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 Rice crop disease detection and its diagnosis methods are vitally important 

for the agriculture field to be sustainable. Traditional methods suffer from 

paddy yield, complex issues, and crop diseases, leading to inefficiencies in 

the agriculture domain. Our research provides space for a novel approach, 

combining the Laurent series with an intelligent multidimensional object 

optimization (LIMO) classification framework based on generative 

adversarial networks (GANs) to recognize various types of crop diseases in 

agricultural fields. Through our proposed research work, IoT nodes sense the 

values of the field crop, and gathered information is shared with processing 

units through base station communication. Multi-objective and cognitive 

learning routing (MOCLEAR) protocol supports choosing the optimal path 

for data transmission improvement. Then, for image segmentation, GAN 

combined with cognitive residual convolution network (CRCNet) is 

modified to segment values from input images. After receiving segment 

input images, perform feature extraction and classification using significant 

attributes. The proposed Laurent series with IMO is newly formulated by 

integrating the Laurent series with Intelligent IMO algorithms. Through 

extensive experimentation and analysis, the proposed LIMO-based GAN 

network provides effective and improved performance metrics with overall 

accuracy, sensitivity, and specificity values at 91.5%, 92.6%, and 92.41%, 

respectively.  
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1. INTRODUCTION 

Rice is a staple food for a significant portion of the global population, and its cultivation is vital for 

food security, especially in countries like India, where agriculture forms the backbone of the economy. 

However, rice crops are highly susceptible to various diseases, which can lead to substantially less 

productivity, reduced food security, and economic difficulty for farmers. In earlier methods of disease 

detection are often manual, time-consuming, and prone to errors, leading to delayed interventions and further 

crop damage [1]. Rice plants are vulnerable to various leaf diseases, which can significantly impact crop 

yield and quality. These diseases, caused by fungi, bacteria, or viruses, often manifest as discoloration, 

lesions, or wilting, affecting the plant’s ability to photosynthesize efficiently. Our primary focus is on the 

detection and diagnosis of rice crop diseases using advanced AI techniques, specifically a novel framework 

that combines the Laurent series with intelligent multidimensional object optimization (LIMO) and 

generative adversarial networks (GANs). This not only helps in reducing crop losses but also supports 
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sustainable agricultural practices by minimizing the need for excessive pesticide use [2]. You only look once 

(YOLO) previous version did not have a constraint on location prediction, making it unstable on early 

iterations. The YOLOv2 predicts five parameters and applies the darknet function to a constraint if its value 

is between 0 and 1. The YOLOv2 method was implemented with a hidden layer for effective object retrieval 

in the smart agriculture field. YOLOv2 indicates information to farming people after the identification of rice 

crop diseases. Also, YOLOv2 improves productivity with needed information. This YOLOv2 model, through 

the sensor, receives plant leaf disease images and is refined with a median filter after the segmentation and 

classification process [3]. An advanced optimized algorithm supports the LIMO model to train the rice crop 

disease dataset to the machine. IoT has plenty of opportunities and has contributed a vital role in wireless 

networks, especially in the last fifteen years.  

Various crop disease detection methods need more accuracy and dimensional corrections. Through 

this research work, planning to gear up the accuracy of the rice (paddy) crop disease detection system with 

the effect of a new-fangled image classification algorithm with cognitive learning [4]. Through this research 

work, rice crop disease detection and prevention with the help of GAN networks, which provide parallel 

significant speed-up samples (input images). Also, GANs are getting train data through LIMO's proposed 

framework, which integrates both the LIMO algorithm to improve the overall hit rate and accuracy of rice 

crop disease detection and prevention. For the texture classification approach, using a gray level co-

occurrence matrix that considers overlap and edge pixel extract essential attributes is revised by the GAN 

network, which is trained by LIMO. The generator creates synthetic images of crop diseases based on the 

input data, while the discriminator evaluates the authenticity of these images. The two networks are trained 

simultaneously, with the generator improving its ability to create realistic images and the discriminator 

becoming better at distinguishing between real and synthetic images. GANs are particularly effective in 

scenarios where the available dataset is limited or imbalanced. By generating synthetic images, GANs help 

create a more diverse and representative dataset, which improves the performance of the classification model. 

The proposed system leverages IoT technology to collect real-time data from agricultural fields [5], which is 

then processed using a multi-objective and cognitive learning routing (MOCLEAR) protocol for optimal data 

transmission. The framework aims to improve the accuracy and efficiency of rice crop disease detection, 

which is critical for sustainable agriculture [6]. This paper is worth reading because it introduces a novel 

approach that combines the Laurent series with LIMO and GANs to create a more accurate and efficient 

system for rice crop disease detection. The proposed framework addresses the limitations of existing methods 

by integrating advanced AI techniques with IoT, enabling real-time monitoring and early detection of 

diseases [7].  

The research's main aim is to implement a four-phase framework for rice crop disease detection: IoT 

communication phase: sensors collect data from the field, which is transmitted to a processing unit using the 

MOCLEAR protocol for optimal routing. Pre-processing phase: The collected data undergoes data reduction 

and feature engineering to improve the quality of input values for segmentation and classification. Image 

processing phase: the cognitive residual convolution network (CRCNet) is used for image segmentation, 

followed by feature extraction and classification using the LIMO framework. Disease detection phase: the 

LIMO framework, combined with GANs, classifies the disease and provides insights into the severity of the 

infection. The paper also includes a comparative analysis of the proposed framework with existing models, 

demonstrating its superior performance in terms of accuracy, sensitivity, and specificity. The structure of the 

sections is as follows: section 2 provides a review of related work in the field of crop disease detection, 

highlighting the limitations of existing methods. Section 3 describes the materials and techniques used in the 

proposed framework, including the dataset, IoT communication, and the LIMO classification framework. 

Section 4 details the experimental results, comparing the performance of the proposed framework with 

existing models. Section 5 concludes the paper, summarizing the key findings and suggesting future 

directions for research. 

 

 

2. RELATED WORK 

Earlier investigations in the domain of rice disease classification using deep learning methods have 

been directed extensively by experts globally. This study investigated the effects of IoT, an important 

technology that needs to connect communication devices to the internet. It makes an immense smart 

application. The IoT has grown rapidly, and that is the reason many researchers are showing interest in this 

platform. An agro-weather station installed in an agriculture field, through this platform, can collect versatile 

information with various sensors for the application's sustainability. Various dimensional features are extracts 

and detecting crop diseases in an effective manner. With this computational intelligence, we can able to 

perform numerous sensors and communication (network) devices for smart agricultural processes, which 

improve extreme productivity. Cloud models, machine learning, and IoT materialization technologies play a 

vital role in field information collection for smart farming [8]. 
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The author examined how crop disease detection methods effectively control farming factors by 

using various sensors with those values, creating a convolutional neural network model-trained dataset. 

This model amended the overall framework and is an effective monitoring system based on thermal 

camera images to find whether crop leaves are infected or not. Invented a new framework for the 

agricultural industry that performs edge computing for data transmission from IoT sensors to cloud 

storage. The main objective of this model is field monitoring, evaluating, and transmitting values to the 

cloud. Optimization also plays a vital role in this model, which means continuous monitoring and 

evaluating values communicates the cloud in assorted dairy circumstances. The author validated this in 

five crops, 17 diseases, and a 121,955 images dataset over field conditions. The author implemented a 

deep learning model and achieved a multi-crop convolution neural network (CNN) accuracy of 98%. 

However, this model is absent in training dynamically the learning algorithms for miscellaneous crop 

diseases and symptoms [8], [9]. This study investigated crop disease detection with enough weighty 

literature review and various activities to tolerate the new IoT model for farming. One more thing is the 

IoT platform provides user-friendly models for crop disease detection and prevention. The IoT model 

directly connects farmers with computation (intelligence computation). In this study, the author achieved 

an accuracy of 82.41%, and the F1-score of 67% was the lowest among all the classifiers. The smart 

agriculture system works fast and accurately on crop disease identification with summarised different train 

sets for meticulousness in the agriculture field [10]. From the above literature survey, different solutions 

for plant disease detection methods are not up to expectations.  

 

 

3. METHOD 

3.1.  Experimental setup 

The experiment was conducted using MATLAB R2023b, leveraging its robust image processing, 

deep learning toolboxes for segmentation and classification tasks. The system was configured with a 

Windows 11 operating environment, a 64-bit architecture, and 16 GB RAM. Both the training and testing 

process of LIMO with GAN is facilitated with TensorFlow 2.15 as well as Keras 2.x. The Laurent series is a 

mathematical tool used in complex analysis to represent functions with singularities. In our framework, we 

integrate the LIMO to enhance the accuracy of crop disease detection. 

 

3.2.  Data acquisition 

Nowadays, we are equipped with different types of sensors in farming using the sensed data used for 

our research work. The Table 1 listed overview of diseases with a number of images and resolutions. The rice 

crop disease dataset contains various rice crop disease images, around 2,400 various crop disease images 

(various range of resolution jpeg format images) datasets used for this experiment. The dimensionality of 

each dataset was various quantities, various sizes of images, and the characteristic of the attribute (like HSV, 

gradient, and RGB). This dataset is used in three stages: first pre-processing, second image enhancement, and 

segmentation, and last one is classification methodology.  

 

 

Table 1. Dataset description [11]–[13] 
Disease type Number of images Image resolution 

Bacterial blight 300 1920×1080 

Bacterial leaf streak 250 1920×1080 

Blast (leaf and collar) 400 1920×1080 

False smut 200 1920×1080 
Rice grassy stunt 150 1920×1080 

Brown spot 300 1920×1080 

Total images 2,400 NA 

 

 

This advanced framework provides markable improved performance on crop disease detection 

systems, but the main drawback of this system is its struggle with including various types of disease training 

data. Streaming image inputs-based crop disease detection system to detect the crop diseases and their level 

was formulated with real-time crop disease detection [14], [15]. At the initial level, the streaming image was 

converted into static-margined multiple images. In the second step streamed multiple images were diagnosed 

with object identification. Here, this process also takes gradient values and provides mapping, which is called 

image segmentation. At the last, images are prepared for disease detection results. Figure 1 shows the overall 

architecture of crop disease detection. This model encompasses a few levels only there are raw images 

collected from the agricultural field using various sensors, pre-processing (252×252 size of images, data 
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transformation, data reduction, and feature engineering), segmentation using CRCNet, feature learning, 

feature’s extraction, classification using proposed LIMO with GAN, and evaluation metrics. The plant 

disease process has to find the depth of diseases attacking a particular crop [16]–[18]. This severity 

identification is also divided into three phases like networks (authentic, malicious, and attacker). The Laurent 

series allows us to model complex patterns in the data, particularly in the presence of noise or irregularities in 

the images. By incorporating the Laurent series, we can better capture the understated variations in crop 

disease symptoms, which are often missed by traditional methods. LIMO is an optimization algorithm 

inspired by the hunting behavior of grey wolves. It is used to optimize the feature selection and classification 

processes in our framework. LIMO combines the strengths of IMO with cognitive learning techniques to 

improve the accuracy and efficiency of disease detection. GANs are a class of deep learning models that 

consist of two neural networks: a generator and a discriminator [19]. In our framework, GANs are used to 

generate synthetic images of crop diseases, which are then used to augment the training dataset. This helps in 

improving the robustness and generalization of the model. CRCNet is a modified version of the traditional 

CNN that incorporates cognitive learning and residual connections. It is used for image segmentation and 

feature extraction in our framework. MOCLEAR is a routing protocol used in the IoT communication phase 

of our framework. It is designed to optimize the transmission of data from the sensors to the processing unit, 

ensuring minimal loss and maximum efficiency. Before the images are processed by the CRCNet and LIMO 

frameworks, they undergo a series of preprocessing steps, including feature engineering and data reduction.  
 
 

 
 

Figure 1. Architecture of crop disease detection using LIMO with GAN approach model 
 

 

These steps are designed to improve the quality of the input data and reduce the computational 

complexity of the model. In the IoT communication phase, sensors and other devices are subjected to 

network routing protocols. In this network communication phase, path selection and decision-making are 

carried out by multi-objective and cognitive learning-based routing algorithms [20]. Once communication 

started with MOCLEAR routing on board the unit got information about crop (images). After receiving 

images of the rice plant, regular image processing is performed. Feature engineering (pre-processing) starts 

the process of expert knowledge fed to the machine. Segmentation and feature extraction methods are used to 

attain input images through sensors and IoT devices. Feature engineering to improve the image quality and 

transformation for comfortability. After that, image segmentation is carried out based on the expected object, 

design, and color, which are segmented with CRCNet support. Feature extraction is achieved using pattern, 

texture, and gradient to inhale the required features to detect crop diseases [21], [22]. Finally, received 

features are classified and optimized, whereas rice plant disease detection is done using the LIMO 

framework. The proposed LIMO framework model is a combination of LIMO. LIMO framework combined 

with CRCNet network for rice crop disease detection for smart agriculture with IoT network. We will discuss 

more clearly the process of path selection (routing algorithm) and crop disease detection with cognitive 

learning. Assume rice crop disease dataset Rpd and 𝑥 count of input values. The equation is written as in (1).  

 

𝑅𝑝𝑑 = {𝐼1, 𝐼2, 𝐼3. . . . . . , 𝐼𝑥} (1) 
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Where, 𝐼𝑥 indicates 𝑥𝑡ℎ plant images (input). Assume that 𝑖𝑡ℎ node or device holds the values pertaining to 

subject field plants or crop to IoT communication phase. Rice plant data is transmitted to an onboard unit 

(BS), and the MOCLEAR algorithm helps to find the best route for data communication. 

 

3.3.  Cognitive learning-based MOCLEAR algorithm for data communication 

In the data communication phase, received data is transmitted to an onboard unit by selecting the 

optimal path using a cognitive learning-based MOCLEAR algorithm. Effective and lossless data 

communication is archived with the help of the MOCLEAR algorithm, which is a combination of IMO and 

optimal cluster head node iteratively in the IoT cloud network model. IMO, the algorithm implements grey 

wolf hunting behaviour concepts. It has three stages: approach, hunt, and attack stages. A cognitive expert 

position is created, and after positioning, every legitimate move gets updated. Intelligent multi-objective 

optimization has four set solutions, alpha, beta, omega, and delta, with the expert position. Expert positions 

are also updated with a gravitational search algorithm. The MOCLEAR algorithm is the model that decides 

the best route for data communication to the board unit. This hybrid model is the most advantageous for 

finding a number of routes for data communication using convergence. The updating process archived the 

way that terms are included in the IMO optimization technique with the help of the IoT cloud network 

algorithm. Modified MOCLEAR expression as in (2). 

 

𝐺𝑊(𝑡 + 1) =
𝐺𝑊1+𝐺𝑊2+𝐺𝑊3+𝐺𝑊4

4
 (2) 

 

Where 𝐺𝑊1,  𝐺𝑊2, and GW3 indicate the initial and continued positions of grey images. Also, 𝐺𝑊4 denotes, 

at the time, grey images end position with MOCLEAR. Further grey images representation as in (3)-(5). 

 

GW1 = GWα − I1(Dα) (3) 

 

𝐺𝑊2 = 𝐺𝑊𝛽 − 𝐼2(𝐷𝛽) (4) 

 

𝐺𝑊3 = 𝐺𝑊𝛿 − 𝐼1(𝐷𝛿) (5) 

 

Where 𝐺𝑊𝛼 , 𝐺𝑊𝛽and 𝐺𝑊𝛿  denotes the optimal solution. Indicates the gap between the position and the 

evaluated expert position. 𝐷𝛽 represents the reverse of 𝐷𝛼 , i.e., the gap between the evaluated position and the 

expert position is 𝛽, which indicates the distance between cognitive expert 𝛿 and the prediction-based 

position. 𝐺𝑊4 indicates the position of Fractional Grey Search algorithm with a time of t, estimation equation 

as in (6).  

 

𝐺𝑊4 = 𝛾𝐶𝑗
𝑖(𝑡) + 𝑇𝑖(𝑡 + 1) +

1

2
𝛾𝐶𝑗

𝑖(𝑡 − 1) (6) 

 

Where 𝐶𝑗
𝑖(𝑡)denotes the position of expert I at the 𝑗𝑡ℎ  factor at a time, whereas the expert’s evaluated front 

position at 𝑡ℎ𝑒 𝑗𝑡ℎ  dimension in 𝑡he t − 1𝑡ℎ time is indicated by 𝐶𝑗
𝑖(𝑡 − 1), here, 𝑇𝑖(𝑡 + 1) denotes velocity 

with(𝑡 + 1)𝑡ℎ location while 𝛾represents probability values from 0 to 1. Thus, rice plant data gained through 

sensors or cameras and other communication devices are given to an onboard unit, where rice plant disease 

detection and prevention is implemented.  

 

3.4.  Identification/detection of rice crop diseases 

The rice crop disease detection and prevention with sensed rice crop information through IoT. After 

receiving values or images followed by the processes are image transformation, denoising, data reduction, 

image segmentation, features extraction, enhancement, image classification with optimization, and 

performance calculation for future machine training purposes. Image segmentation is achieved with CRCNet 

architecture for image localization. It is attained with segments that support significant and efficient object 

detection of feature extraction. Finally, LIMO proposed a framework that was performed with the GAN 

network MOCLEAR and trained the model with the LIMO algorithm. A detailed design of LIMO and 

MOCLEAR for rice crop disease detection will be discussed in the impending position of this research work. 

Consider the intellectual segments created from input crop images, where it denotes overall segments 

surviving on input rice plant image, 𝑎𝑛𝑑 𝐼𝑆𝑒 represents 𝑡ℎ𝑒 𝑒𝑡ℎ segment of the input. 

 

𝐼𝑆 = {𝐼𝑆1, 𝐼𝑆2 , . . . , 𝐼𝑆𝑒 , . . . , 𝐼𝑆𝑓} (7) 
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3.4.1. Laurent series expression 

The Laurent series with complex coefficients can be used to study the behavior of functions near 

individualities, especially in complex analysis. A laurent polynomial is a laurent series in which only a finite 

number of coefficients are non-zero. The Laurent polynomial differs from normal polynomials in that it can 

have negative degree terms. Where f(x) is Laurent series complex function, and y is constant with an defined 

by a contour integral. 

 

𝑓(𝑥) = ∑ 𝑎𝑛(𝑥 − 𝑦)𝑛∞

𝑛=−∞
 (8) 

 

3.5.  LIMO with GAN network for rice crop disease prevention and detection 

This proposed LIMO framework aims to identify the disease of rice crops with intellectual multi-

object optimization and MOCLEAR. Laurent series implements the methods of complex variables with the 

addition of infinite terms and extensions. For image processing and object detection, this LIMO framework is 

an effective and powerful detection method because of computational integration and infinite sum creation. 

Moreover, this LIMO series is a one-step process of monitoring with high-dimensional terms. This Laurent 

series supports the deriving of imaginary upper error and convergence. The IMO model maintains stability 

between manipulation and investigation. IMO, Laurent seriously increases the optimal way for conjunction 

processes, the most favorable ground solutions, and the symmetry between trained and test data. Here, 

integrated IMO optimization and the Laurent series are used to raise the overall throughput significantly. 

Figure 2 shows the following GAN with LIMO network and its architecture used in this rice plant disease 

detection system. GAN networks involve two types of neural network models: generators and discriminators. 

Generators make predictions or approximate samples on an original or expected outcome basis. 

Discriminator finds the variation from regular activities. This process between generator and discriminator 

models leads up to the levels of perfection. Various optimum values are received through different algorithms 

that support the training of crop disease images and the compilation of the framework.  

 

 

 
 

Figure 2. Rice plant disease detection using LIMO with GAN framework 

 

 

4. RESULTS AND DISCUSSION 

Our research work investigated the effects of LIMO classification and MOCLEAR segmentation on 

rice crop disease detection. While earlier studies have explored the impact of deep learning-based 

classification methods and IoT-based disease monitoring, they have not explicitly addressed its influence on 
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the integration of the Laurent series with IMO for enhanced disease detection accuracy. We found that the 

integration of LIMO classification with MOCLEAR segmentation correlates with enhanced accuracy in rice 

crop disease detection. Our proposed method in this study provides a tremendously advanced proportion of 

correctly classified disease instances compared to misclassified cases. Figure 3 shows experimental analysis 

using LIMO with GAN network, Figure 3(a) explains the various rice crop disease images obtained from the 

rice crop disease dataset. Figure 3(b) shows an image pre-processing with data reduction and feature 

engineering contained from input values. Figure 3(c) describes the ground truth values of input images 

segmented input obtained boundary values by CRCNet is represented in Figure 3(d) final segmentation 

process. This performance analysis focused on calculating highly accurate prediction and recall with the 

proposed LIMO in the GAN network to express its efficacy in standings of accuracy, recall, precision, 

sensitivity, and specificity metrics. This performance analysis process has diverse dimensionalities, such as 

various epoch values, such as 2,500 to 3,400, and different batch sizes (ranging from 80 to 220). The 

proposed method could potentially enhance the accuracy of crop disease classification without negatively 

affecting the model's ability to distinguish between different disease types. Figure 4 shows the experimental 

rice plant disease results conquered with the LIMO framework (Laurent series-IMO) based GAN network 

using the rice crop disease dataset. The experimental analysis of LIMO with the generative network to 

calculate the percentage accuracy rate, sensitivity values, and specificity values using various epoch values. 

This study examined a comprehensive LIMO-based classification framework for rice crop disease detection 

with GAN-enhanced segmentation techniques. However, more thorough research may be required to validate 

its generalizability across different crop types, particularly in relation to variations in environmental 

conditions and image quality. 

 

 

   
(a) 

 

   
(b) 

 

   
(c) 

 

   
(d) 

 

Figure 3. Experimental analysis of the LIMO combined with GAN network: (a) real input image,  

(b) multi-objective based pre-processing input image, (c) ground truth input image, and  

(d) LIMO segmentation portion 



Int J Artif Intell  ISSN: 2252-8938  

 

Laurent series intelligent multidimensional object optimization classification … (Anandhan Karunanithi) 

4057 

In this experimental analysis, Figure 4(a) shows the specificity factors evaluation of the proposed 

classification model with other existing models. At the time 85% of the training process was completed, the 

specificity percentage of the LIMO model was attained at only 92.4%. also, other models are Deep Neural 

Network (DNN) was 80.4, CNN was 85.3, YOLOv2 was 84.3, and ResNet was 88.6% [23]–[25]. Figure 4(b) 

explains the comparison of the sensitivity factors of LIMO with other existing models. At the time of the 

85% training set completed, the sensitivity rate was LIMO=92.6, DNN=73.1, CNN=90.2, YOLOv2=68.8, 

and ResNet=83.4%. Figure 4(c) portrays 50 to 85% of training data attained accuracy levels with the LIMO 

framework and other existing models. At the end of the analysis, when the 85% training set is completed,  

the accuracy percentage is LIMO with GAN=91.5, DNN=70.2, CNN=80.4, YOLOv2=69.7, and 

ResNet150=80.3%. Through this proposed research work, LIMO supports identifying crop diseases and their 

levels very effectively, which helps to make advanced smart agriculture for better productivity. According to 

our study, a higher sensitivity in disease detection does not necessarily indicate poor specificity performance. 

The proposed method could potentially enhance the accuracy of crop disease classification without 

negatively affecting the model's ability to distinguish between different disease types.  
 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

Figure 4. Experimental analysis of 50% to 85% training set of detection (a) specificity, (b) sensitivity, and  

(c) accuracy by LIMO with GAN model compared with various existing models 
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Table 2 data provide our proposed LIMO model, with the GAN network getting the highest 

accuracy rate is 91.5%, whereas the accuracy rate compared with existing classification models obtained by 

DNN, CNN, YOLOv2, and ResNet were 70.2%, 80.4%, 69.7%, and 80.3% [19], [26], [27]. A comparison of 

these accuracy values reveals our proposed LIMO framework provides 34.7% better than the deep neural 

networks model. Experimental results show that LIMO with a GAN network can enlarge the classification 

accuracy rate and control overfitting issues. The accuracy and prediction rate have significantly improved 

since our research work provides totally different suggestions from existing GAN-only models.  

These GAN networks are used to improve image resolution values controlled with cognitive 

learning methods. Table 2 compares the act of our proposed LIMO framework with existing models such as 

DNN, CNN, YOLOv2, and ResNet in terms of accuracy, sensitivity, and specificity [28]. Our study 

demonstrates that the LIMO classification framework combined with GAN-based segmentation is more 

resilient than traditional deep learning models in detecting rice crop diseases [29], [30]. Our study suggests 

that the proposed framework can transform agricultural disease management by enhancing detection 

accuracy, ensuring real-time monitoring, and enabling more efficient decision-making. These advancements 

not only improve crop yield and quality but also contribute to the broader goal of sustainable and technology-

driven agriculture and real-time disease prediction and monitoring. 

 

 

Table 2. Overall performance analysis of accuracy, sensitivity, and specificity 
Performance analysis percentage (%) DNN CNN YOLOv2 ResNet LIMO with GAN 

Dataset count 5,000 3,500 2,650 1,550 2,400 

Accuracy 70.2 80.4 69.7 80.3 91.5 

Sensitivity 73.1 90.2 68.8 83.4 92.6 

Specificity 80.4 85.3 84.3 88.6 92.4 

 

 

5. CONCLUSION 

Laurent series-IMO with GAN network for rice crop disease identification and prevention in the IoT 

platform. Through this framework, the IoT network nodes collect values from the rice crop leaves through 

the sensor, although the sensed values are communicated with the base station through MOCLEAR. This 

MOCLEAR method selected the optimal route between transmission nodes, which nodes participated in 

communication. The research framework was modified on pre-processing with data reduction and feature 

engineering to improve the quality of object detection. Then, the cognitive residual convolutional network 

was revised to segment the sensed values with appropriate feature selections to improve the efficiency of 

crop disease identification. LIMO classification was implemented using the Laurent series and intelligent 

multidimensional object-based optimization. Performance analysis of our LIMO model achieved better 

results such as accuracy: 91.5%, specificity: 92.41%, and sensitivity: 92.6%. Paddy leaf image classification 

will be enhanced by continued exploration in these directions, which will address real-world challenges in 

agriculture. Future studies investigate the adaptability of this approach to other crops species and explore 

feasible methods for producing real-time disease detection systems with minimal computational overhead.  
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