
IAES International Journal of Artificial Intelligence (IJ-AI)

Vol. 13, No. 3, September 2024, pp. 3657~3670

ISSN: 2252-8938, DOI: 10.11591/ijai.v13.i3.pp3657-3670 3657

Journal homepage: http://ijai.iaescore.com

The incorporation of stacked long short-term memory into

intrusion detection systems for botnet attack classification

Ahmad Heryanto1,2, Deris Stiawan2, Adi Hermansyah2, Rici Firnando2, Hanna Pertiwi2,

Mohd Yazid Idris3, Rahmat Budiarto4
1Faculty of Engineering Universitas Sriwijaya, Palembang, Indonesia

2Faculty of Computer Science, Universitas Sriwijaya, Palembang, Indonesia
3Department of Computer Science, University of Technolog, Johor, Malaysia

4Faculty of Computer Science, Albaha University, Al Aqiq, Saudi Arabia

Article Info ABSTRACT

Article history:

Received Jun 13, 2024

Revised Jul 10, 2024

Accepted Jul 12, 2024

 Botnets are a common cyber-attack method on the internet, causing

infrastructure damage, data theft, and malware distribution. The continuous

evolution and adaptation to enhanced defense tactics make botnets a strong

and difficult threat to combat. In light of this, the study's main objective was

to find out how well techniques like principal component analysis (PCA),

synthetic minority oversampling technique (SMOTE), and long short-term

memory (LSTM) can help find botnet attacks. PCA shows the ability to

reduce the feature dimensions in network data, allowing for a more efficient

and effective representation of the patterns contained. The SMOTE

addresses class imbalances in the dataset, enhancing the model's ability to

recognize suspicious activity. Furthermore, LSTM classifies sequential data,

understanding complex network patterns and behaviors often used by

botnets. The combination of these three methods provided a substantial

improvement in detecting suspicious botnet activities. We also evaluated the

effectiveness using performance metrics such as accuracy, precision, recall,

and F1-score. The results showed an accuracy of 96.77%, precision of

88.95%, recall of 88.58%, and F1-score of 88.64%, indicating that the

proposed model was reliable in detecting botnet traffic compared to other

deep learning models. Furthermore, LSTM can classify sequential data,

understanding complex network patterns and behaviors often used by

botnets.

Keywords:

Botnet

Cyber attack

Long short-term memory

Principal component analysis

Synthetic minority

oversampling technique

This is an open access article under the CC BY-SA license.

Corresponding Author:

Deris Stiawan

Faculty of Computer Science, Universitas Sriwijaya

St. Lintas timur km.32 Indralay Ogan Ilir, Palembang, Indonesia

Email: deris@unsri.ac.id

1. INTRODUCTION

A botnet is a group of computers hacked and controlled through the internet using malware malware

[1]–[3] by hackers without the knowledge of their owners. Specifically, hackers use botnets for various

malicious activities like distributed denial of service (DDoS) attacks, data theft, email infiltration, and

malware distribution [4], [5]. It comprises three main components. The first is the botmaster, an individual or

entity that controls, manages, and organizes the infected network's operations. The command and control

(C&C) server is the second component, which functions as a central server to record or control the computers

infected by malware. This server facilitates communication between the botmaster and the bots dispersed

throughout the network. Finally, bots refer to computers or devices infected with malware that are capable of

https://creativecommons.org/licenses/by-sa/4.0/

 ISSN: 2252-8938

Int J Artif Intell, Vol. 13, No. 3, September 2024: 3657-3670

3658

executing instructions given by the C&C server. The botmaster, C&C server, and bots' network

communication system allow them to control and direct the bots remotely [4], [5].

Machine learning methods such as naive Bayesian, Bayesian networks, and decision trees performed

botnet attack detection in previous investigations [6], [7]. The results demonstrated the efficient

implementation of supervised learning algorithms for attack classification. Nearest neighbors, naïve Bayesian,

support vector machine (SVM), artificial neural networks (ANN), and Gaussian-based classifiers were used in

other studies to look at network traffic related to host and flow features [8]–[11]. Meanwhile, some scientific

studies have identified weaknesses in applying machine learning methods for detecting botnets, particularly in

attack classification. The rapid evolution and variety of botnet attacks often complicate the selection of

features used in model training, leading to the main weaknesses. The development of increasingly complex

attacks leads to a diverse range of features that may indicate botnets, adding to the complexity of classification.

To address these weaknesses, certain studies have proposed the application of deep learning methods such as

long short-term memory (LSTM) for detecting cyber attacks [12]–[15].

LSTM is an ANN architecture capable of effectively understanding and modeling temporal patterns

of sequential data [13], [16]. It excels at processing long, sequential data by efficiently retaining and

managing both long-term and short-term information. These features make LSTM highly suitable for tackling

botnet detection issues, particularly where network traffic data tends to be sequential and dynamic [17]. The

system can learn suspicious behavior patterns from network traffic, including unusual communication

between devices, abnormal activity on rarely used ports, and unnatural coordination. Additionally, it can

address class imbalance issues where the number of positive samples (botnet attack) is usually smaller than

the number of negative samples (benign activity). This fact shows that the use of LSTM for botnet detection

is an effective step in building a security system that is adaptive and responsive to continuously evolving

cyber attacks. By using artificial intelligence and sequential pattern modeling, LSTM enhances the detection

and response capabilities against botnet attacks efficiently and effectively.

By integrating dimension reduction techniques like principal component analysis (PCA) and class

imbalance handling, such as the synthetic minority oversampling technique (SMOTE), we can optimize the use

of LSTM in botnet attack detection [18]. Several studies have shown that LSTM has some problems, such as the

chance of overfitting data with many features and issues with class imbalance [19]–[21]. Therefore, integrating

PCA can help reduce the dimensions of complex features and mitigate the risk of overfitting. The use of

SMOTE is also capable of improving the balance between classes in the dataset, allowing LSTM to learn better

patterns related to botnet attacks [18], [22]–[25]. We anticipate that this combination will enable LSTM to

generate more informative feature representations, surmount botnet attack detection challenges, and boost the

accuracy and reliability of the deployed detection system. Thus, this paper proposes the stacked LSTM

incorporation into intrusion detection systems (IDS) to address the accuracy issue in detecting botnet malware.

2. RELATED STUDIES

Researchers have conducted several studies on the use of machine and deep learning to detect botnet

attacks and enhance network security. These efforts involve the development of various methods to create

models that can detect attacks with optimal accuracy and speed. Table 1 summarizes some important works

on the existing detection and classification methods.

Table 1. Related studies
Author Method Dataset Result (%)

Jagadeesan and Amutha [26] ESVNN CTU-13 86.84

Bijalwan et al. [27] Ensemble ISCX 93.37.
Hoang and Nguyen [28] Naïve Bayes

C4.5

KNN
RF

Domain name and T1 training set Naïve Bayes = 86.50

C4.5 = 90.10

KNN = 90.30
RF = 90.80

Kudugunta and Ferrara [29] LSTM Cresci 96.33

Saurabh et al. [30] Stacked LSTM UNSW NB15 and BoTIoT datasets 99.99

Jagadeesan and Amutha [26] introduced a new detection model known as the enhanced support

vector neural network (ESVNN). To improve classification accuracy, we enhance this model by selecting

appropriate features from the dataset's data traffic flow. Observing constant response packets allows us to

identify features such as bot response packet ratio, initial packet length, ratio, and small packets. We then use

these features as inputs for the proposed ESVNN classifier or prediction model, and apply the artificial flora

(AF) algorithm to improve the performance of support vector neural network (SVNN). The results show that

Int J Artif Intell ISSN: 2252-8938

The incorporation of stacked long short-term memory into intrusion detection systems … (Ahmad Heryanto)

3659

this botnet detection model achieves better accuracy and F-measure, showing a precision of 0.8709, recall of

0.8636, accuracy of 0.8684, and F-score of 0.8669.

Bijalwan et al. [27] used the ISCX dataset to train and test ensemble classifier algorithms to identify

bots. The results showed that using the voting method of the ensemble classifier increased accuracy to

96.41% from 93.37%. We also conducted investigations to test multiple machine learning algorithms on a

domain dataset. The results showed accuracy for various models, where naïve Bayes achieved 86.50%, C4.5

had 90.10%, k-nearest neighbors (KNN) reached 90.30%, and random forest (RF) was 90.80% [28].

Kudugunta and Ferrara [29] reported that they used the LSTM algorithm on the Cresci dataset to detect bots.

racted contextual features from user metadata as additional inputs for the LSTM network, showing an

accuracy of 96.33%. On the other hand, Saurabh et al. [30] created a network intrusion detection systems

(NIDS) model using stacked and bidirectional LSTM variants, as well as the UNSW_NB15 and BoT-internet

of things (IoT) datasets. Their model was 97% accurate.

2.1. Botnet

A botnet is a network of computers infected by malware and controlled remotely by an unauthorized

individual, known as a botmaster [31]. Botnets pose a severe threat to internet security because they can obtain

data for illegal activities like DDoS attacks, spamming, data theft, and malware distribution. The ability to

control botnets through a C&C infrastructure sets them apart from other types of malware [32], [33]. Due to

differences in time zones, languages, and applicable laws, cyber security authorities find it challenging to trace

and handle the distributed infected hosts of botnets worldwide. The flexibility, scalability, and evasion

methods employed by botnets present a significant threat that necessitates international cooperation and

coordinated efforts to counter. Moreover, Figure 1 shows an illustration of a botnet lifecycle.

Figure 1. Botnet lifecycle

The botnet has several possible C&C communication topologies that affect how the botmaster

communicates with infected hosts. These include the centralized C&C model, which has a central point for

managing and relaying messages between bots and the botmaster. The model is relatively easy to implement and

customize, but due to the identifiable central point, it is vulnerable to detection as an attack. Furthermore, there is

the peer-to-peer (P2P)-based C&C model, which is an evolution from the centralized model. An unstructured

C&C model is also available, where bots do not actively contact other bots or the botmaster. This model monitors

each incoming connection from the botmaster and randomly forwards encrypted messages to other bots. Based

on the method, the botmaster can remain effectively hidden, although greater effort is required in monitoring and

managing incoming communications. Understanding the various suitable C&C models becomes crucial in

combating botnets to facilitate the development of effective detection and protection strategies [34].

2.2. Long short-term memory

LSTM as shown in Figure 2, is a variant of recurrent neural network (RNN) designed to address the

issues of vanishing and exploding gradients in RNN [35]. It uses hidden units that function to store input over

long periods [36] and comprises three gates, namely the input, the forget, and the output. Specifically, the

forget gate is responsible for discarding old memories, the input gate receives new data by determining

memory updates. The output gate combines short-term and long-term memory to produce the current memory

output [35], [37]. The equations for the LSTM gates are expressed as in (1) to (6) [37]. For the input gate it, the

 ISSN: 2252-8938

Int J Artif Intell, Vol. 13, No. 3, September 2024: 3657-3670

3660

equation is detailed in (1). Where xt represents the input value at time t, W is the weight matrix at each gate,

hi-1 is the hidden state at the previous time step, and b is the bias value for each gate. For the forget gate ft, the

equation is detailed in (2). For the output gate ot, the equation is detailed in (3). Where �̃�𝑡
⬚ is the cell candidate

computed at each time step to update the memory cell, the equation is detailed in (4). Therefore, from these (1)

to (4), the current cell memory (ct), and hidden state (ht) can be detailed in (5) and (6).

𝑖𝑡 = 𝜎(𝑊𝑖[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (1)

𝑓𝑡 = 𝜎(𝑊𝑓[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (2)

𝑜𝑡 = 𝜎(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (3)

�̃�𝑡
⬚ = 𝑡𝑎𝑛ℎ(𝑊𝑐[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) (4)

𝑐𝑡 = 𝑓𝑡 ∗ 𝑐𝑡−1 + 𝑖𝑡 ∗ �̃�𝑡
⬚ (5)

ℎ𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ 𝑐𝑡 (6)

Figure 2. LSTM architecture [21], [38], [39]

3. METHOD

3.1. Proposed models

In this study, the models were tested using the CSE-CIC-IDS2018 dataset, which was filtered to

extract botnet attack traffic and benign. The SMOTE method was applied to address the imbalance in the

amount of data. Furthermore, the data was divided into training and testing datasets with a certain ratio after

completing the preprocessing process. After the preparation stage, the study proceeded with the construction

and testing of the models by processing data using LSTM, and their performance was evaluated based on

specific parameters. The final stage included analyzing the results of the previous evaluations and the

conducted process, as shown in Figure 3.

Labeling

SMOTE LSTM Network

IDS Model Detection of attack

Feature extraction

PCA
Dataset

Training dataset

Testing dataset

Optimal

performance

Update hyperparameter

No

Yes

Figure 3. Study method

Int J Artif Intell ISSN: 2252-8938

The incorporation of stacked long short-term memory into intrusion detection systems … (Ahmad Heryanto)

3661

3.2. Dataset

This study uses the CSE-CIC-IDS 2018 dataset from the University of New Brunswick (UNB) or

the Canadian Institute for cyber security. The dataset comprises seven categories, namely brute force, web

attack, DoS attack, DDoS attack, botnet, infiltration, and benign. The attack infrastructure consisted of 50

machines, while the victims included 5 departments with 420 machines and 30 servers. This dataset

comprises each machine network traffic and system logs [40], including a list of attack types and their

duration. All attack scenarios were collected in Pcaps files and event logs from each machine. This data

extracted 83 network traffic features, as shown in Table 2. To view the details of the feature list in the

dataset, please refer to CSE-CIC-IDS2018 on web [40].

Table 2. Network traffic features dataset CSE-CIC-IDS 2018 [25], [41]
Feature Number Description

01 to 04 Fundamental characteristics of network connections
05 to 16 Characteristics of network packets

17 to 22 Attributes of network flows

23 to 45 Statistics of network flows
46 to 63 Traffic features related to content

64 to 67 Characteristics of network subflows

68 to 79 General traffic features
80 to 83 Fundamental features of network connections

3.3. Data preprocessing

Preprocessing stage, including data cleaning and transformation, is carried out to prepare data

effectively for model training and testing contexts. Specifically, data cleaning is performed to ensure data

integrity, consistency, and relevance within a dataset. This process includes identifying and correcting errors

as well as removing meaningless data that could impact the analysis and models. The initial step in data

cleaning is removing duplicates, where entries with identical values are identified and eliminated to maintain

model accuracy. Additionally, inaccurate or irrelevant data (noisy data) is removed, focusing on identifying

entries that do not fit the dataset structure. Data cleaning serves as a crucial step to ensure the data quality

used in analysis and producing accurate results. This is followed by data transformation, which includes two

important steps, namely data encoding and normalization.

3.4. Classification model

Classification model predicts the class of data, categorizing attack as binary or multi-class to

distinguish between benign and malicious network traffic in the context of intrusion detection system (IDS).

This complexity puts pressure on algorithms in terms of computational power and time. Each dataset is

evaluated and categorized as benign or botnet in the classification process, which is used to identify unusual

patterns, detect anomalies, and recognize misuse. In this study, the architecture of the model is stacked

LSTM, with the design presented in Figure 4. Specifically, LSTM layers are stacked to ensure that the lowest

and highest hidden layers are fully connected in a feedforward relationship.

Figure 4. Stacked LSTM architecture design

Output

Fully Connected Layer

Second LSTM Layer

First LSTM Layer

Input

 ISSN: 2252-8938

Int J Artif Intell, Vol. 13, No. 3, September 2024: 3657-3670

3662

Stacked LSTM is designed based on the principle that multiple layers of nonlinear mapping between

input and output are used for learning hierarchical systems. In Figure 4, the output from the hidden layers

propagates forward, serving as one of the inputs to the next LSTM layer. Specifically, each layer receives

input from the previous and produces output that becomes the input for the next layer. Through this process,

the model can extract increasingly complex feature representations from sequential data. The main advantage

of stacked LSTM is the ability to handle the processing of long and complex sequence data effectively.

Furthermore, it has the capability to learn more abstract patterns, perform better prediction, classification, or

sequential data analysis. The general formula for stacked LSTM is not significantly different from a single

LSTM but considers the relationships between each stacked layer. The formula can be represented in terms

of forget gate, input gate, output gate, candidate cell state, cell state, and hidden state. The step-by-step

process is as follows, the input at time t(𝑥𝑡) is fed into the first LSTM layer. Moreover, the 3 main gates that

control the flow of information gate in each layer include the forget, input, and output. In (8), the forget gate

determines which information needs to be discarded from the previous cell state (𝑐𝑡−1). This is performed by

multiplying the previous cell state by the output of a sigmoid function using weights 𝑊𝑓, 𝑈𝑓, and bias 𝑏𝑓,

which applied to input 𝑥𝑡 as well as the previous hidden state (ℎ𝑡−1) (8). In (9), the input gate determines the

new information stored in the cell state. This is performed by computing the sigmoid function of weights 𝑊𝑖,

𝑈𝑖, and bias 𝑏𝑖, applied to the input 𝑥𝑡 and the previous hidden state (9). In (10), the candidate cell value

(�̃�𝑡
⬚) is calculated using the tanh function, which combines the input 𝑥𝑡 and the previous hidden state with

weights 𝑊𝑐, 𝑈𝑐, and bias 𝑏𝑐. In (11), the cell state is updated by combining the previous cell state modified

by the forget gate with the candidate cell value modified by the input gate. In (12), the output gate determines

the output of the hidden state based on the updated cell state. This is carried out by computing the sigmoid

function of weights 𝑊𝑜, 𝑈𝑜, and bias 𝑏𝑜,: in the input 𝑥𝑡 and the previous hidden state. In (13), the hidden

state(ℎ𝑡) is obtained by multiplying the output gate with the tanh function of the updated cell state.

After the process in the first layer is completed, the obtained hidden state (ℎ𝑡) is used as the input

(𝑥𝑡) for the next LSTM layer, which is repeated for others. The lower layers capture simpler and more local

patterns, while the upper layers capture more complex and global patterns. Through these stages, stacked

LSTM can handle long and complex data sequences more effectively compared to single LSTM.

Additionally, stacked allows each layer to process and extract higher-level features, enhancing the model's

ability to understand and predict sequential data.

𝑓𝑡
(𝑙)

= 𝜎(𝑊𝑓
(𝑙)

𝑥𝑡 + 𝑈𝑓
(𝑙)

ℎ𝑡−1
(𝑙)

+ 𝑏𝑓
(𝑙)

) (8)

𝑖𝑡
(𝑙)

= 𝜎(𝑊𝑖
(𝑙)

𝑥𝑡 + 𝑈𝑖
(𝑙)

ℎ𝑡−1
(𝑙)

+ 𝑏𝑖
(𝑙)

) (9)

�̃�𝑡
(𝑙)

= tanh(𝑊𝑐
(𝑙)

𝑥𝑡 + 𝑈𝑐
(𝑙)

ℎ𝑡−1
(𝑙)

+ 𝑏𝑐
(𝑙)

) (10)

𝑐𝑡
(𝑙)

= 𝑓𝑡
(𝑙)

∗ 𝑐𝑡−1
(𝑙)

+ 𝑖𝑡
(𝑙)

∗ �̃�𝑡
(𝑙)

 (11)

𝑜𝑡
(𝑙)

= 𝜎(𝑊𝑜
(𝑙)

𝑥𝑡 + 𝑈𝑜
(𝑙)

ℎ𝑡−1
(𝑙)

+ 𝑏𝑜
(𝑙)

) (12)

ℎ𝑡
(𝑙)

= 𝑜𝑡
(𝑙)

∗ tanh(𝑐𝑡
(𝑙)

) (13)

4. EXPERIMENTS

4.1. Experiment setup

This study used the CSE-CIC-IDS 2018 dataset shown in Figure 5(a), which includes various

network attacks, including botnet. The primary focus of data processing was to handle missing values, feature

normalization, and encoding categorical variables. Relevant features were selected for botnet detection using

PCA and the dataset was split into training and testing sets, with a standard ratio of 80:20. This division

maintains the distribution of botnet attack instances to avoid class imbalance.

The botnet dataset was obtained from CSE-CIC-IDS2018, consisting of 286,191 data samples

shown in Figure 5(b). The benign data samples were selected from the dataset and combined with botnet data

samples. This combination was performed in a balanced proportion between benign and botnet data to ensure

that the resulting dataset could be effectively used for training and evaluating botnet detection models.

Additionally, the study applied the SMOTE to increase the number of samples in the minority class, which is

the botnet data. This process ensures balancing the proportion between the two classes to avoid an imbalance

that could affect the model's performance in detecting botnet attack. The experiments were conducted under

Int J Artif Intell ISSN: 2252-8938

The incorporation of stacked long short-term memory into intrusion detection systems … (Ahmad Heryanto)

3663

several scenarios and on hardware with specifications detailed in Table 3. The first scenario includes

selecting input features to be used, while other scenarios were designed based on the combination of

hyperparameter configurations for stacked LSTM.

(a)

(b)

Figure 5. Dataset overview and statistics: (a) distribution of class data in CSE-CIC-IDS2018 and (b)

comparison of benign and botnet

Table 3. Hardware specifications for processing stacked LSTM
Component Specification

CPU 16 Core
Memory 32 GB

Hardisk 1 TB

Networks 1 Gbps

The hardware infrastructure described in this study ensured optimal performance for processing

stacked LSTM models, using high computational capabilities and fast data access speeds. Python was used

for data processing tasks, model training, and evaluation. Data manipulation and analysis were facilitated

using Pandas, primarily for dataset handling, while NumPy performed numerical operations and array

handling. Scikit-learn assisted in data preprocessing tasks, including scaling, dataset splitting, and evaluation

metrics. Data visualization and graph construction were based on Matplotlib and Seaborn libraries, while

TensorFlow and Keras were used for building, training, and evaluating stacked LSTM models. Interactive

development and visualization of results were supported by Jupyter Notebook, while Anaconda simplifies the

management of the Python environment and its dependencies. This integrated method ensures the efficient

development and evaluation of stacked LSTM models for various applications.

 ISSN: 2252-8938

Int J Artif Intell, Vol. 13, No. 3, September 2024: 3657-3670

3664

4.2. Tuning hyperparameter

In the design of stacked LSTM network, this study explores various configurations to determine the

most optimal model. In Table 4, several LSTM parameters were used such as nodes, dropout, batch size,

learning rate, and epochs. Methods such as grid search were used for hyperparameter optimization to

determine the best combination for stacked LSTM model with the highest performance in botnet detection

tasks.

Table 4. Hyperparameter configuration
Hyperparameter Value

LSTM Node 32, 64, 128, 256, 512

Dropout 0.1, 0.2, 0.3, 0.4, 0.5

Batch Size 128, 256, 512, 1,024, 2,048
Learning Rate 0.01, 0.001,0.0001, 0.00001, 0.000001

Loss function Binary cross entropy

Activation Function Sigmoid
Number of epochs 10, 20, 30, 40, 50

Testing was conducted by inputting parameters into the model to be tested to determine the best

hyperparameter, which would be used as the main parameters. From the experiments with tunning

hyperparameters shown in Table 5, it was observed that increasing the number of node units in the neural

network (LSTM) model leads to decreased prediction accuracy. The results suggested that increasing the

model complexity by adding more node units did not improve performance, showing the potential to cause

decreased accuracy and overfitting on the training data. This showed the need for adjusting and managing the

model complexity to avoid excessively capturing noise signals from irrelevant training data. Subsequently,

testing was conducted on the dropout parameter to examine its impact on model performance, with the results

listed in Table 6.

Table 5. Tuning hyperparameters of number of nodes
Unit, banodes Dropout Activation Function Learning rate Batch size Epoch Accuracy (%)

32 0.1 Sigmoid 0.01 128 10 94.34
64 0.1 Sigmoid 0.01 128 10 96.49

128 0.1 Sigmoid 0.01 128 10 96.29

256 0.1 Sigmoid 0.01 128 10 95.82
512 0.1 Sigmoid 0.01 128 10 95.52

Table 6. Tuning hyperparameter dropout
Unit nodes Dropout Function activation Learning rate Batch size Epoch Accuracy (%)

32 0.1 Sigmoid 0.01 128 10 91.34
32 0.2 Sigmoid 0.01 128 10 92.62

32 0.3 Sigmoid 0.01 128 10 94.34

32 0.4 Sigmoid 0.01 128 10 94.12
32 0.5 Sigmoid 0.01 128 10 94.21

The impact of dropout on model performance requires consideration, as a regularization method

used to prevent overfitting by randomly deactivating some neurons during the training process. In this

dataset, dropout was increased from 0.1 to 0.5 alongside a rise in the number of node units. The results

showed that higher dropout led to increased accuracy, where the highest value was achieved in the third

experiment with a dropout of 0.3 (94.34%). This showed that higher dropout usage could help reduce

overfitting and improve the model generalization.

In Table 7, several experiments were conducted with various learning rate values to determine the

optimal learning rate for the neural network model. Meanwhile, other parameters, such as the number of node

units, dropout rate, activation function, batch size, and number of epochs, were kept constant. The results

showed significant variation in model accuracy. In the first experiment, with a learning rate of 0.01, the

model achieved the highest accuracy of 94.34%. However, when the learning rate was reduced to 0.001 in

the second experiment, the accuracy significantly dropped to 89.65%. Further reduction in the learning rate to

0.0001 and 0.00001 led to model accuracies of 61.62% and 69.00%, respectively, showing that a learning

rate excessively small did not sufficiently optimize weight updates in the network. At the lowest learning rate

Int J Artif Intell ISSN: 2252-8938

The incorporation of stacked long short-term memory into intrusion detection systems … (Ahmad Heryanto)

3665

of 0.000001, the model accuracy further decreased to 55.10%, emphasizing that a very small learning rate

was ineffective in training the model. A learning rate that is too high can cause the model to be unstable and

fail to achieve optimal convergence, while an excessively high value can lead to slow convergence and

failure to effectively learn patterns in the data. The experimental results showed that a learning rate of 0.01

provided the best performance in this scenario, making it the optimal value for training the neural network

model.

Table 7. Tuning hyperparameter learning rate
Unit nodes Dropout Function activation Learning rate Batch size Epoch Accuracy (%)

32 0.3 Sigmoid 0.01 128 10 94.34

32 0.3 Sigmoid 0.001 128 10 89.65

32 0.3 Sigmoid 0.0001 128 10 61.62
32 0.3 Sigmoid 0.00001 128 10 69.00

32 0.3 Sigmoid 0.000001 128 10 55.10

In Table 8, an experiment was conducted to test the impact of varying batch sizes on the neural

network model, while keeping other parameters constant to determine the most suitable batch size. The

results showed that a batch size of 128 provided the highest accuracy at 94.34%. Increasing the batch size to

256 caused a significant drop in accuracy to 89.58%, and a further decrease to 88.23% was observed at 512.

At a batch size of 1,024, accuracy slightly improved to 89.70%, while size 2,048 had 90.43%, showing

improvement over the previous batch size. These results showed that a smaller batch size of 128 allowed the

model to learn more effectively, updating weights more frequently and in greater detail. Larger batch sizes

reduced the frequency of weight updates, leading to poorer generalization from the training data. Therefore, a

batch size of 128 was the most optimal selection for the neural network model with this configuration. The

optimal parameters obtained from the tuning results were used as the main hyperparameters, as shown in

Table 9.

Table 8. Tuning hyperparameter batch size
Unit nodes Dropout Function activation Learning rate Batch size Epoch Accuracy (%)

32 0.3 Sigmoid 0.01 128 10 94.34

32 0.3 Sigmoid 0.01 256 10 89.58
32 0.3 Sigmoid 0.01 512 10 88.23

32 0.3 Sigmoid 0.01 1,024 10 89.70

32 0.3 Sigmoid 0.01 2,048 10 90.43

Table 9. Optimal hyperparameter
Parameter Value

Number of unit nodes 32
Activation function of stacked LSTM layer Sigmoid

Batch size 128

Loss function Binary crossentropy
Learning rate 0.01

Optimizer function Sigmoid

Dropout 0.3
Epoch 10

4.3. Discussions

After obtaining optimal hyperparameters for the LSTM and stacked LSTM models, the next step

was the implementation on the testing data for performance evaluation. In this study, the main evaluation

metrics used are: accuracy, precision, recall, and F1-score, to gain a comprehensive understanding of the

model effectiveness in handling the dataset. The results provided valuable insights into assessing whether the

developed model performs adequately for the intended application purposes or requires further adjustments.

Therefore, the use of LSTM and stacked LSTM after tuning ideal hyperparameters would provide deep

insights into the model capability to handle classification tasks on the given dataset.

The training and testing performances in Figure 6(a) showed stable accuracy values at epoch 10,

indicating that the model had reached a sufficient convergence point at that stage. Convergence suggests that

the model had learned well from the training data and could consistently make predictions on the testing data.

At this point, the incremental increase in accuracy between subsequent epochs is no longer significant,

 ISSN: 2252-8938

Int J Artif Intell, Vol. 13, No. 3, September 2024: 3657-3670

3666

showing that additional training iterations may not significantly improve model performance. Although the

experiment was set to run for 50 epochs, achieving stabilization by epoch 10 suggested that further training

iterations might not provide significant benefits. Therefore, stopping the training at epoch 10 could be

considered sufficient, saving time, and computational resources needed for the training process. The training

and testing graphs in Figure 6(b) showed stable loss values at epoch 10, despite the experiment running up to

50 epochs. This suggested that the model might have reached convergence relatively early at an optimal loss

value, specifically at epoch 10. The results also showed that the model had effectively adjusted weights to the

training data and achieved an optimal learning rate. At epoch 10th, the stable results also suggested that

additional epochs did not cause a significant improvement in model performance.

(a) (b)

Figure 6. Performance during training and testing phases: (a) accuracy graph and (b) loss graph

Based on the data obtained from tuning hyperparameters of a single LSTM, this study developed

several models, namely PCA+LSTM, stacked LSTM, and PCA+Stacked LSTM. Table 10 and Figure 7 show

that using different methods to construct LSTM models for classification leads to significant differences in

performance and computational resources. The single LSTM model shows moderate performance with an

accuracy of 94.34% but can be improved, particularly in precision and recall. Using the PCA+LSTM model

slightly improves performance with an accuracy of 96.24%, although there is a need for more computational

resources for execution. The stacked LSTM model shows slightly better performance in accuracy and other

metrics compared to Single LSTM but has longer execution time. The PCA+Stacked LSTM model achieves

the best performance with an accuracy of 96.77%, with significant improvements in precision and recall,

However, PCA+Stacked LSTM model has a higher CPU load and the same execution time as stacked LSTM.

When selecting the appropriate model, there is a need to consider a balance between performance and

available resources.

Table 10. LSTM performance
Indicator Single LSTM PCA+LSTM Stacked LSTM PCA+ Stacked LSTM

Accuracy (%) 94.34 96.24 96.37 96.77

Precision (%) 82.29 83.68 84.29 88.95
Recall (%) 79.86 81.43 82.36 88.58

F1-Score (%) 80.48 82.05 82.83 88.64

Time (Minute) 5 6 7 7
CPU (%) 80 82 82 90

Table 11 shows the results of previous studies, indicating the variation in accuracy based on the

method and dataset. According to Jagadeesan and Amutha [26], the ESVNN (M1) method applied to the

Int J Artif Intell ISSN: 2252-8938

The incorporation of stacked long short-term memory into intrusion detection systems … (Ahmad Heryanto)

3667

CTU-13 dataset achieved an accuracy of 86.84%, while Bijalwan et al. [27] the use of ensemble (M2)

method on ISCX dataset obtained 93.37%. Hoang and Nguyen [28] that used the T1 training set, the naïve

Bayes (M3), C4.5 (M4), KNN (M5), and RF (M6) methods achieved accuracies of 86.50%, 90.10%, 90.30%,

and 90.80%, respectively. Furthermore Kudugunta and Ferrara [29], the LSTM algorithm (M7) applied to the

Cresci dataset showed an accuracy of 96.33%. The proposed method (M8), namely stacked LSTM was

applied to the CSE-CIC-IDS2018 dataset and achieved an accuracy of 96.77%. This significant increase

showed that the use of stacked LSTM can provide better performance in detecting botnet threats compared to

several previous methods. Table 11 shows the comparison of accuracy performance among various methods,

as shown in Figure 8.

Figure 7. LSTM performance comparison

Table 11. Comparison of the accuracy between proposed and previous studies
Reference Dataset Method Accuraccy (%)

[26] CTU-13 ESVNN 86.84

[27] ISCX Ensemble 93.37.
[28] Domain name (T1 training set) Naïve Bayes

C4.5

KNN
RF

Naïve Bayes = 86.50

C4.5 = 90.10

KNN = 90.30
RF = 90.80

[29] Cresci LSTM 96.33

The proposed method CSE-CIC-IDS2018 PCA+Stacked LSTM 96.77

Figure 8. Comparison of accuracy across various models

 ISSN: 2252-8938

Int J Artif Intell, Vol. 13, No. 3, September 2024: 3657-3670

3668

5. CONCLUSION

In conclusion, this study compared methods for classifying botnet attacks using the stacked LSTM

model. The evaluation was based on several quantitative metrics, including accuracy, precision, recall, and

F1-score. The results showed that the stacked LSTM model performed optimally compared to other

evaluated methods, achieving an accuracy of 96.77%, precision of 88.95%, recall of 88.58%, and F1-score of

88.64%. This model showed consistent execution times, with an average of 7 minutes for data processing, but

required approximately 90% more CPU usage. Based on these quantitative evaluation results, the stacked

LSTM model was considered effective in detecting botnet attacks with good performance, although it

required higher computational resources. This study could be further developed by integrating CNN-LSTM

to enhance botnet detection. While LSTM handles temporal relationships, CNN captures spatial features

from network data, potentially making this combination more effective in identifying complex botnet

patterns. To lower overfitting and boost detection accuracy, it was thought that more research into

hyperparameter optimization and the use of regularization methods like dropout on the CNN-LSTM model

was necessary. Furthermore, we anticipated that integrating CNN-LSTM would significantly enhance botnet

detection performance.

REFERENCES
[1] H. A. Sukhni, M. A. Al-Khasawneh, and F. H. Yusoff, “A systematic analysis for botnet detection using genetic algorithm,” in

2021 2nd International Conference on Smart Computing and Electronic Enterprise (ICSCEE), 2021, pp. 63–66, doi:

10.1109/ICSCEE50312.2021.9498109.

[2] R. Vinayakumar, K. P. Soman, P. Poornachandran, M. Alazab, and A. Jolfaei, “DBD: Deep learning DGA-based botnet
detection,” Advanced Sciences and Technologies for Security Applications, pp. 127–149, 2019, doi: 10.1007/978-3-030-13057-

2_6/COVER.

[3] V. Kanimozhi and T. P. Jacob, “Artificial intelligence-based network intrusion detection with hyper-parameter optimization
tuning on the realistic cyber dataset CSE-CIC-IDS2018 using cloud computing,” ICT Express, vol. 5, no. 3, pp. 211–214, 2019,

doi: 10.1016/j.icte.2019.03.003.

[4] M. D. Hossain, H. Ochiai, F. Doudou, and Y. Kadobayashi, “SSH and FTP brute-force attacks detection in computer networks:
Lstm and machine learning approaches,” 2020 5th International Conference on Computer and Communication Systems, ICCCS

2020, pp. 491–497, 2020, doi: 10.1109/ICCCS49078.2020.9118459.

[5] S. Haq and Y. Singh, “Botnet detection using machine learning,” PDGC 2018 - 2018 5th International Conference on Parallel,
Distributed and Grid Computing, pp. 240–245, 2018, doi: 10.1109/PDGC.2018.8745912.

[6] M. Stevanovic and Pedersen, “On the use of machine learning for identifying botnet network traffic,” Journal of Cyber Security

and Mobility, vol. 4, no. 2, pp. 1–32, Jan. 2016, doi: 10.13052/JCSM2245-1439.421.
[7] A. Azab, M. Alazab, and M. Aiash, “Machine learning based Botnet identification traffic,” in 2016 IEEE

Trustcom/BigDataSE/ISPA, 2016, pp. 1788–1794, doi: 10.1109/TrustCom.2016.0275.

[8] I. F. Kilincer, F. Ertam, and A. Sengur, “Machine learning methods for cyber security intrusion detection: datasets and
comparative study,” Computer Networks, vol. 188, 2021, doi: 10.1016/j.comnet.2021.107840.

[9] D. Wu, Z. Jiang, X. Xie, X. Wei, W. Yu, and R. Li, “LSTM learning with Bayesian and Gaussian processing for anomaly

detection in industrial IoT,” IEEE Transactions on Industrial Informatics, vol. 16, no. 8, pp. 5244–5253, 2020, doi:
10.1109/TII.2019.2952917.

[10] M. S. Elsayed, N. A. L. -Khac, S. Dev, and A. D. Jurcut, “Network anomaly detection using LSTM based autoencoder,”

Q2SWinet 2020 - Proceedings of the 16th ACM Symposium on QoS and Security for Wireless and Mobile Networks, pp. 37–45,
2020, doi: 10.1145/3416013.3426457.

[11] C. Wei, G. Xie, and Z. Diao, “A lightweight deep learning framework for botnet detecting at the IoT edge,” Computers and

Security, vol. 129, 2023, doi: 10.1016/j.cose.2023.103195.
[12] M. Sudha, V. M. K. Reddy, W. D. Priya, S. M. Rafi, S. Subudhi, and S. Jayachitra, “Optimizing intrusion detection systems using

parallel metric learning,” Computers and Electrical Engineering, vol. 110, 2023, doi: 10.1016/j.compeleceng.2023.108869.

[13] H. N. Bhandari, B. Rimal, N. R. Pokhrel, R. Rimal, and K. R. Dahal, “LSTM-SDM: An integrated framework of LSTM
implementation for sequential data modeling,” Software Impacts, vol. 14, 2022, doi: 10.1016/j.simpa.2022.100396.

[14] S. Nayyar, S. Arora, and M. Singh, “Recurrent neural network based intrusion detection system,” Proceedings of the 2020 IEEE

International Conference on Communication and Signal Processing, ICCSP 2020, pp. 136–140, Jul. 2020, doi:
10.1109/ICCSP48568.2020.9182099.

[15] S. Sen and A. Raghunathan, “Approximate computing for long short term memory (LSTM) neural networks,” IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, vol. 37, no. 11, pp. 2266–2276, 2018, doi:
10.1109/TCAD.2018.2858362.

[16] Y. Yang, S. Tu, R. H. Ali, H. Alasmary, M. Waqas, and M. N. Amjad, “Intrusion detection based on bidirectional long short-term

memory with attention mechanism,” Computers, Materials and Continua, vol. 74, no. 1, pp. 801–815, 2023, doi:
10.32604/cmc.2023.031907.

[17] H. Alkahtani and T. H. H. Aldhyani, “Botnet attack detection by using CNN-LSTM model for internet of things applications,”

Security and Communication Networks, vol. 2021, 2021, doi: 10.1155/2021/3806459.
[18] S. I. Popoola, B. Adebisi, R. Ande, M. Hammoudeh, K. Anoh, and A. A. Atayero, “SMOTE-DRNN: a deep learning algorithm

for botnet detection in the internet-of-things networks,” Sensors, vol. 21, no. 9, 2021, doi: 10.3390/s21092985.

[19] L. Zhou, C. Zhao, N. Liu, X. Yao, and Z. Cheng, “Improved LSTM-based deep learning model for COVID-19 prediction using
optimized approach,” Engineering Applications of Artificial Intelligence, vol. 122, 2023, doi: 10.1016/j.engappai.2023.106157.

[20] Y. Baek and H. Y. Kim, “ModAugNet: a new forecasting framework for stock market index value with an overfitting prevention

LSTM module and a prediction LSTM module,” Expert Systems with Applications, vol. 113, pp. 457–480, 2018, doi:
10.1016/j.eswa.2018.07.019.

[21] A. Nazir et al., “A deep learning-based novel hybrid CNN-LSTM architecture for efficient detection of threats in the IoT

Int J Artif Intell ISSN: 2252-8938

The incorporation of stacked long short-term memory into intrusion detection systems … (Ahmad Heryanto)

3669

ecosystem,” Ain Shams Engineering Journal, vol. 15, no. 7, 2024, doi: 10.1016/j.asej.2024.102777.
[22] S. A. -Okyere, C. Shen, Y. Y. Ziggah, M. M. Rulegeya, and X. Zhu, “Principal component analysis (PCA) based hybrid models

for the accurate estimation of reservoir water saturation,” Computers and Geosciences, vol. 145, 2020, doi:

10.1016/j.cageo.2020.104555.
[23] B. S. Raghuwanshi and S. Shukla, “SMOTE based class-specific extreme learning machine for imbalanced learning,” Knowledge-

Based Systems, vol. 187, 2020, doi: 10.1016/j.knosys.2019.06.022.

[24] F. E. Laghrissi, S. Douzi, K. Douzi, and B. Hssina, “Intrusion detection systems using long short-term memory (LSTM),” Journal
of Big Data, vol. 8, no. 1, 2021, doi: 10.1186/s40537-021-00448-4.

[25] L. Liu, P. Wang, J. Lin, and L. Liu, “Intrusion detection of imbalanced network traffic based on machine learning and deep

learning,” IEEE Access, vol. 9, pp. 7550–7563, 2021, doi: 10.1109/ACCESS.2020.3048198.
[26] S. Jagadeesan and B. Amutha, “An efficient botnet detection with the enhanced support vector neural network,” Measurement:

Journal of the International Measurement Confederation, vol. 176, 2021, doi: 10.1016/j.measurement.2021.109140.

[27] A. Bijalwan, N. Chand, E. S. Pilli, and C. Rama Krishna, “Botnet analysis using ensemble classifier,” Perspectives in Science,
vol. 8, pp. 502–504, 2016, doi: 10.1016/j.pisc.2016.05.008.

[28] X. D. Hoang and Q. C. Nguyen, “Botnet detection based on machine learning techniques using DNS query data,” Future Internet,

vol. 10, no. 5, 2018, doi: 10.3390/fi10050043.
[29] S. Kudugunta and E. Ferrara, “Deep neural networks for bot detection,” Information Sciences, vol. 467, pp. 312–322, 2018, doi:

10.1016/j.ins.2018.08.019.

[30] K. Saurabh et al., “LBDMIDS: LSTM based deep learning model for intrusion detection systems for IoT networks,” in 2022
IEEE World AI IoT Congress (AIIoT), 2022, pp. 753–759, doi: 10.1109/AIIoT54504.2022.9817245.

[31] R. Mannikar and F. Di Troia, “Enhancing botnet detection in network security using profile hidden Markov models,” Applied

Sciences, vol. 14, no. 10, 2024, doi: 10.3390/app14104019.
[32] H. El-Sofany, S. A. El-Seoud, O. H. Karam, and B. Bouallegue, “Using machine learning algorithms to enhance IoT system

security,” Scientific Reports, vol. 14, no. 1, 2024, doi: 10.1038/s41598-024-62861-y.

[33] U. H. Garba, A. N. Toosi, M. F. Pasha, and S. Khan, “SDN-based detection and mitigation of DDoS attacks on smart homes,”
Computer Communications, vol. 221, pp. 29–41, 2024, doi: 10.1016/j.comcom.2024.04.001.

[34] Y. Xiao, J. Liu, K. Ghaboosi, H. Deng, and J. Zhang, “Botnet: classification, attacks, detection, tracing, and preventive measures,”

Eurasip Journal on Wireless Communications and Networking, vol. 2009, 2009, doi: 10.1155/2009/692654.
[35] H. Liu and B. Lang, “Machine learning and deep learning methods for intrusion detection systems: A survey,” Applied Sciences,

vol. 9, no. 20, 2019, doi: 10.3390/app9204396.

[36] Y. Lecun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–444, 2015, doi: 10.1038/nature14539.
[37] S. Atef and A. B. Eltawil, “Assessment of stacked unidirectional and bidirectional long short-term memory networks for

electricity load forecasting,” Electric Power Systems Research, vol. 187, 2020, doi: 10.1016/j.epsr.2020.106489.

[38] P. S. Muhuri, P. Chatterjee, X. Yuan, K. Roy, and A. Esterline, “Using a long short-term memory recurrent neural network
(LSTM-RNN) to classify network attacks,” Information, vol. 11, no. 5, 2020, doi: 10.3390/INFO11050243.

[39] T. T. H. Le, J. Kim, and H. Kim, “An effective intrusion detection classifier using long short-term memory with gradient descent

optimization,” 2017 International Conference on Platform Technology and Service, PlatCon 2017, doi:
10.1109/PlatCon.2017.7883684.

[40] CSE-CIC-IDS2018, “CSE-CIC-IDS2018 on AWS: A collaborative project between the communications security establishment

(CSE) & the Canadian Institute for Cybersecurity (CIC),” Canadian Institute for Cybersecurity, 2018. Accessed: May 11, 2024.
[Online]. Available: https://www.unb.ca/cic/datasets/ids-2018.html

[41] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward generating a new intrusion detection dataset and intrusion traffic

characterization,” ICISSP 2018 - Proceedings of the 4th International Conference on Information Systems Security and Privacy,
vol. 2018-Janua, pp. 108–116, 2018, doi: 10.5220/0006639801080116.

BIOGRAPHIES OF AUTHORS

Ahmad Heryanto received the M.Eng. degree in electrical engineering from the

Institut Teknologi Sepuluh Nopember (ITS), Surabaya, Indonesia, in 2014. He is currently

pursuing the Ph.D. degree with Sriwijaya University, Indonesia. His research interests

include parallel processing, distributed computing, software security, and network intrusion

detection. He can be contacted at email: hery@unsri.ac.id.

Deris Stiawan received the Ph.D. degree in Computer Engineering from

Universiti Teknologi Malaysia, Malaysia. He is currently a Professor at Department of

Computer Engineering, Faculty of Computer Science, Universitas Sriwijaya. His research

interests include computer network, intrusion detection/prevention system, and

heterogeneous network. He can be contacted at email: deris@unsri.ac.id.

https://orcid.org/0000-0003-2856-8135
https://scholar.google.com/citations?user=HvBDeHgAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=57194219033
https://orcid.org/0000-0002-9302-1868
https://scholar.google.co.id/citations?user=faXE7tQAAAAJ&hl=id
https://www.scopus.com/authid/detail.uri?authorId=36449642900

 ISSN: 2252-8938

Int J Artif Intell, Vol. 13, No. 3, September 2024: 3657-3670

3670

Adi Hermansyah received the M.Eng. degree in electrical engineering from the

Institut Teknologi Sepuluh Nopember (ITS), Surabaya, Indonesia, in 2019. He is currently a

Lecturer with Faculty of Computer Science, Universitas Sriwijaya. His research interests

include computer network, intrusion detection/prevention system, and heterogeneous

network. He can be contacted at email: adihermansyah@unsri.ac.id.

Ricy Firnando received the M.Kom. degree in computer science from the

Universitas Sriwijaya, Palembang, Indonesia. He is currently a Lecturer with Faculty of

Computer Science, Universitas Sriwijaya. His research interests include information system,

and informatic. He can be contacted at email: ricyfirnando@unsri.ac.id.

Hanna Pertiwi received her S.Kom. degree in computer science from Sriwijaya

University, Palembang, Indonesia, in 2022. Her research interests include computer

networks, intrusion detection/prevention systems, and heterogeneous networks. She can be

contacted at email: hannapertiwi961@gmail.com.

Mohd Yazid Bin Idris is an Associate Professor at School of Computing,

Faculty of Engineering, Universiti Teknologi Malaysia. He obtained his M.Sc. and Ph.D. in

the area of Software Engineering, and Information Technology (IT) Security in 1998 and

2008 respectively. In software engineering, he focuses on the research of designing and

development of mobile and telecommunication software. His main research activity in IT

security is in the area of intrusion prevention and detection (IPD). He can be contacted at

email: yazid@utm.my.

Rahmat Budiarto received the B.Sc. degree from the Bandung Institute of

Technology, in 1986, the M.Eng. and Dr.Eng. degrees in computer science from the Nagoya

Institute of Technology, in 1995 and 1998, respectively. He is currently a Full Professor with

the College of Computer Science and IT, Albaha University, Saudi Arabia. His research

interests include intelligent systems, brain modeling, IPv6, network security, wireless sensor

networks, and MANETs. He can be contacted at email: rahmat@bu.edu.sa.

https://orcid.org/0009-0006-7770-0007
https://scholar.google.co.id/citations?user=JHKKM1AAAAAJ&hl=id
https://www.scopus.com/authid/detail.uri?authorId=57215331440
https://orcid.org/0009-0006-0898-0332
https://orcid.org/0009-0000-8822-994X
https://orcid.org/0000-0001-7702-6610
https://www.scopus.com/authid/detail.uri?authorId=57194202577
https://orcid.org/0000-0002-6374-4731
https://scholar.google.com/citations?user=Qi24UpwAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=58131692700

