 0.1 to 0.5 alongside a rise in the number of node units. The results 

showed that higher dropout led to increased accuracy, where the highest value was achieved in the third 

experiment with a dropout of 0.3 (94.34%). This showed that higher dropout usage could help reduce 

overfitting and improve the model generalization. 

In Table 7, several experiments were conducted with various learning rate values to determine the 

optimal learning rate for the neural network model. Meanwhile, other parameters, such as the number of node 

units, dropout rate, activation function, batch size, and number of epochs, were kept constant. The results 

showed significant variation in model accuracy. In the first experiment, with a learning rate of 0.01, the 

model achieved the highest accuracy of 94.34%. However, when the learning rate was reduced to 0.001 in 

the second experiment, the accuracy significantly dropped to 89.65%. Further reduction in the learning rate to 

0.0001 and 0.00001 led to model accuracies of 61.62% and 69.00%, respectively, showing that a learning 

rate excessively small did not sufficiently optimize weight updates in the network. At the lowest learning rate 
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of 0.000001, the model accuracy further decreased to 55.10%, emphasizing that a very small learning rate 

was ineffective in training the model. A learning rate that is too high can cause the model to be unstable and 

fail to achieve optimal convergence, while an excessively high value can lead to slow convergence and 

failure to effectively learn patterns in the data. The experimental results showed that a learning rate of 0.01 

provided the best performance in this scenario, making it the optimal value for training the neural network 

model.  

 

 

Table 7. Tuning hyperparameter learning rate 
Unit nodes Dropout Function activation Learning rate Batch size Epoch Accuracy (%) 

32 0.3 Sigmoid 0.01 128 10 94.34 

32 0.3 Sigmoid 0.001 128 10 89.65 

32 0.3 Sigmoid 0.0001 128 10 61.62 
32 0.3 Sigmoid 0.00001 128 10 69.00 

32 0.3 Sigmoid 0.000001 128 10 55.10 

 

 

In Table 8, an experiment was conducted to test the impact of varying batch sizes on the neural 

network model, while keeping other parameters constant to determine the most suitable batch size. The 

results showed that a batch size of 128 provided the highest accuracy at 94.34%. Increasing the batch size to 

256 caused a significant drop in accuracy to 89.58%, and a further decrease to 88.23% was observed at 512. 

At a batch size of 1,024, accuracy slightly improved to 89.70%, while size 2,048 had 90.43%, showing 

improvement over the previous batch size. These results showed that a smaller batch size of 128 allowed the 

model to learn more effectively, updating weights more frequently and in greater detail. Larger batch sizes 

reduced the frequency of weight updates, leading to poorer generalization from the training data. Therefore, a 

batch size of 128 was the most optimal selection for the neural network model with this configuration. The 

optimal parameters obtained from the tuning results were used as the main hyperparameters, as shown in 

Table 9.  

 

 

Table 8. Tuning hyperparameter batch size 
Unit nodes Dropout Function activation Learning rate Batch size Epoch Accuracy (%) 

32 0.3 Sigmoid 0.01 128 10 94.34 

32 0.3 Sigmoid 0.01 256 10 89.58 
32 0.3 Sigmoid 0.01 512 10 88.23 

32 0.3 Sigmoid 0.01 1,024 10 89.70 

32 0.3 Sigmoid 0.01 2,048 10 90.43 

 

 

Table 9. Optimal hyperparameter 
Parameter Value 

Number of unit nodes 32 
Activation function of stacked LSTM layer Sigmoid 

Batch size 128 

Loss function Binary crossentropy 
Learning rate 0.01 

Optimizer function Sigmoid 

Dropout 0.3 
Epoch 10 

 

 

4.3.  Discussions 

After obtaining optimal hyperparameters for the LSTM and stacked LSTM models, the next step 

was the implementation on the testing data for performance evaluation. In this study, the main evaluation 

metrics used are: accuracy, precision, recall, and F1-score, to gain a comprehensive understanding of the 

model effectiveness in handling the dataset. The results provided valuable insights into assessing whether the 

developed model performs adequately for the intended application purposes or requires further adjustments. 

Therefore, the use of LSTM and stacked LSTM after tuning ideal hyperparameters would provide deep 

insights into the model capability to handle classification tasks on the given dataset. 

The training and testing performances in Figure 6(a) showed stable accuracy values at epoch 10, 

indicating that the model had reached a sufficient convergence point at that stage. Convergence suggests that 

the model had learned well from the training data and could consistently make predictions on the testing data. 

At this point, the incremental increase in accuracy between subsequent epochs is no longer significant, 
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showing that additional training iterations may not significantly improve model performance. Although the 

experiment was set to run for 50 epochs, achieving stabilization by epoch 10 suggested that further training 

iterations might not provide significant benefits. Therefore, stopping the training at epoch 10 could be 

considered sufficient, saving time, and computational resources needed for the training process. The training 

and testing graphs in Figure 6(b) showed stable loss values at epoch 10, despite the experiment running up to 

50 epochs. This suggested that the model might have reached convergence relatively early at an optimal loss 

value, specifically at epoch 10. The results also showed that the model had effectively adjusted weights to the 

training data and achieved an optimal learning rate. At epoch 10th, the stable results also suggested that 

additional epochs did not cause a significant improvement in model performance. 
 

 

  
(a) (b) 

 

Figure 6. Performance during training and testing phases: (a) accuracy graph and (b) loss graph 
 

 

Based on the data obtained from tuning hyperparameters of a single LSTM, this study developed 

several models, namely PCA+LSTM, stacked LSTM, and PCA+Stacked LSTM. Table 10 and Figure 7 show 

that using different methods to construct LSTM models for classification leads to significant differences in 

performance and computational resources. The single LSTM model shows moderate performance with an 

accuracy of 94.34% but can be improved, particularly in precision and recall. Using the PCA+LSTM model 

slightly improves performance with an accuracy of 96.24%, although there is a need for more computational 

resources for execution. The stacked LSTM model shows slightly better performance in accuracy and other 

metrics compared to Single LSTM but has longer execution time. The PCA+Stacked LSTM model achieves 

the best performance with an accuracy of 96.77%, with significant improvements in precision and recall, 

However, PCA+Stacked LSTM model has a higher CPU load and the same execution time as stacked LSTM. 

When selecting the appropriate model, there is a need to consider a balance between performance and 

available resources. 

 
 

Table 10. LSTM performance 
Indicator Single LSTM PCA+LSTM Stacked LSTM PCA+ Stacked LSTM 

Accuracy (%) 94.34 96.24 96.37 96.77 

Precision (%) 82.29 83.68 84.29 88.95 
Recall (%) 79.86 81.43 82.36 88.58 

F1-Score (%) 80.48 82.05 82.83 88.64 

Time (Minute) 5 6 7 7 
CPU (%) 80 82 82 90 

 
 

Table 11 shows the results of previous studies, indicating the variation in accuracy based on the 

method and dataset. According to Jagadeesan and Amutha [26], the ESVNN (M1) method applied to the 



Int J Artif Intell  ISSN: 2252-8938  

 

The incorporation of stacked long short-term memory into intrusion detection systems … (Ahmad Heryanto) 

3667 

CTU-13 dataset achieved an accuracy of 86.84%, while Bijalwan et al. [27] the use of ensemble (M2) 

method on ISCX dataset obtained 93.37%. Hoang and Nguyen [28] that used the T1 training set, the naïve 

Bayes (M3), C4.5 (M4), KNN (M5), and RF (M6) methods achieved accuracies of 86.50%, 90.10%, 90.30%, 

and 90.80%, respectively. Furthermore Kudugunta and Ferrara [29], the LSTM algorithm (M7) applied to the 

Cresci dataset showed an accuracy of 96.33%. The proposed method (M8), namely stacked LSTM was 

applied to the CSE-CIC-IDS2018 dataset and achieved an accuracy of 96.77%. This significant increase 

showed that the use of stacked LSTM can provide better performance in detecting botnet threats compared to 

several previous methods. Table 11 shows the comparison of accuracy performance among various methods, 

as shown in Figure 8. 

 

 

 
 

Figure 7. LSTM performance comparison 

 

 

Table 11. Comparison of the accuracy between proposed and previous studies 
Reference Dataset Method Accuraccy (%) 

[26] CTU-13 ESVNN 86.84 

[27] ISCX Ensemble 93.37. 
[28] Domain name (T1 training set) Naïve Bayes 

C4.5 

KNN 
RF 

Naïve Bayes = 86.50 

C4.5 = 90.10 

KNN = 90.30 
RF = 90.80 

[29] Cresci LSTM 96.33 

The proposed method CSE-CIC-IDS2018 PCA+Stacked LSTM 96.77 

 

 

 
 

Figure 8. Comparison of accuracy across various models 
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5. CONCLUSION 

In conclusion, this study compared methods for classifying botnet attacks using the stacked LSTM 

model. The evaluation was based on several quantitative metrics, including accuracy, precision, recall, and 

F1-score. The results showed that the stacked LSTM model performed optimally compared to other 

evaluated methods, achieving an accuracy of 96.77%, precision of 88.95%, recall of 88.58%, and F1-score of 

88.64%. This model showed consistent execution times, with an average of 7 minutes for data processing, but 

required approximately 90% more CPU usage. Based on these quantitative evaluation results, the stacked 

LSTM model was considered effective in detecting botnet attacks with good performance, although it 

required higher computational resources. This study could be further developed by integrating CNN-LSTM 

to enhance botnet detection. While LSTM handles temporal relationships, CNN captures spatial features 

from network data, potentially making this combination more effective in identifying complex botnet 

patterns. To lower overfitting and boost detection accuracy, it was thought that more research into 

hyperparameter optimization and the use of regularization methods like dropout on the CNN-LSTM model 

was necessary. Furthermore, we anticipated that integrating CNN-LSTM would significantly enhance botnet 

detection performance.  
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