
IAES International Journal of Artificial Intelligence (IJ-AI)

Vol. 14, No. 4, August 2025, pp. 2741~2752

ISSN: 2252-8938, DOI: 10.11591/ijai.v14.i4.pp2741-2752  2741

Journal homepage: http://ijai.iaescore.com

Solving k-city multiple travelling salesman using genetic

algorithm

Alikapati Prakash1,2, Uruturu Balakrishna3, Manogaran Thangaraj4, Thenepalle Jayanth Kumar4
1Department of Mathematics, Jawaharlal Nehru Technological University Anantapur, Anantapuramu, India

2Department of Humanities and Sciences, Vemu Institute of Technology, Pakala, India
3Department of Science and Humanities, Sreeenivasa Institute of Technology and Management Studies, Bangalore, India

4Department of Mathematics, Faculty of Engineering and Technology, JAIN (Deemed-To-Be University), Kanakapura, India

Article Info ABSTRACT

Article history:

Received Jun 11, 2024

Revised Mar 27, 2025

Accepted Jun 8, 2025

 This paper addresses a novel variant of the classical multiple traveling

salesman problem (MTSP) i.e. k-city multiple traveling salesman problem

(k-MTSP). The problem can describe as follows. Let there are 𝑛 cities,

𝑚 salesman positioned at depot city and a predefined positive value 𝑘. The

distance between each pair of cities is known. The objective of the k-MTSP

is to determine a collection of 𝑚 closed tours for salesman, which covers

exactly 𝑘 (including depot city) of 𝑛 cities such that the total distance
covered is minimum. The k-MTSP can be seen as a combination of both

subset selection and permutation characteristics. From the through literature

review, it is found that this study on k-MTSP is first of its kind to the best of

author’s knowledge. The paper introduces a zero-one integer linear
programming (0-1 ILP) formulation alongside an efficient genetic algorithm

(GA), designed to address k-MTSP. No comparative studies carried out due

to the absence of existing studies on k-MTSP. However, the developed GA

is tested over various benchmark test cases from TSPLIB and results are
reported, which may potentially serve as basis for further comparative

studies. Overall findings demonstrate that the GA consistently produces best

solutions within reasonable computational times for relatively smaller and

medium test cases, suggesting its robustness and effectiveness in tackling the
k-MTSP. However, to enhance consistency and efficiency, particularly for

larger datasets, further algorithm improvements are necessary.

Keywords:

Genetic algorithm

Multiple travelling salesman

problem

Travelling salesman problem

TSPLIB

Zero-one integer linear

programming problem

This is an open access article under the CC BY-SA license.

Corresponding Author:

Uruturu Balakrishna

Department of Science and Humanities, Sreenivasa Institute of Technology and Management Studies

Dr. Visweswaraiah Road, Bangalore-Tirupathi, Bypass Rd, Murukambattu, Andhra Pradesh 517127, India

Email Id: balusitams.maths@gmail.com

1. INTRODUCTION

The traveling salesman problem (TSP) stands as a well-known combinatorial optimization problem

within the domains of computer science and mathematics. Its core objective is to identify the optimal route

that originates and concludes in the same city, covering all cities in a given list while covering the distances

between each pair of cities. Expanding upon the classical TSP, the multiple traveling salesman problem

(MTSP) introduces a variation wherein multiple salesmen are assigned the task of visiting a specified set of

cities. The aim is to determine the most efficient routes for all salesmen, collectively minimizing the overall

traversal distance, while ensuring each city is visited only once by a single salesman. Addressing the MTSP

proves to be a more challenging compared to the conventional TSP due to the additional constraint of

involving multiple salesmen. Similar to the TSP, the MTSP is categorized as NP-hard problem. This

https://creativecommons.org/licenses/by-sa/4.0/

  ISSN: 2252-8938

Int J Artif Intell, Vol. 14, No. 4, August 2025: 2741-2752

2742

classification implies that as the number of cities and salesmen increases, finding the most efficient solution

becomes progressively more computationally demanding. Due to its practical significance, the classical

MTSP and its variants has been extensively studied [1]–[8] and wide variety of solution methods have been

developed.

Reviewing the existing studies on MTSP and its allied problems, the study [9] introduces a novel

genetic algorithm (GA) chromosome and operators for the MTSP, demonstrating superior computational

performance and smaller search space compared to prior methods through theoretical analysis and

computational testing. A novel grouping GA is developed by [10] for the MTSP, which optimizes two

objectives namely traversal distance and minimizing the maximum travel distance for any salesman. This

approach shown superior performance compared to existing literature approaches on both objectives. A novel

crossover method, termed the "two-part chromosome crossover" to address the MTSP through the application

of a GA, aiming to achieve near-optimal solutions is developed [11]. The multiple depot MTSP, which

involves an unlimited number of salespeople visiting a specific group of cities studied and developed

polyhedral based branch-and-cut algorithm [12]. An efficient evolutionary algorithm that integrates two

revised versions of the imperialist competitive algorithm and the Lin-Kernighan algorithm is developed for

solving classical MTSP [13]. A novel variant of classical MTSP known as the colored TSP has been

introduced [14], for which two hybrid algorithms namely hill-climbing based GA and simulated annealing-

based GA are developed for achieving best quality solutions. Soylu [15] studied MTSP involving two

separate objective functions: minimizing the longest tour length and the total length of all tours, by proposing

a general variable neighborhood search. Subsequently, two metaheuristic techniques for the MTSP are

proposed: one based on the artificial bee colony algorithm, and the other utilizing the invasive weed

optimization algorithm [16]. The gravitational emulation local search algorithm [17] is developed to tackle

the symmetric MTSP. This algorithm relies on the principles of local search, incorporating two fundamental

physics parameters: velocity and gravity. It is also note that MTSP exhibits a strong connection with various

optimization models, including the vehicle routing problem (VRP) [18], [19]. Xu et al. [20] introduced the

two-phase heuristic algorithm for solving the MTSP, which integrates an improved version of the k-means

algorithm to sort the cities to be visited based on their unique capacity constraints and spatial positions.

Given its significance as an optimization problem with practical applications, numerous researchers

have utilized MTSP to address real-time scenarios. A new practical variation known as the open-close MTSP

[21], which extends the classical MTSP. Over time, it has found relevance in various real-world situations.

To cite few, wireless rechargeable sensor networks [22], natural disaster management [23], and optimal

delivery distribution of LPG cylinders [24]. In addition to the cited works, researchers have also focused on

developing hybrid algorithms for the MTSP and its allied problems to improve the solution quality [25]–[28].

Some of the latest studies on MTSP are as follows: Yang and Fan [29] implemented energy and resource

consumption constraints to create the restricted multi-depot TSP. The consistent TSP searches for a

minimum-cost collection of Hamiltonian paths described by [30], the firefly approach is presented to solve

the single depot MTSP using a threshold technique [31]. A bi-objective MTSP with a load balancing

constraint utilizing GA [32]. Veeresh et al. [33] introduce a meta-heuristic termed multi chromosome-based

GA to solve open-closed MTSP.

Motivated by the above-mentioned works, the current research focuses on a novel variant called

k-MTSP, and effective metaheuristic in the form of a GA. This GA incorporates complex mutation strategies,

yielding optimal/near optimal results. According to the author's understanding, this GA represents the

pioneering evolutionary technique applied to the k-MTSP. The subsequent sections of the paper are

organized in the following manner. The second section will present the definition and formulation of the

k-MTSP. Section 3 will provide a description of the GA and its operators. The computational findings will be

showcased in section 4, while section 5 will end by summarizing the findings and discussing potential

directions for future research.

2. MATHEMATICAL MODEL

The k-MTSP can be formally defined as follows: Let 𝐺 = (𝑁, 𝐸) be an undirected weighted and connected

graph, where 𝑁 = {1,2, . . . , 𝑛} be the set of 𝑛 cities/nodes (including depot city) and 𝐸 = {(𝑖, 𝑗)/(𝑖, 𝑗) ∈ 𝐸, 𝑖 ≠ 𝑗}

be an edge/arc set. For each edge (𝑖, 𝑗) ∈ 𝐸, a positive distance 𝑑𝑖𝑗(𝑑𝑖𝑗 > 0, 𝑑𝑖𝑖 = ∞&𝑑𝑖𝑗 = 𝑑𝑗𝑖) is assigned,

which indicate travel distance/cost from 𝑖𝑡ℎ
 city to 𝑗𝑡ℎcity. Let 𝐾 = {1,2, . . . , 𝑚} be the set of 𝑚 salesmen

positioned at a depot city. Let 𝑥𝑖𝑗
𝑝

 be a binary variable, which takes the value 1 when salesman p traverses

from city i to city j, and 0, otherwise. The cities other than the depot are known to be intervening cities. The

k-MTSP aims to identify a set of 𝑚 closed tours, encompassing 𝑘 of the 𝑛 cities, where each intervening city

is visited by exactly one salesman with minimal distance. The formulation of the k-MTSP model is based on

the following assumptions:

Int J Artif Intell ISSN: 2252-8938 

Solving k-city multiple travelling salesman using genetic algorithm (Alikapati Prakash)

2743

− There are 𝑛 number of cities, out of which 𝑘 cities are to be covered by 𝑚 salesmen, all stationed at the

depot city.

− All salesmen must start their routes from the depot city and conclude their tours there as well.

− The feasible solution comprises a set of 𝑚 closed tours

− The allocation of cities to each salesman is dynamic, aiming to minimize the overall travel distance.

− Each city, except for the depot, must be visited precisely once by only one salesman.

− The number of cities visited by any salesman is constrained, with a minimum of 1 and a maximum of 𝑘 − 𝑚

cities.

The nomenclature used in the model are given in Table 1 as follows:

Table 1. Nomenclature
Notations Description

𝐺 = (𝑁, 𝐸) An undirected weighted and connected graph

𝑁 = {1,2, . . . , 𝑛} Node set with 𝑛 cities

𝐸 = {(𝑖, 𝑗)/𝑖, 𝑗 ∈ 𝑉; 𝑖 ≠ 𝑗} Edge set

𝑥𝑖𝑗
𝑝 ∈ {0,1}, ∀(𝑖, 𝑗) ∈ 𝐸, 𝑝 ∈ 𝐾 A binary variable

𝐷 = [𝑑𝑖𝑗]
𝑛×𝑛

 A symmetric matrix representing distances between pairs of cities

𝑑𝑖𝑗; (𝑑𝑖𝑗 = 𝑑𝑗𝑖 ; 𝑑𝑖𝑖 = ∞, 𝑑𝑖𝑗 > 0) Distance from 𝑖𝑡ℎ
 city to 𝑗𝑡ℎcity

𝑘 A positive integer representing the total number of cities that all

the salesmen need to cover (i.e. 𝑘 out of 𝑛)

𝑦𝑖 ∈ {0,1}, 𝑖 ∈ 𝑉 A binary variable associated with visited cities

The mathematical model of k-MTSP is as follows:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑍 = ∑ ∑ 𝑑𝑖𝑗𝑥𝑖𝑗
𝑝𝑛

𝑗=1
𝑛
𝑖=1 , 1 ≤ 𝑝 ≤ 𝑚 (1)

Subject to, the objective function (1) tells that minimization of total distance covered by 𝑚 salesmen. The

constraint set (2) and (3) confirms that exactly 𝑘 − 1 (excluding depot city) of the 𝑛 cities cover by 𝑚

salesmen and a feasible solution must include 𝑘 + 1

edges connecting the cities. Constraint sets (4) and (5)

provides that 𝑚 salesmen depart and returns the depot city. Constraint sets (6) and (7) aims that each city is

being visited exactly once by only one salesman. Constraint (8) establishes the minimum and maximum

number of cities that any salesman can visit. Constraint (9) is designed to prevent the formation of sub-tours

within the solution. The constraint (10) indicates the binary variable 𝑥𝑖𝑗
𝑝

, i.e. it takes 1 if 𝑝𝑡ℎ salesman travels

from 𝑖𝑡ℎ
 city to 𝑗𝑡ℎ city and 0 otherwise. Finally, another binary variable𝑦𝑖

𝑝
is introduced in the constraint

(11), which takes 1 if 𝑝𝑡ℎ salesman visits 𝑖𝑡ℎ
 city and 0 otherwise.

∑ 𝑦𝑖
𝑝𝑛

𝑖=2 = 𝑘 − 1, 𝑝 ∈ 𝐾 (2)

∑ ∑ 𝑥𝑖𝑗
𝑝𝑛

𝑗=1
𝑛
𝑖=1 = 𝑘 + 1, 𝑖 ≠ 𝑗, 𝑝 ∈ 𝐾 (3)

∑ 𝑥1𝑗
𝑝𝑛

𝑗=2 = 𝑚, 𝑝 ∈ 𝐾 (4)

∑ 𝑥𝑖1
𝑝𝑛

𝑖=2 = 𝑚, 𝑝 ∈ 𝐾 (5)

∑ 𝑥𝑖𝑗
𝑝𝑛

𝑖=1 = 1, 𝑖 ≠ 𝑗, ∀𝑗 ∈ 𝑁\{1}, 𝑝 ∈ 𝐾 (6)

∑ 𝑥𝑖𝑗
𝑝𝑛

𝑗=1 = 1, 𝑖 ≠ 𝑗, ∀𝑖 ∈ 𝑁\{1}, 𝑝 ∈ 𝐾 (7)

1 ≤ ∑ ∑ 𝑥𝑖𝑗
𝑝𝑛

𝑗=1
𝑛
𝑖=1 ≤ 𝑘 − 𝑚, 𝑝 ∈ 𝐾 (8)

+Subtour elimination constraints (9)

𝑥𝑖𝑗
𝑝

∈ {0,1}, 𝑖 ≠ 𝑗, ∀𝑖, 𝑗 ∈ 𝑁, 𝑝 ∈ 𝐾 (10)

𝑦𝑖
𝑝

∈ {0,1}, ∀𝑖 ∈ 𝑁, 𝑝 ∈ 𝐾 (11)

  ISSN: 2252-8938

Int J Artif Intell, Vol. 14, No. 4, August 2025: 2741-2752

2744

3. METHODOLOGY

The proposed GA is recognized as a commonly used metaheuristic within the domain of

evolutionary computation studies, specifically designed for addressing problems involving the optimization

of a combination [34]. This population-based approach continually refines the solution by enhancing its

fitness value through iterative updates. Finding the best solution to the k-MTSP by using proposed algorithm

include several crucial elements such as representation of chromosomes, population generation, fitness

evaluation, selection, mutation and the general parameters of GA.

3.1. Chromosome representation

Finding optimal routes for multiple salesmen visiting each city once in the MTSP requires encoding

solutions into chromosomes. There are primarily two methods: the single-chromosome [35] approach and the

two-chromosome [36] approach. The initial method employs a chromosome whose length is (𝑛 + 𝑚 − 1),

with 𝑛 representing the total cities and 𝑚indicating the quantity of salesmen, to directly encode both cities visit

order and assigned salesmen. The two-chromosome strategy involves utilizing a pair of chromosomes, each

with a length of 𝑛. The first defines the universal city visit order, while the second assigns specific salesmen

based on their corresponding position in the first chromosome. Emerging in the field of chromosome

representation is a novel technique known as the two-part chromosome approach [9]. Every chromosome is

divided into two segments: the initial segment is a sequence of cities, numbering 𝑘 − 1, arranged in order from

2 up to 𝑛. The second part defines the route breakpoints for each of the 𝑚 salesman within their assigned

cities. The two-part chromosome for 10 city k-MTSP with 3 salesmen given in Figure 1. In this situation, the

salesman 1 visits 3 cities 1 → 7 → 5 → 8, the salesman 2 visits 2 cities 1 → 3 → 9 and the salesman 3 visits

2 cities 1 → 2 → 4. The route plan for 3 salesmen covering 8 out of 10 cities given in Figure 2.

Figure 1. Two-part chromosome representation of 10 city k-MTSP with 3 salesmen

Figure 2. Route plan for 3 salesmen covering 8 out of 10 cities (Including depot city)

3.2. Initial population encoding

The success of a GA is greatly influenced by the quality of the initial population set, underscoring

the significance of selecting the right encoding operator. In the realm of MTSP and its variations, studies

indicate that permutation encoding stands out as the optimal choice for creating potent initial populations. This

is evident in the widespread adoption of GA techniques employing permutation encoding in this context [20].

3.3. Fitness function

The fitness function is used to calculate the individual chromosomes of the population. The selection

strategy in GAs relies on the importance of the fitness value, representing a crucial step. Specifically, a higher

fitness value for a chromosome indicates an increased likelihood of being chosen for the next generation. In

our study, the objective function is regarded as identical with the fitness function outlined in (1).

Int J Artif Intell ISSN: 2252-8938 

Solving k-city multiple travelling salesman using genetic algorithm (Alikapati Prakash)

2745

3.4. Selection operator

The selection operator significantly impacts the GA efficiency. The GA employs the conventional

roulette wheel approach as its selection mechanism. This approach selects a chromosome for the breeding

pool statistically, according to its fitness value from the population.

3.5. Mutation operator

Mutation is utilized in the GA to avoid convergence at local optima and to enhance the genetic

variation among the population. This task utilizes a complex mutation operator that includes various

operations: flip, swap, slide, as well as combinations like flip with modify breaks, swap with modify breaks,

and slide with modify breaks. These mutation operators are employed to identify the shortest possible

distance while also reducing the time required for computation. The flip operator is a mutation operation that

reverses the order of a segment of the route between two insertion points. In Figure 3, the flip operator is

applied to the best route among the three routes generated in each iteration of the loop. The swap operator in

a GA is a mutation operator that exchanges the positions of two elements in a solution or individual. In

Figure 4, the swap operation is applied to a route, where two cities are chosen, and their positions in the route

are swapped. The slide operator is a mutation operator used in GA for finding the optimal distance. This

operator involves moving a segment of the route to a new position within the same route which is given in

Figure 5. The modify breaks operator in this context seems to be applied to the breaks or breakpoints in a

route. In the context of a MTSP, breaks or breakpoints could represent specific locations where a salesman

makes a stop or pauses during its route. Modifying breaks may involve changing the order or positions of

these breaks which is given in Figure 6.

Figure 3. Flip operator

Figure 4. Swap operator

Figure 5. Slide operator

Figure 6. Modify breaks operator

  ISSN: 2252-8938

Int J Artif Intell, Vol. 14, No. 4, August 2025: 2741-2752

2746

The flip and modify breaks operator combine the flip operator to reverse a segment of the route with

the modify breaks operator to introduce variability in the breaks. This creates a new solution by altering the

order of cities and the breaks simultaneously, which is given in Figure 7. The swap and modify operator

combine the swap operator with the modification of breaks. In Figure 8, it swaps the order of two cities in the

route and simultaneously modifies the breaks associated with that route. Figure 9 generates a new solution by

sliding a segment of the route to the right and then modifying the breaks randomly. The combination of these

operations provides diversity in the generated solutions during the GA optimization process.

Figure 7. Flip and modify breaks operator

Figure 8. Swap and modify breaks operator

Figure 9. Slide and modify breaks operator

3.6. GA parameters

The effectiveness of the algorithm relies on the values of various parameters, including the size of

the population, the rate of mutation probability, and the criteria for termination. In this study, the size of the

population is set at 80, representing the number of chromosomes in a single generation. The study does not

explore into the crossover operator, but it emphasizes the use of a sophisticated mutation operator to achieve

its intended objectives.

4. RESULTS AND DISCUSSION

This section presents the computational results of the proposed GA. As there is no comparative

study devoted for k-MTSP, diverse benchmark datasets sourced from TSPLIB (http://comopt.ifi.uni-

heidelberg.de/software/TSPLIB95/) were utilized to execute the algorithm. The performance of the algorithm

was measured based on the best, worst, and average results for each test case, as well as the average CPU

runtimes. The MATLAB R2023b was utilized to code the algorithm, which was executed on a personal

computer featuring an Intel(R) Core (TM) i3-10110U CPU running at 2.10 GHz and equipped with 8 GB of

RAM. The GA is carried out independently ten times for each test case, and the best, worst, and mean results

are documented following every cycle. In total, 10 instances from TSPLIB have been examined. Each test

case is run independently for 10 times. For every case, where each instance involves four different salesman

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

Int J Artif Intell ISSN: 2252-8938 

Solving k-city multiple travelling salesman using genetic algorithm (Alikapati Prakash)

2747

sizes, determine the best, worst and average results, and also record the average CPU runtimes. These test

scenarios are characterized by Euclidean, two-dimensional symmetry and distinct node scales, ranging from

48 to 318 cities. The initial city in each instance is designated as the home city. Three distinct

scenarios(⌊
𝑛

2
⌋ , ⌊

𝑛

4
⌋ , ⌊

𝑛

6
⌋) are contemplated for each of these 10 instances. Tables 2 to 4 present computational

results for instances involving (⌊
𝑛

2
⌋ , ⌊

𝑛

4
⌋ , ⌊

𝑛

6
⌋). In each of these Tables 2 to 4, the initial column displays serial

numbers, indicating 40 distinct numerical instances, the second column indicates name of the test instance

alongside the associated count of cities, situated in the third column. The next two columns represent the

quantity of salesman and the corresponding best, worst, and average results, denoted in size. The particular

settings for the suggested algorithm are detailed in Table 2. The CPU runtimes for each case are provided in

Tables 2 to 4, same is shown in Figure 10.

The results in Table 2 indicate significant variability in the algorithm's performance across different

benchmark instances, particularly highlighting the impact of instance complexity on run times. Instances with

more nodes, such as bier127 and gil262, exhibit notably longer run times, suggesting challenges in handling

larger datasets. While some instances, like eil51, show consistent performance with close run times across

solutions, others display instability, as seen in bier127, where the gap between best and worst times is

substantial. Interestingly, best solutions do not consistently improve with more solutions, reflecting potential

inefficiencies. Overall, the findings suggest that while the algorithm performs well on smaller instances, its

scalability and reliability on larger problems warrant further tuning and optimization to enhance efficiency

and performance.

Table 2. Results of proposed algorithm on benchmark instances with ⌊
𝑛

2
⌋

SN Instances n m Solution Avg. CPU run time

(in seconds) Best worst Average

1 att48 48 2 18,107 25,347 22,778.7 2.850

2 3 21,824 28,411 25,423.4 3.594

3 4 25,822 32,505 29,605.2 3.115

4 5 28,581 33,887 30,805.8 3.766

5

6

7

8

eil51 51 2 282 302 294.8 2.914

3 291 334 317.9 3.052

4 336 367 355.1 3.074

5 345 402 382.6 3.176

9

10

11

12

berlin52 52 2 4,210 5,716 5,022 3.345

3 4,299 5,733 5,122.2 3.247

4 5,001 6,223 5,697.3 3.515

5 5,143 6,737 5,781.8 3.658

13

14

15

16

st70 70 2 461 523 503 3.537

3 492 623 553.5 3.771

4 550 699 635 4.246

5 630 829 731.6 4.399

17

18

19

20

rat99 99 2 661 709 691.9 3.366

3 730 844 779 3.739

4 833 1,003 873.2 3.987

5 931 1,052 979.8 4.317

21

22

23

24

eil101 101 2 473 497 487 4.739

3 505 554 525.7 4.309

4 543 586 564.3 4.815

5 578 639 606 5.053

25

26

27

28

bier127 127 2 49,884 51,414 50,633 5.120

3 51,982 55,291 53,739.6 5.686

4 53,899 57,719 55,679.4 5.545

5 56,851 61,791 58,710 8.705

29

30

31

32

pr152 152 2 38,871 39,956 39,427.5 4.405

3 45,582 60,453 51,876.6 4.283

4 63,117 69,944 66,374.5 5.039

5 68,523 91,056 76,467 5.092

33

34

35

36

gil262 262 2 2,191 2,522 2,305.3 8.423

3 2,458 3,071 2,738.1 9.119

4 2,909 3,430 3,188.1 9.690

5 3,187 3,712 3,442.7 10.506

37

38

39

40

lin318 318 2 28,445 29,477 28,829 6.011

3 29,474 31,986 30,919.6 6.521

4 30471 35457 32954.2 6.875

5 32941 41480 35740.5 7.242

  ISSN: 2252-8938

Int J Artif Intell, Vol. 14, No. 4, August 2025: 2741-2752

2748

The results in Table 3 reveal notable trends in the algorithm's performance across various

benchmark instances, highlighting both strengths and challenges. For smaller instances like att48 and eil51,

the algorithm demonstrates consistent and efficient run times, with average times remaining relatively low,

indicating effective optimization strategies. However, as the problem size increases, particularly in instances

like bier127 and pr152, run times escalate significantly, highlighting the algorithm's struggle with larger

datasets. The variability in best and worst run times, especially in bier127, suggests that certain instances

may require tailored optimization techniques. Interestingly, some instances, such as gil262, show impressive

best run times despite their size, indicating potential for improvement in algorithm efficiency. Overall, while

the algorithm performs well on smaller instances, its scalability and stability across larger problems call for

further refinement to enhance overall performance.

Table 3. Results of proposed algorithm on benchmark instances with ⌊
𝑛

4
⌋

SN Instances n m Solution Avg. CPU run time

(in seconds) Best worst Average

1

2

3

4

att48 48 2 13,475 16,829 15,121.5 2.217

3 14,969 22,509 18,154.1 2.121

4 15,624 24,134 20,280.6 2.164

5 18,766 27,325 24,550.3 2.164

5

6

7

8

eil51 51 2 165 242 196.5 2.161

3 186 235 213.3 2.396

4 217 262 242.2 2.534

5 239 303 272.4 2.484

9

10
11

12

berlin52 52 2 2,111 3,435 2,871.4 2.161

3 2,122 3,450 2,999.7 2.432
4 2,589 4,431 3,251.7 2.359

5 2,825 4,162 3,543.7 2.258

13

14

15

16

st70 70 2 304 372 345.9 2.509

3 366 462 409.2 2.574

4 371 494 439 2.894

5 453 662 519.1 2.838

17

18

19

20

rat99 99 2 357 361 357.6 2.584

3 404 429 409.2 2.892

4 459 526 474.4 3.194

5 532 623 578.7 3.094

21

22

23

24

eil101 101 2 238 333 297.1 2.956

3 283 364 338.5 2.932

4 315 421 385.1 2.967

5 358 449 406.5 3.147

25

26

27

28

bier127 127 2 19,218 19,453 19,312.4 4.005

3 20,304 21,338 20,747.6 5.074

4 22,087 23,450 22,661.6 4.750

5 23,871 25,946 25,020 5.498

29

30

31

32

pr152 152 2 21,516 21,516 21,516 2.948

3 22,993 31,983 27,076 3.739

4 26,387 40,744 33,000.5 4.371

5 31,494 47,052 38,439.2 4.283

33

34

35

36

gil262 262 2 1,386 1,435 1,406.9 5.302

3 1,550 1,895 1,673.7 5.589

4 1,931 2,229 2,065.1 6.214

5 1,843 2,505 2,293.8 6.584

37

38

39

40

lin318 318 2 11,466 12,429 12,002.9 4.566

3 12,075 14,593 13,317.6 4.761

4 13,009 16,182 14,436.6 4.945

5 15,484 17,537 16,496.9 5.212

Finally, the results in Table 4 demonstrate important insights about the algorithm's performance.

It performs well on smaller instances like att48 and eil51, with consistently low average run times.

However, larger instances, such as bier127 and pr152, show a significant increase in run times, indicating

scalability issues. Variability in best and worst run times, especially in bier127, suggests that the algorithm

may struggle with certain configurations. In contrast, rat99 demonstrates stability with equal best and

worst times across solutions. Overall, the algorithm is effective for smaller problems in this context,

improvements are needed to enhance performance for larger datasets and ensure more results that are

consistent.

Int J Artif Intell ISSN: 2252-8938 

Solving k-city multiple travelling salesman using genetic algorithm (Alikapati Prakash)

2749

Table 4. Results of proposed algorithm on benchmark instances with ⌊
𝑛

6
⌋

SN Instances n m Solution Avg. CPU run time

(in seconds) Best worst Average

1

2

3

4

att48 48 2 7,841 11,818 10,067.7 1.849

3 12,236 16,556 14,677.8 1.977

4 11,033 17,862 13,286.5 1.821

5 13,022 18,671 16,335.3 1.845

5

6

7

8

eil51 51 2 124 163 144.4 2.113

3 144 185 163.7 2.260

4 155 224 194.3 2.369

5 176 242 200.5 2.362

9

10

11

12

berlin52 52 2 1,363 2,373 2,122.9 1.893

3 1,796 2,477 2,188 1.976

4 2,030 2,848 2,403.6 2.258

5 1,956 2,680 2,241.8 1.921

13

14

15

16

st70 70 2 223 348 282.8 2.186

3 250 380 325.2 2.311

4 328 426 376.2 2.261

5 385 552 481.7 2.301

17

18

19

20

rat99 99 2 257 257 257 2.211

3 305 305 305 2.499

4 366 376 367 2.522

5 449 449 449 2.520

21

22

23

24

eil101 101 2 203 245 217.1 2.309

3 202 269 244.4 2.776

4 253 314 282.6 2.887

5 273 332 309.4 2.809

25

26

27

28

bier127 127 2 12,270 12,405 12,293.1 4.075

3 13,329 13,885 13,544.7 3.007

4 14,815 15,547 15,171.6 3.894

5 16,513 17,689 16,903.6 3.359

29

30

31

32

pr152 152 2 21,909 21,909 21,909 2.432

3 27,054 32,856 2,8981.1 3.296

4 34,512 41,890 38,073.4 3.618

5 44,688 54,987 48,811.8 3.383

33

34

35

36

gil262 262 2 1,147 1,329 1,231.4 4.104

3 1,277 1,494 1,375 4.243

4 1,480 1,808 1,685.6 4.632

5 1,796 2,243 1,968.3 4.843

37

38

39

40

lin318 318 2 7,645 8,142 7,841 3.938

3 8,445 9,418 9,108.6 3.969

4 9,379 10,909 10,057.1 4.148

5 10,633 12,922 11,901.2 4.284

Figure 10. Average CPU run times of all instances

Overall, the results from Table 2 reveal consistent performance on smaller datasets like eil51, where

average runtimes remain stable. In contrast, Table 3 shows that instances like bier127 and pr152 experience

higher variability, which may be due to the complexity of these larger problem sizes. The increased runtime

for these instances indicates challenges in scalability for the GA algorithm. The overall trend indicates that

the algorithm performs well with smaller datasets, as shown by the consistent results for instances like eil51

and att48 in Table 2. However, as problem size increases shown in Tables 3 to 4, performance variability

  ISSN: 2252-8938

Int J Artif Intell, Vol. 14, No. 4, August 2025: 2741-2752

2750

becomes more evident, particularly in larger instances like bier127. This suggests that the algorithm needs

further optimization for handling scalability issues effectively. In conclusion, while the proposed GA

algorithm performs efficiently on smaller datasets, it faces challenges with scalability as the problem size

increases. The variability in results across larger instances suggests that the algorithm may benefit from

further optimization, such as hybridization with other techniques or parallelization for larger datasets

[28], [37]. Future work could focus on improving the algorithm's robustness and efficiency to handle

complex, large-scale k-MTSP instances more effectively.

5. CONCLUSION

In this study, we addressed a unique variant of classical MTSP, specifically the k-MTSP, utilized

widely in outsourcing, transportation and logistics distribution. The aim of this problem is to find a set of

complete tours for m salesman, covering precisely k out of the n cities, with the aim of minimizing the overall

traversal distance or cost. According to the author's knowledge, this is the first GA developed for the

k-MTSP. Given the absence of k-MTSP studies, no comparative studies are carried out. However, various

benchmark test instances from the TSPLIB have been used to evaluate the effectiveness of the GA. The

computational results of the proposed algorithm exhibit significant potential in attaining optimal/near optimal

results for the k-MTSP. Being the first evolutionary algorithm for the k-MTSP, our proposed GA approach

will serve as a reference point for subsequent research on the k-MTSP. Overall, the algorithm effectively

finds best solutions, but enhancements are needed to improve consistency and efficiency, especially for larger

datasets. For future work, we recommend exploring hybrid algorithms that combine GAs with techniques like

simulated annealing, ant colony optimization, and machine learning methods, which could help address the

challenges posed by large datasets. Additionally, incorporating parallel and distributed computing strategies

could improve scalability. Other possible enhancements to the k-MTSP model include the integration of

elements such as time windows, multiple depots, and other real-world variations to increase the model's

applicability in practical scenarios.

ACKNOWLEDGMENTS

We would like to thank to our guide for his unwavering guidance, invaluable insights, and

encouragement throughout the research process.

FUNDING INFORMATION

No funding is raised for this research.

AUTHOR CONTRIBUTIONS STATEMENT

This journal uses the Contributor Roles Taxonomy (CRediT) to recognize individual author

contributions, reduce authorship disputes, and facilitate collaboration.

Name of Author C M So Va Fo I R D O E Vi Su P Fu

Alikapati Prakash ✓ ✓ ✓ ✓ ✓

Uruturu Balakrishna ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Manogaran Thangaraj ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Thenepalle Jayanth

Kumar

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

C : Conceptualization

M : Methodology

So : Software

Va : Validation

Fo : Formal analysis

I : Investigation

R : Resources

D : Data Curation

O : Writing - Original Draft

E : Writing - Review & Editing

Vi : Visualization

Su : Supervision

P : Project administration

Fu : Funding acquisition

CONFLICT OF INTEREST STATEMENT

Authors state no conflict of interest.

INFORMED CONSENT

We have obtained informed consent from all individuals included in this study.

Int J Artif Intell ISSN: 2252-8938 

Solving k-city multiple travelling salesman using genetic algorithm (Alikapati Prakash)

2751

ETHICAL APPROVAL

This research did not involve human participants or animals. Therefore, ethical approval was not

required.

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding author upon

reasonable request.

REFERENCES
[1] G. Laporte and Y. Nobert, “A cutting planes algorithm for the m-salesmen problem,” The Journal of the Operational Research

Society, vol. 31, no. 11, 1980, doi: 10.2307/2581282.

[2] A. I. Ali and J. L. Kennington, “The asymmetric M-travelling salesmen problem: a duality based branch-and-bound algorithm,”

Discrete Applied Mathematics, vol. 13, no. 2–3, pp. 259–276, 1986, doi: 10.1016/0166-218X(86)90087-9.

[3] B. Gavish and K. Srikanth, “Optimal solution method for large-scale multiple traveling salesmen problems,” Operations

Research, vol. 34, no. 5, pp. 698–717, 1986, doi: 10.1287/opre.34.5.698.

[4] K. C. Gilbert and R. B. Hofstra, “A new multiperiod multiple traveling salesman problem with heuristic and application to a

scheduling problem,” Decision Sciences, vol. 23, no. 1, pp. 250–259, 1992, doi: 10.1111/j.1540-5915.1992.tb00387.x.

[5] J.-Y. Potvin, “Genetic algorithms for the traveling salesman problem,” Annals of Operations Research, vol. 63, no. 3,

pp. 337–370, Jun. 1996, doi: 10.1007/BF02125403.

[6] S. Somhom, A. Modares, and T. Enkawa, “Competition-based neural network for the multiple travelling salesmen problem with

minmax objective,” Computers and Operations Research, vol. 26, no. 4, pp. 395–407, 1999, doi: 10.1016/S0305-0548(98)00069-0.

[7] V. Bhavani and M. S. Murthy, “Truncated M-travelling salesmen problem,” Opsearch, vol. 43, no. 2, pp. 152–177, 2006, doi:

10.1007/bf03398771.

[8] T. Bektas, “The multiple traveling salesman problem: an overview of formulations and solution procedures,” Omega, vol. 34,

no. 3, pp. 209–219, 2006, doi: 10.1016/j.omega.2004.10.004.

[9] A. E. Carter and C. T. Ragsdale, “A new approach to solving the multiple traveling salesperson problem using genetic

algorithms,” European Journal of Operational Research, vol. 175, no. 1, pp. 246–257, 2006, doi: 10.1016/j.ejor.2005.04.027.

[10] A. Singh and A. S. Baghel, “A new grouping genetic algorithm approach to the multiple traveling salesperson problem,” Soft

Computing, vol. 13, no. 1, pp. 95–101, 2009, doi: 10.1007/s00500-008-0312-1.

[11] S. Yuan, B. Skinner, S. Huang, and D. Liu, “A new crossover approach for solving the multiple travelling salesmen problem

using genetic algorithms,” European Journal of Operational Research, vol. 228, no. 1, pp. 72–82, 2013, doi:

10.1016/j.ejor.2013.01.043.

[12] E. Benavent and A. Martínez, “Multi-depot multiple TSP: a polyhedral study and computational results,” Annals of Operations

Research, vol. 207, no. 1, pp. 7–25, 2013, doi: 10.1007/s10479-011-1024-y.

[13] H. Larki and M. Yousefikhoshbakht, “Solving the multiple traveling salesman problem by a novel meta-heuristic algorithm,”

Journal of Optimization in Industrial Engineering, vol. 7, no. 16, pp. 55–63, 2014.

[14] J. Li, M. C. Zhou, Q. Sun, X. Dai, and X. Yu, “Colored traveling salesman problem,” IEEE Transactions on Cybernetics, vol. 45,

no. 11, pp. 2390–2401, 2015, doi: 10.1109/TCYB.2014.2371918.

[15] B. Soylu, “A general variable neighborhood search heuristic for multiple traveling salesmen problem,” Computers and Industrial

Engineering, vol. 90, pp. 390–401, 2015, doi: 10.1016/j.cie.2015.10.010.

[16] P. Venkatesh and A. Singh, “Two metaheuristic approaches for the multiple traveling salesperson problem,” Applied Soft

Computing, vol. 26, pp. 74–89, 2015, doi: 10.1016/j.asoc.2014.09.029.

[17] A. S. Rostami, F. Mohanna, H. Keshavarz, and A. A. R. Hosseinabadi, “Solving multiple traveling salesman problem using the

gravitational emulation local search algorithm,” Applied Mathematics and Information Sciences, vol. 9, no. 2, pp. 699–709, 2015,

doi: 10.12785/amis/090218.

[18] K. Braekers, K. Ramaekers, and I. V. Nieuwenhuyse, “The vehicle routing problem: state of the art classification and review,”

Computers and Industrial Engineering, vol. 99, pp. 300–313, 2016, doi: 10.1016/j.cie.2015.12.007.

[19] S. Hayat, E. Yanmaz, T. X. Brown, and C. Bettstetter, “Multi-objective UAV path planning for search and rescue,” in IEEE

International Conference on Robotics and Automation, 2017, pp. 5569–5574, doi: 10.1109/ICRA.2017.7989656.

[20] X. Xu, H. Yuan, M. Liptrott, and M. Trovati, “Two phase heuristic algorithm for the multiple-travelling salesman problem,” Soft

Computing, vol. 22, no. 19, pp. 6567–6581, 2018, doi: 10.1007/s00500-017-2705-5.

[21] J. K. Thenepalle and P. Singamsetty, “An open close multiple travelling salesman problem with single depot,” Decision Science

Letters, vol. 8, no. 2, pp. 121–136, 2019, doi: 10.5267/j.dsl.2018.8.002.

[22] Z. Wei et al., “The path planning scheme for joint charging and data collection in WRSNs: a multi-objective optimization

method,” Journal of Network and Computer Applications, vol. 156, 2020, doi: 10.1016/j.jnca.2020.102565.

[23] O. Cheikhrouhou, A. Koubaa, and A. Zarrad, “A cloud based disaster management system,” Journal of Sensor and Actuator

Networks, vol. 9, no. 1, 2020, doi: 10.3390/jsan9010006.

[24] P. Singamsetty and J. K. Thenepalle, “Designing optimal route for the distribution chain of a rural lpg delivery system,”

International Journal of Industrial Engineering Computations, vol. 12, no. 2, pp. 221–234, 2021, doi: 10.5267/j.ijiec.2020.11.001.

[25] C. Jiang, Z. Wan, and Z. Peng, “A new efficient hybrid algorithm for large scale multiple traveling salesman problems,” Expert

Systems with Applications, vol. 139, 2020, doi: 10.1016/j.eswa.2019.112867.

[26] P. Singamsetty, J. K. Thenepalle, and B. Uruturu, “Solving open travelling salesman subset-tour problem through a hybrid genetic

algorithm,” Journal of Project Management, vol. 6, no. 4, pp. 209–222, 2021, doi: 10.5267/j.jpm.2021.5.002.

[27] O. Cheikhrouhou and I. Khoufi, “A comprehensive survey on the multiple traveling salesman problem: applications, approaches

and taxonomy,” Computer Science Review, vol. 40, 2021, doi: 10.1016/j.cosrev.2021.100369.

[28] S. Mahmoudinazlou and C. Kwon, “A hybrid genetic algorithm for the min–max multiple traveling salesman problem,”

Computers and Operations Research, vol. 162, 2024, doi: 10.1016/j.cor.2023.106455.

[29] R. Yang and C. Fan, “A hierarchical framework for solving the constrained multiple depot traveling salesman problem,” IEEE

Robotics and Automation Letters, vol. 9, no. 6, pp. 5536–5543, 2024, doi: 10.1109/LRA.2024.3389817.

[30] D. Díaz-Ríos and J. J. Salazar-González, “Mathematical formulations for consistent travelling salesman problems,” European

Journal of Operational Research, vol. 313, no. 2, pp. 465–477, 2024, doi: 10.1016/j.ejor.2023.08.021.

  ISSN: 2252-8938

Int J Artif Intell, Vol. 14, No. 4, August 2025: 2741-2752

2752

[31] R. Nand, K. Chaudhary, and B. Sharma, “Single depot multiple travelling salesman problem solved with preference-based

stepping ahead firefly algorithm,” IEEE Access, vol. 12, pp. 26655–26666, 2024, doi: 10.1109/ACCESS.2024.3366183.

[32] S. Linganathan and P. Singamsetty, “Genetic algorithm to the bi-objective multiple travelling salesman problem,” Alexandria

Engineering Journal, vol. 90, pp. 98–111, 2024, doi: 10.1016/j.aej.2024.01.048.

[33] M. Veeresh, T. J. Kumar, and M. Thangaraj, “Solving the single depot open close multiple travelling salesman problem through a

multi-chromosome based genetic algorithm,” Decision Science Letters, vol. 13, no. 2, pp. 401–414, 2024, doi:

10.5267/j.dsl.2024.1.006.

[34] D. E. Goldberg, “Genetic algorithms in search, optimization, and machine learning,” Choice Reviews Online, vol. 27, no. 2,

pp. 27-0936-27–0936, 1989, doi: 10.5860/choice.27-0936.

[35] L. Tang, J. Liu, A. Rong, and Z. Yang, “A multiple traveling salesman problem model for hot rolling scheduling in Shanghai

Baoshan Iron and Steel Complex,” European Journal of Operational Research, vol. 124, no. 2, pp. 267–282, 2000, doi:

10.1016/S0377-2217(99)00380-X.

[36] Y. B. Park, “A hybrid genetic algorithm for the vehicle scheduling problem with due times and time deadlines,” International

Journal of Production Economics, vol. 73, no. 2, pp. 175–188, 2001, doi: 10.1016/S0925-5273(00)00174-2.

[37] M. Tong, Z. Peng, and Q. Wang, “A hybrid artificial bee colony algorithm with high robustness for the multiple traveling

salesman problem with multiple depots,” Expert Systems with Applications, vol. 260, 2025, doi: 10.1016/j.eswa.2024.125446.

BIOGRAPHIES OF AUTHORS

Alikapati Prakash holds a Bachelor of Science (B.Sc.) and Master of Science

(M.Sc.) in Mathematics from S.V University, Tirupathi and pursuing doctoral degree in
Operations Research in JNTUA, Ananthapuram, Andhra Pradesh. He is currently working as a

Professor at Department of Humanities and Sciences, Vemu Institute of Technology, Chittoor,

India. His research includes meta-heuristics and ombinatorial optimization models. He can be

contacted at email: alikapati.prakash@gmail.com.

Uruturu Balakrishna holds a Bachelor of Science (B.Sc.) in Mathematics,

Master of Science (M.Sc.) in Mathematics, Master of Philosophy (M.Phil.) in Operations
Research, Ph.D. in Operations Research, besides several professional certificates and skills. He

is currently working as Professor and Head in the Department of Science and Humanities in

Sreeenivasa Institute of Technology and Management Studes, Chittoor, India. He published

more 25 papers in reputed indexed various international journals. His research areas of interest
include combinatorial optimization problems, exact algorithms, routing and scheduling models.

He can be contacted at email: balusitams.maths@gmail.com.

Manogaran Thangaraj holds a Bachelor of Science (B.Sc.) in Mathematics,

Master of Science (M.Sc.) in Mathematics, Master of Philosophy (M.Phil.) in Mathematics,
Ph.D. in Operations Research, besides several professional certificates and skills. He is

currently working with the Department of Mathematics, School of Computer Science and

Engineering at JAIN (Deemed-To-Be-University), Bangalore, Karnataka, India. He is a

member of the International Association of Engineers (IAENG). His research areas of interest
include combinatorial optimization problems, scheduling problem and queueing theory. He can

be contacted at email: mthangaraj51@gmail.com or m.thangaraj@jainuniversity.ac.in.

Jayanth Kumar Thenepalle holds a Bachelor of Science (B.Sc.) in Statistics,

Master of Science (M.Sc.) in Applied Mathematics, Ph.D. in Operations Research, besides
several professional certificates and skills. He is currently working with the Department of

Mathematics, School of Computer Science and Engineering at JAIN (Deemed-To-Be-

University), Bangalore, Karnataka, India. He is a member of the International Association of

Engineers (IAENG). His research areas of interest include combinatorial optimization
problems, genetic algorithms. He can be contacted at email: jayanth.maths@gmail.com or

jayanth@jainuniversity.ac.in.

https://orcid.org/0009-0008-2867-7503
https://scholar.google.com/citations?view_op=list_works&hl=en&user=gOtMkwsAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57640737300
https://orcid.org/0000-0002-8364-720X
https://scholar.google.com/citations?user=s6MMBxsAAAAJ&hl=en
https://www.webofscience.com/wos/author/record/GOE-3913-2022
https://orcid.org/0000-0002-7822-3330
https://scholar.google.co.in/citations?user=Q7IPWQIAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=57193999308
https://www.webofscience.com/wos/author/record/LGZ-7499-2024
https://orcid.org/0000-0001-5409-9964
https://scholar.google.co.in/citations?user=nnkU_vAAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=57196276145
https://www.webofscience.com/wos/author/record/LGY-1749-2024

