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ABSTRACT

Efficiently addressing missing data is critical in data analysis across diverse
domains. This study evaluates traditional statistical, machine learning, and
generative adversarial network (GAN)-based imputation methods, emphasizing
their strengths, limitations, and applicability to different data types and missing
data mechanisms (missing completely at random (MCAR), missing at random
(MAR), missing not at random (MNAR)). GAN-based models, including gener-
ative adversarial imputation network (GAIN), view imputation generative adver-
sarial network (VIGAN), and SolarGAN, are highlighted for their adaptability
and effectiveness in handling complex datasets, such as images and time series.
Despite challenges like computational demands, GANs outperform conventional
methods in capturing non-linear dependencies. Future work includes optimiz-
ing GAN architectures for broader data types and exploring hybrid models to
enhance imputation accuracy and scalability in real-world applications.
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1. INTRODUCTION
Missing data is a pervasive challenge that affects nearly every scientific discipline, from medicine

[1] to geology [2], energy [3] and environmental sciences [4]. Rubin [5] defined missing data as unobserved
values that could yield critical insights if available. These gaps introduce biases, distort analysis, and reduce
the effectiveness of algorithms, ultimately impairing decision-making processes.

The origins of missing data are diverse, arising from incomplete data collection, recording errors,
or hardware malfunctions [5]. These gaps skew results and misrepresent the studied population [6], creating
a need for robust and scalable solutions to ensure reliable research outcomes. Addressing missing data has
proven to be a multifaceted problem, requiring methods that vary depending on the type and complexity of
the dataset. Initial approaches, such as listwise deletion, were simple but often discarded valuable information
along with the missing data [7]. Over time, more sophisticated imputation techniques emerged, including sta-
tistical methods, machine learning algorithms, and deep learning models. Among these, generative adversarial
networks (GANs) have gained prominence for their ability to model complex data distributions and address
non-linear dependencies effectively. Despite their potential, implementing GANs for data imputation comes
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with challenges, including: i) high computational costs due to complex training processes; ii) sensitivity to
hyperparameter tuning, which affects model stability; and iii) risk of overfitting, particularly when handling
small datasets.

This paper provides a comprehensive review of missing data imputation methods. We analyze tradi-
tional statistical approaches, machine learning techniques, and deep learning models, with a particular focus on
GAN-based imputation. Our findings reveal that while GANs outperform traditional methods in handling com-
plex datasets, their deployment requires careful balancing of model complexity and computational efficiency.
We also propose future research directions, including: i) the integration of hybrid models combining statistical
techniques with GANs; ii) optimization of GAN architectures for imputation tasks; and iii) application of these
techniques to real-world datasets in fields such as healthcare, energy, and environmental science. By address-
ing these challenges and exploring innovative solutions, this work aims to contribute to the growing body of
knowledge in data imputation, enabling researchers and practitioners to better handle missing data scenarios.

The remainder of this article is structured as follows: section 2 introduces the methodology and criteria
for evaluating imputation methods. Section 3 presents a comparative analysis of different approaches. Section 4
discusses the implications of the results, including ethical considerations related to imputation in sensitive
domains. Section 5 concludes with key findings and recommendations for future research.

2. MISSING DATA MECHANISMS AND TYPES OF VARIABLES
Handling missing data is critical for ensuring the reliability of statistical analyses. Understanding

the mechanisms underlying missing data and the types of variables involved is fundamental for selecting
appropriate imputation techniques. This section explores the categories of missing completely at random
(MCAR), missing not at random (MNAR), and missing at random (MAR), alongside a classification of
statistical variables and imputation approaches.

2.1. Missing data categories
Missing data can be classified into three distinct categories: MCAR, MNAR and MAR [5].

– MCAR: data is missing randomly, unrelated to observed or unobserved variables.
Example: pixels missing in radiological images due to random noise or technical errors, such as sensor
malfunction.

– MAR: missingness depends on observed variables.
Example: crop yield data missing in regions with extreme weather conditions, where meteorological data
is recorded.

– MNAR: missingness depends on unobserved variables [8].
Example: fetal position affects the visibility of genital organs during an ultrasound, leading to gender
data being systematically missing when the fetus is positioned laterally or with crossed legs.

Figure 1 provides an illustration. Table 1 summarizes the criteria distinguishing these categories.
MCAR is ignorable, while MAR and MNAR require advanced techniques to mitigate bias. P pM � 1|Yo, Ym, ψq
defines the probability of the missing data mechanism, where ψ represents the set of parameters of the
imputation model. When data is MNAR, the probability of the mechanism cannot be defined because it depends
on one or more unmeasured parameters, i.e., unobserved variables.

Figure 1. Missing data mechanisms
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Table 1. Comparison of missing data mechanisms
Criterion MAR MNAR MCAR
Random No No Yes
Ignorable It depends No Yes
Dependency Observed variable Unobserved variable None
P pM � 1|Yo, Ym, ψq P pM � 1|Yo, ψq Undefined P pM � 1, ψq

2.2. Imputation approaches
Imputation methods are categorized based on variable relationships:

– Single vs. multiple imputation: single imputation replaces a missing value with one estimate, while
multiple imputation generates several plausible values [9].

– Univariate vs. multivariate: univariate imputation considers only the target variable, whereas multivariate
imputation incorporates relationships between variables [10].

Multivariate methods are preferable for datasets with strong interdependencies as they support both single and
multiple imputations, as shown in Table 2.

Table 2. Comparison of imputation types

Criterion
Approach

Univariate Multivariate
Replacement 1 m

Correlation ✕ ✓

Single Imputation ✕ ✓

Multiple Imputations ✓ ✓

2.3. Types of variables
Statistical variables are classified as: i) quantitative (e.g., continuous: salary, discrete: age).

ii) qualitative (e.g., nominal: marital status, ordinal: satisfaction level) [11]. Misinterpretations arise when
qualitative variables are numerically encoded (e.g., zip codes), as their mean has no significance. Figure 2
provides an overview.

Figure 2. Types of statistical variables

3. IMPUTATION METHODS
Managing missing data is crucial across various fields to ensure the accuracy of analyses and predic-

tive models. This section reviews several imputation techniques, ranging from traditional statistical methods
to advanced machine learning and deep learning approaches. Each method’s strengths and limitations are
discussed, along with their suitability for different data types and contexts.

3.1. Statistical methods
Statistical methods are foundational for imputation. Key approaches include similarity-based meth-

ods, observation-based methods, measures of central tendency, and multivariate imputation by chained equa-
tions (MICE).

3.1.1. Similarity-based methods
The hot-deck method replaces missing values with those from similar individuals. The cold-deck

method uses values from external sources. This is applied when there are not enough similar data
points [12], [13].
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3.1.2. Observation-based methods
Methods like last observation carried forward (LOCF), baseline observation carried forward (BOCF),

worst observation carried forward (WOCF), and next observation carried backward (NOCB) are commonly
used for longitudinal data. These methods replace missing values based on temporal patterns. They rely on the
assumption that nearby observations carry meaningful information [14]-[17].

3.1.3. Measures of central tendency
The objective of central tendency measures is to summarize, in a single value, the elements of a

variable in a dataset. The most commonly used central tendency measures are the mean [18], the median
[19], and the mode [20]. Indeed, there are various means [21], such as the arithmetic, quadratic, harmonic,
geometric, weighted, and truncated means. Here, we illustrate the arithmetic mean, where the imputation
involves replacing the missing values of a variable with the sum of its known values, divided by the total
number of values:

@i P t1, 2, . . . , pu, ȳi �
1

n

ņ

j�1

yij | yij R Ym

The arithmetic mean is only applicable to quantitative variables, especially continuous ones. However, it can
also be used for discrete variables, in which case the result will be rounded to the nearest integer.

The median is the value that divides the elements of an observed variable into two equal parts.
After sorting the values of the target observed variable in ascending order, imputation by the median involves
replacing the missing values of a variable with the middle value when the number of observations n is odd, or
the average of the two middle observations if n is even:
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In addition to the classical median, there are other ways [22] to calculate a measure of central position,
such as the weighted median, the geometric median, and the absolute median deviation. Imputation by mode
replaces missing data with the most frequent value of the target variable:

@i P t1, 2, . . . , pu D�j P t1, 2, . . . , nu such that ŷi � argmaxyij
PpY � yijq

Although the mode can be calculated for both numerical and categorical variables, in practice, it is commonly
used only for nominal variables as they do not have other central tendency measures.

3.1.4. Multivariate imputation by chained equations
MICE is an iterative approach that imputes missing data using regression models. Each missing value

is predicted using a regression model based on other variables in the dataset. The algorithm iterates until the
imputed values converge [23], [24].

3.2. Machine learning methods
Machine learning methods offer advantages over traditional statistical approaches, particularly in han-

dling large and complex datasets [25]. This section reviews four popular machine learning models for data
imputation: linear regression, logistic regression, k-nearest neighbors (KNN), and decision trees.

3.2.1. Regression
Regression models estimate relationships between the target and observed variables. We focus on

linear and logistic regression [26].
– Linear regression models aim to capture a proportional trend between inputs and outcomes. It operates by

applying the least squares method to reduce the gap between actual observations and model predictions.

y � αx� β � ϵ (1)

Here, α is the coefficients of the regression line and β originally ordered, and ϵ is the error term, rep-
resenting the unexplained deviation or variance by the linear relationship between the observed value y
and the predicted value α� βx.
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– Logistic regression: used for binary classification, it models the probability of the target variable being 1
using a logistic function:

p �
1

1� e�z
(2)

Here, p is the probability that the target variable is 1, and z is the linear function in the form:

z � b0 � b1x1 � b2x2 � � � � � bnxn (3)

Where b0, b1, b2, . . . , bn are the regression coefficients, and x1, x2, . . . , xn are the observed variables.

3.2.2. K-nearest neighbors
The basic idea of the KNN is to find the k-nearest neighbors of the individual with missing data [27].

This algorithm requires two parameters, namely, the value of k and the similarity metric between individuals.
The similarity is calculated using a distance measure such as the Euclidean distance, the Manhattan distance,
and the Minkowski distance.

3.2.3. Decision trees
Decision trees partition data into subsets based on feature values to predict missing values. Random

forests, an ensemble of multiple decision trees trained on different subsets, enhance robustness and reduce
overfitting. MissForest [28], a widely used variant, begins with naive imputations and iteratively refines pre-
dictions via random forests. These methods are more flexible than traditional statistical approaches but may
require careful tuning for high-dimensional or sparse datasets.

3.3. Deep learning methods
Deep learning models offer two major advantages over traditional machine learning models. Firstly,

traditional methods often require manual selection of relevant features or variables for training the imputation
model. In contrast, deep learning models use neural networks to automatically learn these features from raw
data. This ”automation” occurs during the learning phase, where biases and weights in each layer of the neural
network are adjusted to better capture the underlying patterns in the data. The second advantage is the versatility
of neural networks, which makes them easily adaptable to various scenarios, including the 12 cases illustrated
in Table 3. Neural networks can model complex, non-linear relationships, making them particularly effective
for imputing data with intricate patterns.

Table 3. Overview of methods for imputing missing data

Method
Univariate imputation Multivariate imputation

Quantitative Qualitative Quantitative Qualitative
MAR MNAR MCAR MAR MNAR MCAR MAR MNAR MCAR MAR MNAR MCAR

Hot-deck ✓ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

Cold-deck ✕ ✕ ✓ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

LOCF/BOCF/NOCB ✕ ✕ ✓ ✕ ✕ ✓ ✕ ✕ ✕ ✕ ✕ ✕

Mean and Median ✕ ✕ ✓ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

Mode ✕ ✕ ✓ ✕ ✕ ✓ ✕ ✕ ✕ ✕ ✕ ✕

MICE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

KNN ✓ ✕ ✓ ✓ ✕ ✓ ✓ ✕ ✓ ✓ ✕ ✓

Linear regression ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Logistic regression ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

MissForest ✓ ✕ ✓ ✓ ✕ ✓ ✓ ✕ ✓ ✓ ✕ ✓

Neural networks ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

In the following, we present the main deep learning models used for missing data imputation. These
models include convolutional neural networks (CNNs), recurrent neural networks (RNNs), variational autoen-
coders (VAEs), and GANs. Each model has a unique approach in handling incomplete data.

3.3.1. Convolutional neural networks
CNNs [29] are particularly well-suited for imputing missing data in images, where missing pixels can

be estimated based on spatial correlations with nearby pixels. CNNs utilize convolutional layers to extract
features from input images, effectively capturing local dependencies. This makes them ideal for applications
where data exhibits spatial patterns, such as medical imaging or satellite data.
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3.3.2. Recurrent neural networks

RNNs [30] are frequently employed for imputing temporal data, as they leverage previous information
to predict missing values. These models maintain an internal state that captures the sequence of previous inputs,
making them suitable for time series imputation. An advanced variant, long short-term memory (LSTM) net-
works, addresses the vanishing gradient problem by maintaining long-term dependencies, which is particularly
useful for long-range temporal correlations.

3.3.3. Variational autoencoders

VAEs [31] use an encoder to compress data into a latent representation and a decoder to reconstruct
it. Their probabilistic framework enables realistic imputations in complex, non-linear datasets. They achieve
this by generating data distributions close to the original.

3.3.4. Generative adversarial networks

GANs [32] consist of a generator and a discriminator that compete during training. The generator pro-
duces synthetic data, while the discriminator distinguishes real from generated data. This adversarial learning
enables realistic imputations for complex data types.

3.3.5. Comparative advantages of deep learning models

Deep learning models outperform traditional methods in capturing non-linear and high-dimensional
patterns. GANs and VAEs, in particular, generate realistic imputations. However, they require significant
computational resources, are sensitive to hyperparameters, and risk overfitting with limited data. Despite these
challenges, their feature-learning capability makes them highly effective across various data types.

3.3.6. GAN-based models

GANs [33] iteratively improve data generation through competition between a generator and discrim-
inator. This adversarial approach has enabled breakthroughs in missing data imputation [34].

a. Generative adversarial imputation network
Generative adversarial imputation network (GAIN) [35] adapts GAN principles for imputation, using a

mask matrix to highlight missing values. The generator predicts missing data, while the discriminator evaluates
imputations. The architecture involves three components: data, mask, and noise matrices. Algorithm 1 outlines
its operation.

Algorithm 1 Pseudo-code of GAIN

Require: Dataset with missing values
Ensure: Complete data vector

1: Initialize generator G and discriminator D
2: while loss has not converged do
3: Draw random samples and masks
4: Generate imputations with G
5: Compute discriminator loss and update D
6: Compute generator loss and update G
7: end while

b. Missing data GAN
MisGAN [36] learns high-dimensional data distributions by combining two generators and discrimi-

nators for masks and data. Algorithm 2 summarizes its training process.

A survey of missing data imputation techniques: statistical methods ... (Rifaa Sadegh)
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Algorithm 2 Pseudo-code of MisGAN

Require: Dataset with missing values
Ensure: Complete data

1: while iterations not complete do
2: Train mask discriminator Dm and generator Gm

3: Train data discriminator Dx and generator Gx

4: Update both generators with combined loss
5: end while

c. Other GAN variants

– Stackelberg GAN: uses multiple generators to handle complex imputation tasks [32].
– SolarGAN: tailored for solar data imputation with Wasserstein GAN techniques [37].
– ConvGAIN: extends GAIN with convolutional layers for spatio-temporal correlations [38].
– DEGAIN: builds on GAIN with enhanced loss functions [39].
– GAN-based Sperm-inspired pixel imputation: introduces an identity block and a sperm motility-inspired

metaheuristic to improve imputation robustness and address mode collapse and vanishing gradients [40].
– Menstrual cycle inspired GAN : integrates adaptive loss functions and identity blocks inspired by en-

dometrial behavior to enhance imputation in medical images [41].

Deep learning, particularly GANs, provides powerful tools for imputing missing data. Despite challenges like
high computational demands and overfitting risks, ongoing innovations continue to improve their robustness
and adaptability across various domains.

4. EVALUATION METHODS
Evaluation metrics are essential for measuring the quality of missing data imputation in images by

quantifying the discrepancy between the original and imputed data. This work focuses on three main metrics:
mean squared error (MSE), root mean squared error (RMSE), and Fréchet inception distance (FID).

4.1. Mean squared error
MSE measures the average of the squared differences between the actual and imputed values. A lower

MSE indicates better imputation quality. A key variant of MSE is RMSE, which computes the square root of
the average squared prediction errors:

RMSEpy, ŷq �
a

MSEpy, ŷq �

gffe 1

n

ņ

i�1

pyi � ŷiq2 (4)

RMSE is often preferred for evaluating imputation models as it: Provides error measurements in the same units
as the target variable, aiding interpretation, Penalizes larger errors more significantly, and Is less sensitive to
outliers compared to MSE.

4.2. Fréchet inception distance
The FID, introduced by [10], is widely used to evaluate the quality of images generated by generative

models, including GANs. It has been applied to state-of-the-art models such as StyleGAN1 and StyleGAN2
[42]. FID quantifies the similarity between the feature distributions of generated and real images. It calculates
the Fréchet distance between two probability distributions. FID provides a robust measure for assessing the
fidelity of generative models by comparing how closely generated images match real image distributions.

4.3. Evaluation framework
This work employs the following metrics to evaluate missing data imputation quality: i) MSE and

RMSE: assess prediction accuracy and variability. ii) FID: evaluates the fidelity of generative models, espe-
cially GANs. These metrics establish a strong foundation for selecting and optimizing imputation models in
various contexts. The subsequent section will analyze imputation models, highlighting their strengths, limita-
tions, and practical applications.
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5. DISCUSSION
This section aims to provide a critical evaluation of the methods discussed. This section evaluates the

methods for missing data imputation based on three main criteria: the imputation approach (single or multiple),
the variable types (quantitative or qualitative), and the missing data mechanisms (MCAR, MAR, or MNAR).
Table 3 summarizes these methods, illustrating their applicability and limitations.

– Traditional methods: hot-deck and cold-deck approaches perform well in specific scenarios (MCAR,
MAR) but fail in complex mechanisms (MNAR) or when continuous variables are involved. Mean and
median imputations are effective under MCAR but introduce bias in MAR and MNAR cases.

– Machine learning approaches, such as KNN and regression exhibit adaptability to both quantitative and
qualitative variables. However, their performance declines in MNAR cases or non-linear relationships.

– Advanced models: neural networks and MICE provide the most comprehensive solutions, excelling
across all criteria, including the ability to handle diverse data types and multiple imputations.

GAN-based models: Table 4 presents a detailed comparison of GAN-based models, showcasing their
architectures, evaluation metrics, and domain-specific applications. Key insights include: i) GAIN: offers a
flexible, fully connected architecture effective for categorical, numerical, and image data. Extensions to tem-
poral and textual domains are recommended. ii) view imputation generative adversarial network (VIGAN): fo-
cused on image data with multimodal DAE and CNN. Its performance could improve with multi-view datasets.
iii) SolarGAN: designed for time-series data, with potential applications in photovoltaic forecasting.

In conclusion, neural networks and GAN-based models stand out for their robustness and adaptability.
However, careful alignment of method selection with data type and missing data mechanism is crucial. Fu-
ture research should emphasize domain-specific optimizations and comparisons to address complex scenarios
effectively.

Table 4. Comparison of GAN-based models

Model Year Dataset Evaluation Code
Internal structure Missing data

Architecture G D Mechanism Type
GAIN 2018 UCI and MNIST RMSE Yes FC 1 1 MCAR Qualitative
VIGAN 2017 MNIST RMSE Yes FC, CNN 2 2 NA Quantitative
MisGAN 2019 CIFAR-10 and CelebA FID and RMSE Yes FC, CNN 2 2 MCAR Quantitative
CollaGAN 2019 T2-FLAIR and RaFD NMSE and SSIM Yes CNN 1 1 NA Quantitative
Stackelberg 2018 Tiny ImageNet FID No FC M 1 NA Quantitative
SolarGAN 2020 GEFCom2014 MSE Yes GRUI, FC 1 1 NA Qualitative
ConvGAIN 2021 CHS dataset RMSE Yes CNN 1 1 MCAR Qualitative
DEGAIN 2022 UCI RMSE and FID No Deconv 1 1 NA NA
GSIP 2025 Energy Images, NREL

Solar Images, and NREL
Wind Turbine

RMSE, RSNR,
SSIM, FID

No CNN,Deconv 1 1 NA Qualitative

MCI-GAN 2025 Medical images RMSE, RSNR,
FID, IS, SSIM

NO CNN 1 1 MAR Quantitative

Table 4 provides an overview of GAN-based models for missing data imputation. It compares their
internal structures, architectures, evaluation metrics, tested datasets, and data handling capabilities across vari-
ous domains (categorical, numerical, image, and time series). This analysis offers a detailed understanding of
each model’s strengths, limitations, and application potential.

Key insights: among GAN-based models, GAIN stands out for its flexibility and broad applicabil-
ity across categorical, numerical, and image data. VIGAN leverages multimodal DAE and CNN for image
tasks, with room for multi-view improvements. MisGAN performs well under MCAR but requires adaptation
for broader use. CollaGAN focuses on image-to-image translation, while Stackelberg GAN explores multi-
generator designs for numerical data. SolarGAN is tailored to time-series imputation, and ConvGAIN and
DEGAIN enhance spatial and generator performance through CNNs and deconvolution.

Overall, these models illustrate the evolution of GAN-based imputation. GAIN, in particular, provides
a strong base for future domain-specific extensions. Emphasis should be placed on improving adaptability and
addressing stability and interpretability challenges.

5.1. Best-performing methods by missing data mechanism
Based on the literature synthesis and the comparative Table 3, the following conclusions can be drawn:
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– MCAR: simple statistical methods such as mean/median imputation and KNN are often sufficient due to
the randomness of missingness. GAN-based models like GAIN and MisGAN also perform well under
MCAR assumptions.

– MAR: more advanced methods such as MICE, MissForest, and neural networks are better suited, as they
can leverage observed variable relationships. GAN models like MCI-GAN also show promising results.

– MNAR: handling MNAR remains challenging. Methods based on neural networks and certain robust
variants of GANs (e.g., DEGAIN, GSIP) offer improved results, though no method fully resolves the
MNAR scenario without domain knowledge or additional assumptions.

5.2. Challenges and limitations of GAN-based imputation models
Despite their powerful capabilities, GAN-based imputation models face several technical challenges

that limit their reliability and generalizability.

5.2.1. Mode collapse and convergence issues
GAN training is notoriously unstable due to the adversarial nature of the generator and discriminator.

Mode collapse, where the generator produces limited data patterns regardless of input noise, results in biased
or unrealistic imputations. Additionally, convergence is difficult to assess, and training may oscillate or diverge
without providing meaningful imputations [43].

5.2.2. Hyperparameter sensitivity
GANs are sensitive to hyperparameters such as learning rates, batch sizes, and architecture depth.

Fine-tuning these parameters is often problem-specific and computationally expensive, requiring extensive
empirical experimentation [44]. Poorly chosen hyperparameters may lead to overfitting or non-convergent
training, particularly when working with sparse datasets or complex data structures.

5.2.3. Potential solutions
Several strategies have been proposed to improve the stability and effectiveness of GAN-based imputa-

tion: i) Pretraining techniques: pretraining the generator or discriminator with autoencoder structures or VAEs
can stabilize learning and prevent early collapse [45]. ii) Hybrid architectures: models combining GANs with
VAEs (e.g., VAE-GAN) or transformer encoders enhance both stability and representational richness [46]. iii)
Regularization and loss design: advanced loss functions (e.g., Wasserstein loss with gradient penalty) and spec-
tral normalization can improve convergence and reduce sensitivity to hyperparameters. iv) Méta-apprentissage:
using meta-learning to adaptively select the best imputation strategy depending on the missingness mechanism
(MCAR, MAR, MNAR) and the data type has shown promise in improving generalizability. These improve-
ments not only enhance imputation quality but also address ethical and interpretability concerns by making
GANs more stable, transparent, and adaptable to real-world constraints.

5.3. Ethical implications of data imputation
Data imputation techniques, while essential for maintaining data integrity, pose significant ethical

challenges, especially when applied in critical domains such as healthcare, finance, and social sciences. The
use of advanced imputation methods, particularly those based on GANs, raises concerns related to accuracy,
fairness, transparency, and accountability.

5.3.1. Risk of inaccurate imputation
One of the primary ethical concerns in data imputation is the risk of inaccurate imputations leading

to erroneous conclusions or biased decision-making. In healthcare, for instance, imputing missing patient
data with GAN-based methods without adequate validation could result in misleading diagnostic outcomes or
inappropriate treatments [47]. In finance, incorrect imputation of financial metrics might lead to flawed credit
scoring, adversely affecting individuals or businesses [48].

5.3.2. Fairness and bias
GAN-based imputation methods may inadvertently propagate or amplify existing biases present in the

training data. For example, if demographic data from underrepresented groups are underimputed or inaccu-
rately generated. It can lead to discriminatory outcomes in automated decision-making systems, such as loan
approvals or health risk assessments [49].
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5.3.3. Opacity and lack of interpretability
GANs are often considered ”black-box” models, meaning their decision-making processes are inher-

ently difficult to interpret. This lack of transparency poses ethical challenges when imputations significantly
influence high-stakes decisions. Developing interpretable imputation models or integrating explainable AI
(XAI) techniques is essential to ensure accountability and build trust in automated systems [50].

5.3.4. Privacy concerns
The use of GANs for data imputation may also raise privacy issues. Since GANs generate synthetic

data that resemble real-world data, there is a risk that sensitive information might be reconstructed, even when
anonymization techniques are applied. This potential for data leakage necessitates rigorous privacy-preserving
mechanisms during the imputation process [51].

5.3.5. Mitigation strategies
To address these ethical challenges, researchers and practitioners should consider the following ap-

proaches: i) ethical guidelines for data imputation: establishing clear guidelines to evaluate the ethical impact
of imputation methods, particularly in sensitive domains. ii) Algorithmic fairness audits: regularly auditing
GAN-based models to identify and mitigate bias, especially when handling demographic data. iii) Improving
model transparency: incorporating XAI methods, such as feature attribution and latent space visualization, to
make imputed results more interpretable and trustworthy. iv) Data privacy mechanisms: employing techniques
like differential privacy to ensure that GAN-generated data does not inadvertently reveal personal information.

6. CONCLUSION AND FUTURE WORK
This study underscores the significance of selecting imputation methods that are well-suited to the

nature of missing data and variable types. GAN-based models have demonstrated strong potential in handling
complex data structures such as images and time series, especially in high-impact fields like healthcare, finance,
and environmental analysis. Their adaptability and capacity to generate realistic values make them valuable
tools in advancing missing data imputation techniques. However, these models still face notable challenges
including training instability, mode collapse, and hyperparameter tuning difficulties. Hybrid models that com-
bine GANs with VAEs have emerged as a promising direction, offering both the generative strength of GANs
and the stability of VAEs. Moreover, the integration of meta-learning techniques could allow for dynamic se-
lection of imputation strategies based on dataset characteristics, thus enhancing generalization. Despite their
performance, the interpretability of GAN-based models remains limited, raising concerns in critical domains
where transparency is essential. Future research should therefore explore the incorporation of XAI methods
to improve understanding and trust in the imputation process. Additionally, efforts should focus on scaling
these models for real-world applications, improving their computational efficiency, and ensuring their reliabil-
ity across diverse data contexts. Overall, this work lays the groundwork for further exploration into robust,
interpretable, and scalable imputation strategies using GANs.
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