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 Lung cancer segmentation with positron emission tomography (PET) and 

computed tomography (CT) images plays a critical role to accurately detect 

lung cancer. Nevertheless, lung tumor segmentation in PET/CT images were 

extremely difficult due to the movement caused by respiration. Despite this 

fact, the lung tumor images shown large number of variations mostly in PET 

images and CT images. As PET-CT images are acquired concurrently the 

shape and size of lung tumor varies according to modality. To address these 

issues, we developed a residual edge dense enhanced module network 

(REDEM-NET) framework for lung tumor stage classification. The 

proposed REDEM-NET can process PET and CT images as inputs. In 

addition, the dense residual convolutional network (DRCN) collects both 

inputs and extracts high-dimensional features concurrently. The extracted 

features from both imaging modalities were fed into UNet+++ to obtain 

multi-level decoded features. The extracted decoded features are 

concurrently supplied to the pixel level learning module (PELM) and edge 

level learning module (E2LM) which resulting in two outputs for subsequent 

learning. The outputs were merged to provide a very precise lung tumor 

segmentation. Furthermore, segmented tumor was fed to multi-class support 

vector machine (MC-SVM) for lung tumor stage classification. Moreover, it 

was able to identify three stages and its substages namely primary tumor, 

region lymph node and distant metastasis. 
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1. INTRODUCTION 

Lung cancer endures one of the most extensive and deadly diseases that spreads its mortality 

annually. Earlier diagnosis of lung cancer and identifying the respective stages is more crucial. Lung tumor 

stages inclusively referred to as the tumor, node, metastasis (TNM) classification system such as the size and 

extent of the T, the presence of distant M and the involvement of lymph N [1]–[3]. Advanced medical 

imaging technologies have a major improved ability to identify and estimate lung tumors such as magnetic 

resonance imaging (MRI), computed tomography (CT), and positron emission tomography (PET). The 
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advances in artificial intelligence (AI), machine learning (ML), and deep learning (DL) enable more precise 

tumor staging [4]–[6]. AI could tackle complex and huge datasets with precise classification. The most 

modern developments in imaging technologies apply AI based methods for classifying the tumor stages. To 

avoid human error and medical modalities must be equipped with precise AI driven solutions. AI driven lung 

tumor classification can also be able to consider the individual patient’s features in cancer cell segmentation. 

The DL suffers with the curse of over fitting and reduced the generalizability. However, features from the CT 

and PET images have varying resolutions and properties making it difficult to incorporate and arrange them 

properly [7]. Especially, Lung tumor is difficult to detect and categorized as the tumor stages varies with 

respect to size, texture and shape. In real world clinical situation supporting the accuracy of the model and 

reliability specifies assuring the toughness of these variations. The major contribution of this work is 

mentioned as as follows: 

− We adopt parallel feature extractors named deep residual convolutional network (RCN) for modality 

(i.e. CT and PET) specific feature extraction with shared weights for extracting high dimensional spatial 

features. 

− We design UNet+++ for performing segmentation by examining high dimensional spatial features with 

better feature processing accuracy. The designed UNet+++ contains convolutional block attention 

segment (CBAS) to reduce the unwanted computational complexity. The adopting of pixel level 

learning module (P2LM) and edge level learning module (E2LM) enhance the tumor segmentation 

accuracy by effectively processing the multi scale decoded features.  

The rest of the study is organized as follows; section 2 demonstrates the related works. Section 3 

emphases the material and methods needed to proposed research design. Section 4 explains the proposed 

residual edge dense enhanced module network (REDEM-NET) model with appropriate mathematical 

equations and diagrams. Section 5 implements the proposed work with existing works. Section 6 concludes 

the proposed work. 

 

 

2. RELATED WORKS 

Hamdi et al. [8] have developed a lung cancer classification method by using a multi output 

convolutional neural network (CNN) tool to assist lung cancer patient’s stages. It refers to the TNM staging 

method and histologic subtypes classification. Furthermore, VGG-16 network has been incorporated with 

PET/CT images to extract relevant features from images. According to Kasinathan and Jayakumar [9],  

a cloud-based lung tumor detector and stage classifier (cloud-LTDSC) method were proposed to classify and 

validate lung tumor stages by utilizing DNN and cloud-based data collection. This method was validated with 

the benchmark lung image database consortium - image database resource initiative (LIDC-IDRI) dataset and 

CT digital imaging and communications in medicine (DICOM) images. 

The research in [10], [11] have presented a framework that automatically localizes lung cancer from 

PET/CT images. Rose et al. [12] proposed a framework for the cancer detection with fuzzy C-means (FCM). 

Xiang et al. [13] proposed a modality-specific segmentation network (MoSNet) technique for lung tumor 

segmentation to yield a modality-specific map. Fu et al. [14] proposed a lung tumor segmentation model with 

multimodal spatial attention module (MSAM). Xie et al. [15] proposed a novel method to identify the 

preoperative lymph node staging in non-small cell lung cancer. Moreover, retrospective examination of 263 

abnormally verified lymph nodes from 124 non-small cell lung cancer (NSCLC) patients was performed. 

Xia and Zhang [16] proposed a novel DL-based graph model for tumor segmentation was. Their 

method has exploited the CT’s spatial resolution and PET’s higher contrast for multi-scale fusion and  

co-segmentation. Nawreen et al. [17] proposed a novel method for pre-processing with image enhancement and 

smoothing. Rehman et al. [18] demonstrated the idea of feature fusion with patch base local binary pattern 

(LBP) and discrete cosine transform. Yadav et al. [19] proposed a framework for chest CT and X-ray images 

with generative adversarial network (GAN). 

Raza et al. [20] proposed Lung-EffNet for lung cancer by utilizing a EfficientNet from CT-scan 

images. This method has additional top layers for the classification head and it was evaluated by using five 

EfficientNet variations (B0-B4). Moreover, it was experimented on the IQ-OTH/NCCD benchmark dataset to 

classify lung cancer as benign or malignant. Venkatesh et al. [21] proposed a lung cancer lesions 

identification method with Otsu thresholding and CNN based cuckoo search algorithm. This framework was 

validated with the scaling, rotation and contrast modification of the images taken from LIDC-IDRI database 

[22]. Faruqui et al. [23] proposed a hybrid deep-CNN model named Lung Net with 22-layer hybrid deep-

CNN. They have trained the model with CT scans and wearable sensor-based MIoT data. Nazir et al. [24] 

proposed a lung segmentation framework with LP decomposition and adaptive sparse representation (ASR) 

and validated with the images taken from LIDC-IDRI database.  

Ashwaty et al. [25] proposed a model to detect lung tumor using Nano-segmented CT image. This 

method was enhanced with Gabor filter and color-based histogram equalization techniques. Moreover, this 
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lung cancer images were segmented by utilizing the guaranteed convergence particle swarm optimization 

(GCPSO) algorithm. Additionally, the tumor regions are classified using a graphical user interface tool and 

bag-of-visual-words (BoVW) a convolutional recurrent neural network (CRNN) was utilized for image 

classification and feature extraction. Crasta et al. [26] proposed a classification framework using cosine sail 

fish optimization-based generative adversarial network. This framework merges the sine cosine algorithm 

through the sailfish optimizer. Furthermore, the process includes pre-processing, feature extraction, lung 

cancer detection, severity classification and lung nodule segmentation. Additionally, CT images are 

segmented to detect abnormal regions. 
 

 

3. MATERIALS AND METHODS 

For our proposed research, we retrospectively collect (n=120) stage I lung tumor patients have a 

favorable diagnosis when compared to the patients with stage II and III respectively. To be clearer, it is 

difficult to victimize the stage II and III patients with good and worse prognosis. So that this study firmly 

focused on lung tumor patients with stage II and III respectively. 

− Patient demographics: for our research, we utilize about 140 lung cancer patients with stage II and III 

were adopted from the Centre Hospitalier Universitaire (CHU), France in which the patients are 

subjected with curative chemoradiotherapy. Those patients’ details were collected between the years 

2017 to 2019 respectively. The inclusion criteria include patients with NSCLC with both PET and CT 

images and stage-II or III with subjected to radiotherapy treatment. Table 1 shows the demographics of 

patient characteristics. Table 2 shows the tumor staging of lung cancer. 

− PET/CT image acquisition: all the considered patients must undergo PET/CT acquisition before staging 

and treatment approach. Entrenched on the clinical routine protocol, a biograph with 22.7cm axial view 

was taken on mCT 50 ToF. After 7h of fasting and 65 ± 7 minutes of 3.5 MBq/kg of FDG  

(423±98 MBq, range 225-700 MBq) PET/CT image acquisition was started. 

The CT image with non-contrast enhanced, non-respiratory gates were acquired with 4 mm 

thickness and 0.942 × 0.942 mm2 in-plane thickness using 130 kVp modulation system. Furthermore, the 

PET images can be acquired based on the bed position arrangement with 3.5 min. The acquired PET and CT 

images are reconstructed using spatial resolution modelling and time of flight with 22 subsets, four iterations, 

voxel size of 5 × 5 × 5 mm2, and 6 mm 3D gaussian filtering approaches respectively.  
 

 

Table 1. Demographics of patient 
Characteristics # of Patients (%) Test (N=55) (%) Train (N=90) (%) 

Stage I 3 3 3 

II 45(33) 19(32) 28(28) 

III 98(71) 36(69) 63(72) 
Treatment CHE 72(53) 25(47) 59(68) 

RAD 70(51) 30(57) 32(36) 
Age Mean±SD 73.6±9.4 73.8±12 73.6±9.4 

Range 48-96 48-91 48-96 
Gender Female 34(25) 9(16) 27(31) 

Male 106(79) 46(88) 64(73) 

 

 

Table 2. Lung tumor stages 
Primary tumor (TU) Regional lymph nodes (LN) Distant metastasis (DM) 

TU0–No tumor 

TU1–Tumor≤3 cm 
TU1a–Tumor≤1 cm 

TU1c–Tumor>1 cm to≤2 cm 

TU2–Tumor>2 cm to ≤5 cm 
TU2a–Tumor>3 cm to ≤4 cm 

TU2b–Tumor>4 cm to ≤5 cm 

TU3–Tumor>5 cm to ≤7 cm 
TU4–Tumor>7 cm 

LN0–No regional node metastasis 

LN1–Ipsilateral 
peribranchial/perihilar/ 

intrapulmonary nodes 

LN2–Ipsilateral mediastinal or 
subcarinal nodes 

LN3–Contralateral 

mediastinal/perihilar/supraclavicular 
nodes 

DM0–No distant metastasis 

DM1–Malignant effusion or 
contralateral nodule 

DM2–Distant metastasis detected 

 

 

4. REDEMNET–MODEL 

Figure 1 represents the architecture of the proposed REDEM-NET. The proposed REDEM-NET is 

composed of parallel feature extractors named dense residual convolutional network (DRCN) for extracting 

high dimensional features from both the PET and CT modalities. Note that the feature extractors shared 

weights among themselves to examine the bispatial features. Both produce high dimensional-spatial pixelated 
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features and provide them as input to the UNet+++. The UNet+++ extracts multi-level decoded features and 

resolve the redundant computation problems by including CBAS. The output of UNet+++ is depicted in form 

of multi-level feature maps. From the multi-level feature maps, P2LM and E2LM output the precise lung 

tumor segmentation result. Finally, the detected tumor is then fed to the multi class-support vector machine 

(MC-SVM) for multi class lung tumor stage classification with peak accuracy and precision respectively. 
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Figure 1. Overall architecture of the proposed REDEM-NET model 

 

 

4.1.  Parallel feature extractors 

The pre-processed PET and CT image ImPET
′′′ , and ImCT

′′′  is provided as an input to the parallel 

feature extractors named DRCN which provides output as associated pixel-superpixels ∀ and high 

dimensional spatial features ℵds. Note that, pixels and super-pixels in the medical images can perform 

transformation among each other∀∈ ℝM×N, Im ∈ ℝM×C, and SP ∈ ℝN×C in which pixels and super-pixels are 

represented by M and N respectively. Furthermore, the color scaling and positional factors are denoted by 

δposi, and δCSC. The formulation of δposi is computed in (1): 

 

δposi = ℶ (
Nω

Mω
,

Nh

Mh
) (1) 

 

From (1), Nω, Nh, Mω, and Mh denotes the number of pixels with height and width respectively. With the 

color scaling and positional factors, the spatial compactness and color similarities can overlook the tumor 

boundaries. The designed DRCN enhances the learning capability and efficacy of the feature extraction 

which transforms the given ImPET
′′′  or ImCT

′′′  into two level upsampled and dowmsampled feature maps 

respectively. The mathematical (1) of the dense convolutional blocks and stacked residual blocks are 

computed as (2) to (5): 

 

IFDC = PS + MPLR ↑4 (2) 

 

IFres
1 = FeaDC (3) 

 

IFres
2 = FeaDC ⊕ Feares

1  (4) 

 

IFres
3 = (FeaDC ⊕ Feares

1 ) ⊕ Feares
2  (5) 

 

From (2)-(5) IFDC and FeaDC denotes the input and output feature maps of the dense convolutional blocks 

respectively; IFres
j

 and Feares
j

 denotes the input and output features maps in the j-th residual blocks; and  

↑4 denotes the up-sampling operation with ⊕ as addition operation of every feature element. 
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By entrenching dense convolutional layers, element wise addition, and stacked residual blocks sums 

the feature maps of every depth (i.e.64 feature maps). The deeper layer better will be spatial information in 

the feature maps. Totally, we have utilized 200 feature maps in triple levels and are amalgamated using the 

2 × 2 convolutional layer operation. To be clearer, the output residual information of the fused with the 

Upsample residual feature map to produce multi scale and multi branch feature maps with enriched spatial 

information. The outputs of the ImPET
′′′  or ImCT

′′′  are high dimensional spatial features as HDSPET, and HDSCT 

respectively. 

 

4.2.  Multi-level decoded feature extraction 

The output from the DRCN HDSPET, and HDSCT are provided as an input to the UNet+++ for  

multi-level decoded feature extraction. Those features are provided to every encoder stage 

HDSEnc
1 , HDSEnc

2 , HDSEnc
3 , and HDSEnc

4  and are amalgamated and passed to the CBAS in the decoder block 

HDSDec
1 , HDSDec

2 , HDSDec
3 , and HDSDec

4  by performing 2 × 2 convolutional and batch normalization operation 

respectively. The major advantage of utilizing UNet+++ over conventional UNet is that the designed model 

utilizes only lesser parameters for multi scale decoded feature extraction and fusion respectively. 

The skip connections in UNet+++ enhance multi-scale feature extraction but can cause redundancy. 

To address this, features from HDSDec
3  are processed through HDSEnc

1  and HDSEnc
2  from different max-

pooling layers. HDSEnc
3 , HDSDec

4 , and HDSDec
5  are refined using 2×2 convolutions with sigmoid activation and 

bi-linear upsampling, enabling efficient semantic feature learning with reduced computational complexity. 

The formulation of skip connected multiscale UNet+++ is provided as follows; assume that j be the 

present encoder and decoder layer respectively with M number if overall layers. The feature maps arranged 

in stacked format are denoted byHDSDec
j

 that can be calculated as (6): 

 

HDSDec
j

= {

B (CBN[(BNR(HDSEnc
j

), UP(HDSDec
k )

k=j+1

M−2
])) , j = 1

B (CBN [(BNR(HDSEnc
j

), UP(HDSDec
k )

k=j+1
, DS(HDSDec

k )
i=j−2

])) , j > 1, 𝑖 > 0
 (6) 

 

From (6), the CBAS is denoted by B(. ) which is succeeded by the ReLU activation function. The CBN (), 

and BNR () is denoted by convolution batch normalization set and ReLU batch normalization set 

respectively, UP (), and DS () denotes the up sampling and down sampling operation respectively. The 

adoption of CBAS with both the spatial and channel attention enhances the contextual information in multi 

scale fashion. In our design, decoder layer attains feature map MSF ∈ RW×H×C in which it is provided as an 

input to the CBAS. Aftermath, the channel entrenched feature map Nc ∈ RC×1×1 and spatial entrenched 

feature map Ns ∈ R1×H×W. The final feature map output fea′′ is computed as (7) and (8): 

 

fea′ = Nc(fea) ⊗ fea (7) 

 

fea′′ = Ns(fea′) ⊗ fea′ (8) 

 

The refined multiscale feature map fea′′ holds the multi scale semantic information of the lung tumors. 

 

4.3.  Pixel-edge level learning 

The extracted fea′′ is then passed simultaneously to the P2LM and E2LM for highly précised lung 

tumor segmentation. The P2LM is composed of series of convolutional layers which outputs the pixel wise 

classification map. The fea′′(PET) is passed to the series of 3 × 3 convolution layers in which the final 

convolutional layer convop can be formulated as (9): 

 

L = convop(fea′′(PET)) (9) 

 

From (9), L ∈ RH×W×C denotes the logit map here C denotes the number of classes. We apply SoftMax function 

to feature map channel dimension to attain the probability mapPr. The formulation of Pr is denoted as (10): 

 

Prj,i,c =
e

Lj,i,c

∑ e
L

j,i,c′C′

c′=1

 (10) 

The loss function for pixel wise learning utilized is cross entropy loss and can be authorized as (11): 
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Lo =
1

H′W′
∑ ∑ ∑ Grj,i,c

C′

c=1
W′

i=1
H′

j=1 log (Prj,i,c) (11) 

 

From (11), Gr ∈ RH′×W′×C′
 denotes the ground truth pixel level probability map. 

The edge features can be extracted from the fea′′(CT) feature map using the general edge detection 

operator Υ as shown in (12): 
 

Ed = Υ(fea′′(CT)) (12) 
 

From (12), Ed ∈ RH×W from the fea′′(CT) input. Aftermath, feature extraction can be performed based on 

the contextual information around the image edges. Assume that convolutional layers are adopted for feature 

map as (13): 
 

Feak = conk(Feak−1), k ∈ {1,2, … , K} (13) 
 

From (13), Fea0 = fea′′(CT) as the input image, and Feak ∈ RHk×Wk×Dk  is the k-th layer feature map. 

Adopted feature map is then provided on convolutional layer for edge level classification as (14): 
 

ℑ = conedg(feai
′) (14) 

 

From (14), ℑ denotes logit edge map with c′ as the edge classes. In similar manner to (9), softmax operation 

also performed for generating edge level feature map. By combining the P2LM and E2LM, we obtain the 

segmented output and can be formulated as (15): 
 

SegLC = L(fea′′(PET)) ⊕ ℑ(fea′′(CT)) (15) 
 

4.4.  Machine learning based lung cancer stage classification 

From the SegLC we derive w-classes with w-binary classifiers are trained in which every binary 

classifiers are trained to detached the j-th class from other classes. For enabling MC-SVM, this research 

utilized one Vs rest (OVR) approach which splits the multiple binary classifiers. To be more distinctive, the 

training process with every w-th binary classifier with j-th class can be formulated as (16): 
 

miniwej,bij,μj

1

2
‖wej‖

2
+ RP ∑ μji

n
j=1  (16) 

 

Subject to the constraint in (17): 
 

Ⅎji(wej. ði + bij) ≥ 1 − μji, ∀i = 1,2, … , n (17) 

 

Where the label function is defined in (18): 
 

Ⅎji = {
−1  if Ⅎi = j
1   if Ⅎi ≠ j

 (18) 

 

Based on the formulation, the MC-SVM classifies the SegLC tumor into three stages as primary tumor, 

regional lymph node, and distant metastasis. 
 

 

5. EXPERIMENTAL EVALUATION 

5.1.  Implementation details 

We utilized the python TensorFlow and Keras packages to employ our approach. We also 

implemented an NVIDIA Tesla T4 GPU which Google Colab offers for training and controlling the 

classifier. We utilized mini batches of Size 16 to train the network for 100 epochs with the past stopping 

conditions set to 10 epochs to avoid over fitting. We commonly adjust the amount of the existing work and 

begin the training process from scratch. We also employed the Adam optimizer to train the network above to 

below. Especially, we place the initial learning rate to 0.0001 and the optimizer’s parameters to 0.9 and 

0.999, if there is no validation loss enhancement is noticed for five consecutive epochs. We also fine-tuned 

the recent model for five epochs at a learning rate to adversely damage the weights of the model. 
 

5.2.  Evaluation metrics 

The employed DL techniques are evaluated in the provisions of five metrics for separate plane such 

as accuracy, precision, recall, F1-score, intersection over union (IoU), and area under curve (AUC). 
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− Accuracy: accuracy is defined as the ratio of properly detected the various pixels and the easiest metric 

on the five metrics. 

− Precision: precision is specified as the measure of the properly detected malignant pixels to the different 

pixels categorized as malignant in the plane and thus it displays the better model is while the results are 

positive. 

− Recall: recall is the piece of the malignant pixels in the bottom truth which were properly detected and 

classified as to all malignant pixels in the data set. A less recall signifies a huge number of fake alarms, 

yet a less precision value specifies a huge number of fake alarms. 

− F1-score: F1-score is defined as the consonant mean of the precision and recall. 

− IoU: IoU is defined as the intersection measure of the ground truth union and detected places and is the 

essential metric on several object classification and segmentation issues. 

− AUC: AUC is specified as the place below the ROC curve. ROC curve has the recall of the design on 

the y-axis and false positive percentage + false positive examples (FPE). FPE true negative examples 

(TNE) on the x-axis. AUC is a percentage of the model’s effectiveness in an increased unbalanced 

outline and will be evaluated as the vital below the ROC curve. The mentioned metrics are evaluated for 

given plane as in (19) to (22): 

 

Accuracy =  
TPE+TNE

TPE+TNE+FPE+FNE
 (19) 

 

Precision =  
TPE

TPE+FPE
 (20) 

 

Recall =  
TPE

TPE+FNE
 (21) 

 

F1 − score =  
TPE

TPE+
1

2
(FPE+FNE)

 (22) 

 

Here true positive examples (TPE), TNE, FPE, and false negative examples (FNE) signifies the amount of true 

positive, true negative, false positive, and false negative on the detected binary segmentation mask of a taken 

image. Here we have estimated the evaluation metrics above for each of the individual plane of the testing 

dataset and we record the common values of the mentioned metrics through all images of the testing set. 

 

5.3.  Comparative analysis 

PET or CT scan specialists designed pixel level segmentation masks for individual 35 patients to 

estimate our model which represent the test set. Ground truth from the real bounding boxes was implemented 

to train the model. However, the evaluation metrics were evaluated among the model detection and the pixel 

level segmentation makes to assure the evaluation’s important effectiveness. Table 3 shows the performance 

of the combination approach for individual plane with a 95% confidence level. 

From Table 3, the proposed REDEM-Net model consistently outperforms alternative models across 

five folds in fusing PET or CT planes. In fold 1, it achieved 98.55% accuracy and 71.23 F1-score, surpassing 

modality-specific segmentation network (MSSN-Net) significantly. In fold 2, it outperformed two-stage 

segmentation network (TDNN-Net) with 97.32% accuracy and 80.69 F1-score. Fold 3 results showed 

superior performance over context-aware convolutional network (CAC-Net), while fold 4 also favored 

REDEM-Net over TDNN-Net. In fold 5, our model reached 96.68% accuracy and 85.69 F1-score. Overall, 

REDEM-Net improves accuracy by 20.81%, precision by 32.64%, F1 by 15.36%, and IoU by 20.36% on 

average. In Figure 2 REDEM-Net model only utilizes one modality PET or CT, generally collapse short of 

exactly identifying the site of the malignant tumor. This can be clarified by the truth which not the functional 

(PET) or the anatomical (CT) data that are important for diagnosis and carried into account. PET and CT 

modalities fusion crucially enhances the diagnostic abilities of the model. Moreover, the pixel wise 

segmentation masks are enhanced, and they can exactly define the tumor location and size after the online 

few shot retraining process will be implemented. We utilized the nonparametric Wilcoxon signed rank test 

that connects the two paired groups to explore whether the F1 and IoU development is crucial as an outcome 

of the PET and CT modality fusion and the presented few shots retraining approach. 

Majorly it will be applied in the location of the paired student’s test without acquiring the 

recognized data with normal distribution. We utilized the Wilcoxon test to reliably access that our approach 

has advanced F1 and IoU score while compared to other approaches due to the results are connected and 

differ from a normal distribution. We have achieved the value less than 0.02 for the F1 and IoU scores by 
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utilizing the Wilcoxon test. We will avoid the hypothesis with a confidence level of 99.98% while we 

compare the suggested REDM-Net model with different approaches. 

Figure 3 presents the ROC curves and AUC values of five models evaluated for semantic 

segmentation performance. An AUC of 0.5 indicates random classification, while 1.0 denotes perfect 

accuracy. Our proposed REDEM-Net achieved the highest AUC of 0.998, outperforming CAC-Net (0.856), 

TDNN-Net (0.756), MSSN-Net (0.625), and MSAM-Net (0.925), demonstrating its superior diagnostic 

capability. 

 

 

Table 3. Five-fold comparison of proposed vs existing model 
Fold Model Accuracy ± 95% CI Precision ± 95% CI Recall ± 95% CI F1 ± 95% CI IOU ± 95% CI 

Fold 1 CAC-Net [8] 96.21±0.04 65.32±2.62 35.64±2.19 43.21 ± 1.80 33.26 ± 0.06 

TDNN-Net [6] 97.25±0.06 69.75±2.35 54.32±2.15 49.35 ± 1.65 29.65 ± 0.35 
MSSN-Net [13] 96.54±0.07 71.25±2.45 49.68±2.69 56.32 ± 2.35 19.32 ± 1.25 

MSAM-Net [14] 94.32±0.05 70.65±2.05 50.36±2.25 60.65 ± 2.65 25.62 ± 2.36 

REDEM-NET 98.55±0.05 74.69±2.95 65.87±2.36 71.23 ± 3.30 40.67 ± 2.96 
Fold 2 CAC-Net [8] 95.36±0.02 70.25±2.65 40.32±2.65 70.32±1.25 15.32±0.35 

TDNN-Net [6] 94.32±0.36 72.05±2.36 45.02±3.06 65.32±2.36 19.65±0.36 

MSSN-Net [13] 95.68±0.28 74.02±2.96 39.65±3.01 49.25±3.65 22.35±2.30 
MSAM-Net [14] 94.35±0.02 71.32±1.02 42.35±2.65 55.62±3.85 30.89±2.58 

REDEM-NET 97.32±0.02 77.65±2.65 55.32±2.78 80.69±2.65 35.64±3.32 

Fold 3 CAC-Net [8] 96.32±0.25 69.35±2.87 45.32±2.15 69.32±2.05 20.36±0.75 
TDNN-Net [6] 92.65±0.39 60.55±2.95 39.65±2.03 70.52±3.87 25.37±3.25 

MSSN-Net [13] 93.45±0.87 71.25±2.62 42.35±2.65 71.35±1.02 30.65±1.02 

MSAM-Net [14] 94.35±0.36 72.35±2.39 40.33±2.96 72.65±1.01 24.97±2.36 
REDEM-NET 98.65±0.15 79.65±1.03 50.65±2.75 80.65±2.36 39.65±3.69 

Fold 4 CAC-Net [8] 93.65±0.25 78.65±2.03 38.33±2.85 72.65±3.95 15.36±2.58 

TDNN-Net [6] 90.78±1.20 70.65±2.05 30.01±3.25 71.25±3.75 19.37±2.75 
MSSN-Net [13] 92.64±1.26 71.55±2.85 32.65±3.01 46.35±3.05 25.64±2.14 

MSAM-Net [14] 90.65±0.31 73.64±2.96 40.56±3.05 65.39±2.65 15.36±2.65 

REDEM-NET 95.66±0.20 80.65±1.26 45.64±2.65 78.36±2.75 35.61±0.58 
Fold 5 CAC-Net [8] 92.35±0.12 79.36±2.75 35.67±2.65 80.56±2.89 25.68±0.31 

TDNN-Net [6] 90.36±1.32 75.36±2.58 42.97±2.05 72.56±3.07 20.31±2.35 

MSSN-Net [13] 92.87±2.36 74.37±2.48 39.67±2.09 80.23±2.65 31.48±3.25 

MSAM-Net [14] 94.36±1.35 72.89±2.60 40.23±2.33 75.62±3.98 35.67±3.69 

REDEM-NET 96.68±2.01 82.36±2.75 50.67±2.85 85.69±3.99 40.65±3.97 

 

 

  
  

Figure 2. Segmentation result comparison of 

proposed vs existing works 

Figure 3. ROC-AUC illustration of proposed vs 

existing works 

 

 

5.4.  ML based stage classification analysis 

In staging, there were 28 patients in the first stage, 45 patients in second stage and 98 patients in 

third stage. With a common development on 41.05 months in the range of 1.8-85.1 months, the median OS 

was 14.3 months in the range of 1.2-51 months. At last, 75 patients have died (50%). Classification outcomes 

of individual ML methods and their unity following the two techniques are expressed in Table 4. Concerning 

the Median OS endpoint in the training set, the better model constructed by DT with 20 features that have 
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achieved an accuracy 85% [80% CI 55-71] in the training set. In the testing set, DT has achieved 67 %  

[95% CI 52-61] accuracy. 

 

 

Table 4. Stage classification comparison among ML models 
 Accuracy (Median OS %) Balanced accuracy (OS<6months %) 

Classification Training Testing No of patients 

properly classified 

Training Testing No of patients 

properly classified 

DT  85 [80 CI 55-71] 67 [95 CI 52-61] 30 59 [95 CI 65-78] 51 [95 CI 50-55] 26 

RF  88 [95 CI 65–81] 66 [95 CI 60–70] 33 85 [95 CI 52-61] 59 [95 CI 60-70] 36 

XGBoost  90 [95 CI 90–95] 65 [95 CI 50–65] 32 72 [95 CI 61-75] 55 [95 CI 75-80] 40 

LR  87 [95 CI 62-75] 62 [95 CI 50–70] 35 80 [95 CI 51-71] 65 [95 CI 56-71] 42 

MC-SVM 95 [95 CI 95-95] 75 [95 CI 65-76] 37 92 [95 CI 75-86] 90 [95 CI 65-76] 45 

 

 

In addition, the next model RF has combined with 25 features and achieved an accuracy of 88% 

[95% CI 65–81] in training set. In the testing set, RF achieved 66% [95% CI 60–70] accuracy. Moreover, XG 

Boost combined with 30 features and attained an accuracy of 90% [95% CI 90–95] in the training set. In the 

testing set, XG boost achieved 65% [95% CI 50–65] of accuracy. LR combined with 32 features and 

achieved an accuracy of 87% [95% CI 62-75] in training set. 

In the testing set, LR achieved 62% [95% CI 50–70] of accuracy. At last, our suggested MC-SVM 

has combined with 40 features and achieved an accuracy of 95% [95% CI 95-95] in training test. In the 

testing set, MC-SVM has attained 75% [95% CI 65-76] of accuracy. This means that the individual 

algorithms separately properly detected the patient’s survival above or below value for the mentioned 

algorithms. By comparing these approaches, our suggested approach has reached higher accuracy in the 

training set and the testing set. Concerning the second endpoint on OS below 6 months while compared to 

other approaches our suggested model MC-SVM has achieved higher accuracy 92% [95% CI 75-86] in 

training set. In the testing set, MC-SVM has attained 90% [95% CI 65-76] of accuracy. 

 

 

6. CONCLUSION 

We develop a REDEM-NET technique for accurate segment and classify lung tumor stage by 

processing PET and CT images. Initially, DRCN to collect input data and extract high-dimensional features 

simultaneously. Then the extracted features of both images are then passed into UNet++ to acquire  

multi-level decoded features. The decoded feature is further processed through two specialized modules, the 

PELM and E2LM in order to create accurate tumor segmentation. Finally, the outputs of these modules are 

merged to produce a precise segmentation. Then the segmented tumor is classified into stages by utilizing a 

MC-SVM to identifies primary tumor, region lymph node and distant metastasis to classify lung tumor stages. 
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