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 This paper addresses a novel variant of the classical multiple traveling 

salesman problem (MTSP) i.e. k-city multiple traveling salesman problem 

(k-MTSP). The problem can describe as follows. Let there are 𝑛 cities,  

𝑚 salesman positioned at depot city and a predefined positive value 𝑘. The 

distance between each pair of cities is known. The objective of the k-MTSP 

is to determine a collection of 𝑚 closed tours for salesman, which covers 

exactly 𝑘 (including depot city) of 𝑛 cities such that the total distance 
covered is minimum. The k-MTSP can be seen as a combination of both 

subset selection and permutation characteristics. From the through literature 

review, it is found that this study on k-MTSP is first of its kind to the best of 

author’s knowledge. The paper introduces a zero-one integer linear 
programming (0-1 ILP) formulation alongside an efficient genetic algorithm 

(GA), designed to address k-MTSP. No comparative studies carried out due 

to the absence of existing studies on k-MTSP. However, the developed GA 

is tested over various benchmark test cases from TSPLIB and results are 
reported, which may potentially serve as basis for further comparative 

studies. Overall findings demonstrate that the GA consistently produces best 

solutions within reasonable computational times for relatively smaller and 

medium test cases, suggesting its robustness and effectiveness in tackling the 
k-MTSP. However, to enhance consistency and efficiency, particularly for 

larger datasets, further algorithm improvements are necessary. 
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1. INTRODUCTION  

The traveling salesman problem (TSP) stands as a well-known combinatorial optimization problem 

within the domains of computer science and mathematics. Its core objective is to identify the optimal route 

that originates and concludes in the same city, covering all cities in a given list while covering the distances 

between each pair of cities. Expanding upon the classical TSP, the multiple traveling salesman problem 

(MTSP) introduces a variation wherein multiple salesmen are assigned the task of visiting a specified set of 

cities. The aim is to determine the most efficient routes for all salesmen, collectively minimizing the overall 

traversal distance, while ensuring each city is visited only once by a single salesman. Addressing the MTSP 

proves to be a more challenging compared to the conventional TSP due to the additional constraint of 

involving multiple salesmen. Similar to the TSP, the MTSP is categorized as NP-hard problem. This 

https://creativecommons.org/licenses/by-sa/4.0/
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classification implies that as the number of cities and salesmen increases, finding the most efficient solution 

becomes progressively more computationally demanding. Due to its practical significance, the classical 

MTSP and its variants has been extensively studied [1]–[8] and wide variety of solution methods have been 

developed. 

Reviewing the existing studies on MTSP and its allied problems, the study [9] introduces a novel 

genetic algorithm (GA) chromosome and operators for the MTSP, demonstrating superior computational 

performance and smaller search space compared to prior methods through theoretical analysis and 

computational testing. A novel grouping GA is developed by [10] for the MTSP, which optimizes two 

objectives namely traversal distance and minimizing the maximum travel distance for any salesman. This 

approach shown superior performance compared to existing literature approaches on both objectives. A novel 

crossover method, termed the "two-part chromosome crossover" to address the MTSP through the application 

of a GA, aiming to achieve near-optimal solutions is developed [11]. The multiple depot MTSP, which 

involves an unlimited number of salespeople visiting a specific group of cities studied and developed 

polyhedral based branch-and-cut algorithm [12]. An efficient evolutionary algorithm that integrates two 

revised versions of the imperialist competitive algorithm and the Lin-Kernighan algorithm is developed for 

solving classical MTSP [13]. A novel variant of classical MTSP known as the colored TSP has been 

introduced [14], for which two hybrid algorithms namely hill-climbing based GA and simulated annealing-

based GA are developed for achieving best quality solutions. Soylu [15] studied MTSP involving two 

separate objective functions: minimizing the longest tour length and the total length of all tours, by proposing 

a general variable neighborhood search. Subsequently, two metaheuristic techniques for the MTSP are 

proposed: one based on the artificial bee colony algorithm, and the other utilizing the invasive weed 

optimization algorithm [16]. The gravitational emulation local search algorithm [17] is developed to tackle 

the symmetric MTSP. This algorithm relies on the principles of local search, incorporating two fundamental 

physics parameters: velocity and gravity. It is also note that MTSP exhibits a strong connection with various 

optimization models, including the vehicle routing problem (VRP) [18], [19]. Xu et al. [20] introduced the 

two-phase heuristic algorithm for solving the MTSP, which integrates an improved version of the k-means 

algorithm to sort the cities to be visited based on their unique capacity constraints and spatial positions. 

Given its significance as an optimization problem with practical applications, numerous researchers 

have utilized MTSP to address real-time scenarios. A new practical variation known as the open-close MTSP 

[21], which extends the classical MTSP. Over time, it has found relevance in various real-world situations. 

To cite few, wireless rechargeable sensor networks [22], natural disaster management [23], and optimal 

delivery distribution of LPG cylinders [24]. In addition to the cited works, researchers have also focused on 

developing hybrid algorithms for the MTSP and its allied problems to improve the solution quality [25]–[28]. 

Some of the latest studies on MTSP are as follows: Yang and Fan [29] implemented energy and resource 

consumption constraints to create the restricted multi-depot TSP. The consistent TSP searches for a 

minimum-cost collection of Hamiltonian paths described by [30], the firefly approach is presented to solve 

the single depot MTSP using a threshold technique [31]. A bi-objective MTSP with a load balancing 

constraint utilizing GA [32]. Veeresh et al. [33] introduce a meta-heuristic termed multi chromosome-based 

GA to solve open-closed MTSP. 

Motivated by the above-mentioned works, the current research focuses on a novel variant called  

k-MTSP, and effective metaheuristic in the form of a GA. This GA incorporates complex mutation strategies, 

yielding optimal/near optimal results. According to the author's understanding, this GA represents the 

pioneering evolutionary technique applied to the k-MTSP. The subsequent sections of the paper are 

organized in the following manner. The second section will present the definition and formulation of the  

k-MTSP. Section 3 will provide a description of the GA and its operators. The computational findings will be 

showcased in section 4, while section 5 will end by summarizing the findings and discussing potential 

directions for future research. 
 

 

2. MATHEMATICAL MODEL 

The k-MTSP can be formally defined as follows: Let 𝐺 = (𝑁, 𝐸) be an undirected weighted and connected 

graph, where 𝑁 = {1,2, . . . , 𝑛} be the set of 𝑛 cities/nodes (including depot city) and 𝐸 = {(𝑖, 𝑗)/(𝑖, 𝑗) ∈ 𝐸, 𝑖 ≠ 𝑗} 

be an edge/arc set. For each edge (𝑖, 𝑗) ∈ 𝐸, a positive distance 𝑑𝑖𝑗(𝑑𝑖𝑗 > 0, 𝑑𝑖𝑖 = ∞&𝑑𝑖𝑗 = 𝑑𝑗𝑖) is assigned, 

which indicate travel distance/cost from 𝑖𝑡ℎ
 city to 𝑗𝑡ℎcity. Let 𝐾 = {1,2, . . . , 𝑚} be the set of 𝑚 salesmen 

positioned at a depot city. Let 𝑥𝑖𝑗
𝑝

 be a binary variable, which takes the value 1 when salesman p traverses 

from city i to city j, and 0, otherwise. The cities other than the depot are known to be intervening cities. The 

k-MTSP aims to identify a set of 𝑚 closed tours, encompassing 𝑘 of the 𝑛 cities, where each intervening city 

is visited by exactly one salesman with minimal distance. The formulation of the k-MTSP model is based on 

the following assumptions: 
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− There are 𝑛 number of cities, out of which 𝑘 cities are to be covered by 𝑚 salesmen, all stationed at the 

depot city. 

− All salesmen must start their routes from the depot city and conclude their tours there as well. 

− The feasible solution comprises a set of 𝑚 closed tours  

− The allocation of cities to each salesman is dynamic, aiming to minimize the overall travel distance. 

− Each city, except for the depot, must be visited precisely once by only one salesman. 

− The number of cities visited by any salesman is constrained, with a minimum of 1 and a maximum of 𝑘 − 𝑚 

cities. 

The nomenclature used in the model are given in Table 1 as follows: 
 

 

Table 1. Nomenclature 
Notations Description 

𝐺 = (𝑁, 𝐸) An undirected weighted and connected graph 

𝑁 = {1,2, . . . , 𝑛} Node set with 𝑛 cities 

𝐸 = {(𝑖, 𝑗)/𝑖, 𝑗 ∈ 𝑉; 𝑖 ≠ 𝑗} Edge set 

𝑥𝑖𝑗
𝑝 ∈ {0,1}, ∀(𝑖, 𝑗) ∈ 𝐸, 𝑝 ∈ 𝐾 A binary variable 

𝐷 = [𝑑𝑖𝑗]
𝑛×𝑛

 A symmetric matrix representing distances between pairs of cities 

𝑑𝑖𝑗; (𝑑𝑖𝑗 = 𝑑𝑗𝑖 ; 𝑑𝑖𝑖 = ∞, 𝑑𝑖𝑗 > 0) Distance from 𝑖𝑡ℎ
 city to 𝑗𝑡ℎcity 

𝑘 A positive integer representing the total number of cities that all 

the salesmen need to cover (i.e. 𝑘 out of 𝑛) 

𝑦𝑖 ∈ {0,1}, 𝑖 ∈ 𝑉 A binary variable associated with visited cities 

 

 

The mathematical model of k-MTSP is as follows: 
 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑍 = ∑ ∑ 𝑑𝑖𝑗𝑥𝑖𝑗
𝑝𝑛

𝑗=1
𝑛
𝑖=1 , 1 ≤ 𝑝 ≤ 𝑚 (1) 

 

Subject to, the objective function (1) tells that minimization of total distance covered by 𝑚 salesmen. The 

constraint set (2) and (3) confirms that exactly 𝑘 − 1 (excluding depot city) of the 𝑛 cities cover by 𝑚 

salesmen and a feasible solution must include 𝑘 + 1
 
edges connecting the cities. Constraint sets (4) and (5) 

provides that 𝑚 salesmen depart and returns the depot city. Constraint sets (6) and (7) aims that each city is 

being visited exactly once by only one salesman. Constraint (8) establishes the minimum and maximum 

number of cities that any salesman can visit. Constraint (9) is designed to prevent the formation of sub-tours 

within the solution. The constraint (10) indicates the binary variable 𝑥𝑖𝑗
𝑝

, i.e. it takes 1 if 𝑝𝑡ℎ salesman travels 

from 𝑖𝑡ℎ
 city to 𝑗𝑡ℎ city and 0 otherwise. Finally, another binary variable𝑦𝑖

𝑝
is introduced in the constraint 

(11), which takes 1 if 𝑝𝑡ℎ salesman visits 𝑖𝑡ℎ
 city and 0 otherwise. 

 

∑ 𝑦𝑖
𝑝𝑛

𝑖=2 = 𝑘 − 1, 𝑝 ∈ 𝐾 (2) 

 

∑ ∑ 𝑥𝑖𝑗
𝑝𝑛

𝑗=1
𝑛
𝑖=1 = 𝑘 + 1, 𝑖 ≠ 𝑗, 𝑝 ∈ 𝐾 (3) 

 

∑ 𝑥1𝑗
𝑝𝑛

𝑗=2 = 𝑚, 𝑝 ∈ 𝐾 (4) 

 

∑ 𝑥𝑖1
𝑝𝑛

𝑖=2 = 𝑚, 𝑝 ∈ 𝐾 (5) 

 

∑ 𝑥𝑖𝑗
𝑝𝑛

𝑖=1 = 1, 𝑖 ≠ 𝑗, ∀𝑗 ∈ 𝑁\{1}, 𝑝 ∈ 𝐾 (6) 

 

∑ 𝑥𝑖𝑗
𝑝𝑛

𝑗=1 = 1, 𝑖 ≠ 𝑗, ∀𝑖 ∈ 𝑁\{1}, 𝑝 ∈ 𝐾 (7) 

 

1 ≤ ∑ ∑ 𝑥𝑖𝑗
𝑝𝑛

𝑗=1
𝑛
𝑖=1 ≤ 𝑘 − 𝑚, 𝑝 ∈ 𝐾 (8) 

 

+Subtour elimination constraints (9) 
 

𝑥𝑖𝑗
𝑝

∈ {0,1}, 𝑖 ≠ 𝑗, ∀𝑖, 𝑗 ∈ 𝑁, 𝑝 ∈ 𝐾 (10) 

 

𝑦𝑖
𝑝

∈ {0,1}, ∀𝑖 ∈ 𝑁, 𝑝 ∈ 𝐾 (11) 
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3. METHODOLOGY 

The proposed GA is recognized as a commonly used metaheuristic within the domain of 

evolutionary computation studies, specifically designed for addressing problems involving the optimization 

of a combination [34]. This population-based approach continually refines the solution by enhancing its 

fitness value through iterative updates. Finding the best solution to the k-MTSP by using proposed algorithm 

include several crucial elements such as representation of chromosomes, population generation, fitness 

evaluation, selection, mutation and the general parameters of GA. 

 

3.1.  Chromosome representation 

Finding optimal routes for multiple salesmen visiting each city once in the MTSP requires encoding 

solutions into chromosomes. There are primarily two methods: the single-chromosome [35] approach and the 

two-chromosome [36] approach. The initial method employs a chromosome whose length is (𝑛 + 𝑚 − 1), 

with 𝑛 representing the total cities and 𝑚indicating the quantity of salesmen, to directly encode both cities visit 

order and assigned salesmen. The two-chromosome strategy involves utilizing a pair of chromosomes, each 

with a length of 𝑛. The first defines the universal city visit order, while the second assigns specific salesmen 

based on their corresponding position in the first chromosome. Emerging in the field of chromosome 

representation is a novel technique known as the two-part chromosome approach [9]. Every chromosome is 

divided into two segments: the initial segment is a sequence of cities, numbering 𝑘 − 1, arranged in order from 

2 up to 𝑛. The second part defines the route breakpoints for each of the 𝑚 salesman within their assigned 

cities. The two-part chromosome for 10 city k-MTSP with 3 salesmen given in Figure 1. In this situation, the 

salesman 1 visits 3 cities 1 → 7 → 5 → 8, the salesman 2 visits 2 cities 1 → 3 → 9 and the salesman 3 visits  

2 cities 1 → 2 → 4. The route plan for 3 salesmen covering 8 out of 10 cities given in Figure 2. 

 

 

 
 

Figure 1. Two-part chromosome representation of 10 city k-MTSP with 3 salesmen 

 

 

 

 

Figure 2. Route plan for 3 salesmen covering 8 out of 10 cities (Including depot city) 

 

 

3.2.  Initial population encoding 

The success of a GA is greatly influenced by the quality of the initial population set, underscoring 

the significance of selecting the right encoding operator. In the realm of MTSP and its variations, studies 

indicate that permutation encoding stands out as the optimal choice for creating potent initial populations. This 

is evident in the widespread adoption of GA techniques employing permutation encoding in this context [20]. 
 

3.3.  Fitness function 

The fitness function is used to calculate the individual chromosomes of the population. The selection 

strategy in GAs relies on the importance of the fitness value, representing a crucial step. Specifically, a higher 

fitness value for a chromosome indicates an increased likelihood of being chosen for the next generation. In 

our study, the objective function is regarded as identical with the fitness function outlined in (1). 
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3.4.  Selection operator 

The selection operator significantly impacts the GA efficiency. The GA employs the conventional 

roulette wheel approach as its selection mechanism. This approach selects a chromosome for the breeding 

pool statistically, according to its fitness value from the population. 

 

3.5.  Mutation operator 

Mutation is utilized in the GA to avoid convergence at local optima and to enhance the genetic 

variation among the population. This task utilizes a complex mutation operator that includes various 

operations: flip, swap, slide, as well as combinations like flip with modify breaks, swap with modify breaks, 

and slide with modify breaks. These mutation operators are employed to identify the shortest possible 

distance while also reducing the time required for computation. The flip operator is a mutation operation that 

reverses the order of a segment of the route between two insertion points. In Figure 3, the flip operator is 

applied to the best route among the three routes generated in each iteration of the loop. The swap operator in 

a GA is a mutation operator that exchanges the positions of two elements in a solution or individual. In 

Figure 4, the swap operation is applied to a route, where two cities are chosen, and their positions in the route 

are swapped. The slide operator is a mutation operator used in GA for finding the optimal distance. This 

operator involves moving a segment of the route to a new position within the same route which is given in 

Figure 5. The modify breaks operator in this context seems to be applied to the breaks or breakpoints in a 

route. In the context of a MTSP, breaks or breakpoints could represent specific locations where a salesman 

makes a stop or pauses during its route. Modifying breaks may involve changing the order or positions of 

these breaks which is given in Figure 6. 
 

 

 
 

Figure 3. Flip operator 
 

 

 
 

Figure 4. Swap operator 
 

 

 
 

Figure 5. Slide operator 
 

 

 
 

Figure 6. Modify breaks operator 



                ISSN: 2252-8938 

Int J Artif Intell, Vol. 14, No. 4, August 2025: 2741-2752 

2746 

The flip and modify breaks operator combine the flip operator to reverse a segment of the route with 

the modify breaks operator to introduce variability in the breaks. This creates a new solution by altering the 

order of cities and the breaks simultaneously, which is given in Figure 7. The swap and modify operator 

combine the swap operator with the modification of breaks. In Figure 8, it swaps the order of two cities in the 

route and simultaneously modifies the breaks associated with that route. Figure 9 generates a new solution by 

sliding a segment of the route to the right and then modifying the breaks randomly. The combination of these 

operations provides diversity in the generated solutions during the GA optimization process. 

 

 

 
 

Figure 7. Flip and modify breaks operator 

 

 

 
 

Figure 8. Swap and modify breaks operator 

 

 

 
 

Figure 9. Slide and modify breaks operator 

 

 

3.6.  GA parameters 

The effectiveness of the algorithm relies on the values of various parameters, including the size of 

the population, the rate of mutation probability, and the criteria for termination. In this study, the size of the 

population is set at 80, representing the number of chromosomes in a single generation. The study does not 

explore into the crossover operator, but it emphasizes the use of a sophisticated mutation operator to achieve 

its intended objectives. 

 

 

4. RESULTS AND DISCUSSION 

This section presents the computational results of the proposed GA. As there is no comparative 

study devoted for k-MTSP, diverse benchmark datasets sourced from TSPLIB (http://comopt.ifi.uni-

heidelberg.de/software/TSPLIB95/) were utilized to execute the algorithm. The performance of the algorithm 

was measured based on the best, worst, and average results for each test case, as well as the average CPU 

runtimes. The MATLAB R2023b was utilized to code the algorithm, which was executed on a personal 

computer featuring an Intel(R) Core (TM) i3-10110U CPU running at 2.10 GHz and equipped with 8 GB of 

RAM. The GA is carried out independently ten times for each test case, and the best, worst, and mean results 

are documented following every cycle. In total, 10 instances from TSPLIB have been examined. Each test 

case is run independently for 10 times. For every case, where each instance involves four different salesman 

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
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sizes, determine the best, worst and average results, and also record the average CPU runtimes. These test 

scenarios are characterized by Euclidean, two-dimensional symmetry and distinct node scales, ranging from 

48 to 318 cities. The initial city in each instance is designated as the home city. Three distinct 

scenarios(⌊
𝑛

2
⌋ , ⌊

𝑛

4
⌋ , ⌊

𝑛

6
⌋) are contemplated for each of these 10 instances. Tables 2 to 4 present computational 

results for instances involving (⌊
𝑛

2
⌋ , ⌊

𝑛

4
⌋ , ⌊

𝑛

6
⌋). In each of these Tables 2 to 4, the initial column displays serial 

numbers, indicating 40 distinct numerical instances, the second column indicates name of the test instance 

alongside the associated count of cities, situated in the third column. The next two columns represent the 

quantity of salesman and the corresponding best, worst, and average results, denoted in size. The particular 

settings for the suggested algorithm are detailed in Table 2. The CPU runtimes for each case are provided in 

Tables 2 to 4, same is shown in Figure 10. 

The results in Table 2 indicate significant variability in the algorithm's performance across different 

benchmark instances, particularly highlighting the impact of instance complexity on run times. Instances with 

more nodes, such as bier127 and gil262, exhibit notably longer run times, suggesting challenges in handling 

larger datasets. While some instances, like eil51, show consistent performance with close run times across 

solutions, others display instability, as seen in bier127, where the gap between best and worst times is 

substantial. Interestingly, best solutions do not consistently improve with more solutions, reflecting potential 

inefficiencies. Overall, the findings suggest that while the algorithm performs well on smaller instances, its 

scalability and reliability on larger problems warrant further tuning and optimization to enhance efficiency 

and performance. 

 

 

Table 2. Results of proposed algorithm on benchmark instances with ⌊
𝑛

2
⌋ 

SN Instances n m Solution Avg. CPU run time 

(in seconds) Best worst Average 

1 att48 48 2 18,107 25,347 22,778.7 2.850 

2 3 21,824 28,411 25,423.4 3.594 

3 4 25,822 32,505 29,605.2 3.115 

4 5 28,581 33,887 30,805.8 3.766 

5 

6 

7 

8 

eil51 51 2 282 302 294.8 2.914 

3 291 334 317.9 3.052 

4 336 367 355.1 3.074 

5 345 402 382.6 3.176 

9 

10 

11 

12 

berlin52 52 2 4,210 5,716 5,022 3.345 

3 4,299 5,733 5,122.2 3.247 

4 5,001 6,223 5,697.3 3.515 

5 5,143 6,737 5,781.8 3.658 

13 

14 

15 

16 

st70 70 2 461 523 503 3.537 

3 492 623 553.5 3.771 

4 550 699 635 4.246 

5 630 829 731.6 4.399 

17 

18 

19 

20 

rat99 99 2 661 709 691.9 3.366 

3 730 844 779 3.739 

4 833 1,003 873.2 3.987 

5 931 1,052 979.8 4.317 

21 

22 

23 

24 

eil101 101 2 473 497 487 4.739 

3 505 554 525.7 4.309 

4 543 586 564.3 4.815 

5 578 639 606 5.053 

25 

26 

27 

28 

bier127 127 2 49,884 51,414 50,633 5.120 

3 51,982 55,291 53,739.6 5.686 

4 53,899 57,719 55,679.4 5.545 

5 56,851 61,791 58,710 8.705 

29 

30 

31 

32 

pr152 152 2 38,871 39,956 39,427.5 4.405 

3 45,582 60,453 51,876.6 4.283 

4 63,117 69,944 66,374.5 5.039 

5 68,523 91,056 76,467 5.092 

33 

34 

35 

36 

gil262 262 2 2,191 2,522 2,305.3 8.423 

3 2,458 3,071 2,738.1 9.119 

4 2,909 3,430 3,188.1 9.690 

5 3,187 3,712 3,442.7 10.506 

37 

38 

39 

40 

lin318 318 2 28,445 29,477 28,829 6.011 

3 29,474 31,986 30,919.6 6.521 

4 30471 35457 32954.2 6.875 

5 32941 41480 35740.5 7.242 
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The results in Table 3 reveal notable trends in the algorithm's performance across various 

benchmark instances, highlighting both strengths and challenges. For smaller instances like att48 and eil51, 

the algorithm demonstrates consistent and efficient run times, with average times remaining relatively low, 

indicating effective optimization strategies. However, as the problem size increases, particularly in instances 

like bier127 and pr152, run times escalate significantly, highlighting the algorithm's struggle with larger 

datasets. The variability in best and worst run times, especially in bier127, suggests that certain instances 

may require tailored optimization techniques. Interestingly, some instances, such as gil262, show impressive 

best run times despite their size, indicating potential for improvement in algorithm efficiency. Overall, while 

the algorithm performs well on smaller instances, its scalability and stability across larger problems call for 

further refinement to enhance overall performance. 

 

 

Table 3. Results of proposed algorithm on benchmark instances with ⌊
𝑛

4
⌋ 

SN Instances n m Solution Avg. CPU run time 

(in seconds) Best worst Average 

1 

2 

3 

4 

att48 48 2 13,475 16,829 15,121.5 2.217 

3 14,969 22,509 18,154.1 2.121 

4 15,624 24,134 20,280.6 2.164 

5 18,766 27,325 24,550.3 2.164 

5 

6 

7 

8 

eil51 51 2 165 242 196.5 2.161 

3 186 235 213.3 2.396 

4 217 262 242.2 2.534 

5 239 303 272.4 2.484 

9 

10 
11 

12 

berlin52 52 2 2,111 3,435 2,871.4 2.161 

3 2,122 3,450 2,999.7 2.432 
4 2,589 4,431 3,251.7 2.359 

5 2,825 4,162 3,543.7 2.258 

13 

14 

15 

16 

st70 70 2 304 372 345.9 2.509 

3 366 462 409.2 2.574 

4 371 494 439 2.894 

5 453 662 519.1 2.838 

17 

18 

19 

20 

rat99 99 2 357 361 357.6 2.584 

3 404 429 409.2 2.892 

4 459 526 474.4 3.194 

5 532 623 578.7 3.094 

21 

22 

23 

24 

eil101 101 2 238 333 297.1 2.956 

3 283 364 338.5 2.932 

4 315 421 385.1 2.967 

5 358 449 406.5 3.147 

25 

26 

27 

28 

bier127 127 2 19,218 19,453 19,312.4 4.005 

3 20,304 21,338 20,747.6 5.074 

4 22,087 23,450 22,661.6 4.750 

5 23,871 25,946 25,020 5.498 

29 

30 

31 

32 

pr152 152 2 21,516 21,516 21,516 2.948 

3 22,993 31,983 27,076 3.739 

4 26,387 40,744 33,000.5 4.371 

5 31,494 47,052 38,439.2 4.283 

33 

34 

35 

36 

gil262 262 2 1,386 1,435 1,406.9 5.302 

3 1,550 1,895 1,673.7 5.589 

4 1,931 2,229 2,065.1 6.214 

5 1,843 2,505 2,293.8 6.584 

37 

38 

39 

40 

lin318 318 2 11,466 12,429 12,002.9 4.566 

3 12,075 14,593 13,317.6 4.761 

4 13,009 16,182 14,436.6 4.945 

5 15,484 17,537 16,496.9 5.212 

 

 

Finally, the results in Table 4 demonstrate important insights about the algorithm's performance.  

It performs well on smaller instances like att48 and eil51, with consistently low average run times.  

However, larger instances, such as bier127 and pr152, show a significant increase in run times, indicating 

scalability issues. Variability in best and worst run times, especially in bier127, suggests that the algorithm 

may struggle with certain configurations. In contrast, rat99 demonstrates stability with equal best and  

worst times across solutions. Overall, the algorithm is effective for smaller problems in this context, 

improvements are needed to enhance performance for larger datasets and ensure more results that are 

consistent. 
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Table 4. Results of proposed algorithm on benchmark instances with ⌊
𝑛

6
⌋ 

SN Instances n m Solution Avg. CPU run time 

(in seconds) Best worst Average 

1 

2 

3 

4 

att48 48 2 7,841 11,818 10,067.7 1.849 

3 12,236 16,556 14,677.8 1.977 

4 11,033 17,862 13,286.5 1.821 

5 13,022 18,671 16,335.3 1.845 

5 

6 

7 

8 

eil51 51 2 124 163 144.4 2.113 

3 144 185 163.7 2.260 

4 155 224 194.3 2.369 

5 176 242 200.5 2.362 

9 

10 

11 

12 

berlin52 52 2 1,363 2,373 2,122.9 1.893 

3 1,796 2,477 2,188 1.976 

4 2,030 2,848 2,403.6 2.258 

5 1,956 2,680 2,241.8 1.921 

13 

14 

15 

16 

st70 70 2 223 348 282.8 2.186 

3 250 380 325.2 2.311 

4 328 426 376.2 2.261 

5 385 552 481.7 2.301 

17 

18 

19 

20 

rat99 99 2 257 257 257 2.211 

3 305 305 305 2.499 

4 366 376 367 2.522 

5 449 449 449 2.520 

21 

22 

23 

24 

eil101 101 2 203 245 217.1 2.309 

3 202 269 244.4 2.776 

4 253 314 282.6 2.887 

5 273 332 309.4 2.809 

25 

26 

27 

28 

bier127 127 2 12,270 12,405 12,293.1 4.075 

3 13,329 13,885 13,544.7 3.007 

4 14,815 15,547 15,171.6 3.894 

5 16,513 17,689 16,903.6 3.359 

29 

30 

31 

32 

pr152 152 2 21,909 21,909 21,909 2.432 

3 27,054 32,856 2,8981.1 3.296 

4 34,512 41,890 38,073.4 3.618 

5 44,688 54,987 48,811.8 3.383 

33 

34 

35 

36 

gil262 262 2 1,147 1,329 1,231.4 4.104 

3 1,277 1,494 1,375 4.243 

4 1,480 1,808 1,685.6 4.632 

5 1,796 2,243 1,968.3 4.843 

37 

38 

39 

40 

lin318 318 2 7,645 8,142 7,841 3.938 

3 8,445 9,418 9,108.6 3.969 

4 9,379 10,909 10,057.1 4.148 

5 10,633 12,922 11,901.2 4.284 

 

 

 
 

Figure 10. Average CPU run times of all instances 
 

 

Overall, the results from Table 2 reveal consistent performance on smaller datasets like eil51, where 

average runtimes remain stable. In contrast, Table 3 shows that instances like bier127 and pr152 experience 

higher variability, which may be due to the complexity of these larger problem sizes. The increased runtime 

for these instances indicates challenges in scalability for the GA algorithm. The overall trend indicates that 

the algorithm performs well with smaller datasets, as shown by the consistent results for instances like eil51 

and att48 in Table 2. However, as problem size increases shown in Tables 3 to 4, performance variability 
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becomes more evident, particularly in larger instances like bier127. This suggests that the algorithm needs 

further optimization for handling scalability issues effectively. In conclusion, while the proposed GA 

algorithm performs efficiently on smaller datasets, it faces challenges with scalability as the problem size 

increases. The variability in results across larger instances suggests that the algorithm may benefit from 

further optimization, such as hybridization with other techniques or parallelization for larger datasets  

[28], [37]. Future work could focus on improving the algorithm's robustness and efficiency to handle 

complex, large-scale k-MTSP instances more effectively. 
 

 

5. CONCLUSION 

In this study, we addressed a unique variant of classical MTSP, specifically the k-MTSP, utilized 

widely in outsourcing, transportation and logistics distribution. The aim of this problem is to find a set of 

complete tours for m salesman, covering precisely k out of the n cities, with the aim of minimizing the overall 

traversal distance or cost. According to the author's knowledge, this is the first GA developed for the  

k-MTSP. Given the absence of k-MTSP studies, no comparative studies are carried out. However, various 

benchmark test instances from the TSPLIB have been used to evaluate the effectiveness of the GA. The 

computational results of the proposed algorithm exhibit significant potential in attaining optimal/near optimal 

results for the k-MTSP. Being the first evolutionary algorithm for the k-MTSP, our proposed GA approach 

will serve as a reference point for subsequent research on the k-MTSP. Overall, the algorithm effectively 

finds best solutions, but enhancements are needed to improve consistency and efficiency, especially for larger 

datasets. For future work, we recommend exploring hybrid algorithms that combine GAs with techniques like 

simulated annealing, ant colony optimization, and machine learning methods, which could help address the 

challenges posed by large datasets. Additionally, incorporating parallel and distributed computing strategies 

could improve scalability. Other possible enhancements to the k-MTSP model include the integration of 

elements such as time windows, multiple depots, and other real-world variations to increase the model's 

applicability in practical scenarios. 
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