
IAES International Journal of Artificial Intelligence (IJ-AI) 

Vol. 14, No. 5, October 2025, pp. 4061~4073 

ISSN: 2252-8938, DOI: 10.11591/ijai.v14.i5.pp4061-4073      4061 

 

Journal homepage: http://ijai.iaescore.com 

Design and analysis of reinforcement learning models for 

automated penetration testing 
 

 

Suresh Jaganathan1, Mrithula Kesavan Latha2, Krithika Dharanikota3 
1Department of Computer Science and Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, India 

2Software Development Analyst, Citicorp Services India Ltd, Chennai, India 
3Department of Computer Science, University of Southern California, Los Angeles, United States 

 

 

Article Info  ABSTRACT 

Article history: 

Received Jun 13, 2024 

Revised Jul 26, 2025 

Accepted Aug 6, 2025 

 

 Our paper proposes a framework to automate penetration testing by utilizing 

reinforcement learning (RL) capabilities. The framework aims to identify 

and prioritize vulnerable paths within a network by dynamically learning 

and adapting strategies for vulnerability assessment by acquiring the 

network data obtained from a comprehensive network scanner. The study 

evaluates three RL algorithms: deep Q-network (DQN), deep deterministic 

policy gradient (DDPG), and asynchronous episodic deep deterministic 

policy gradient (AE-DDPG) in order to compare their effectiveness for this 

task. DQN uses a learned model of the environment to make decisions and is 

hence called model-based RL, while DDPG and AE-DDPG learn directly 

from interactions with the network environment and are called model-free 

RL. By dynamically adapting its strategies, the framework can identify and 

focus on the most critical vulnerabilities within the network infrastructure. 

Our work is to check how well the RL technique picked security 

vulnerabilities. The identified vulnerable paths are tested using Metasploit, 

which also confirmed the accuracy of the RL approach's results. The 

tabulated findings show that RL promises to automate penetration testing 

tasks. 
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1. INTRODUCTION 

Penetration testing, or pen-testing, is crucial for evaluating information technology (IT) 

infrastructure resilience against cyber threats by proactively identifying vulnerabilities. This process helps 

organizations strengthen their security posture and prevent potential data breaches and financial detriment. 

Pen-testing also aids in regulatory compliance and provides insights for informed security investments which 

mandate regular security evaluations. With the evolution of machine learning, particularly reinforcement 

learning (RL), pen-testing techniques are becoming more automated and effective, improving security 

assessments for organizations. We will examine the existing landscape of model-based penetration testing 

and introduce an innovative framework [1] that harnesses RL to streamline and augment the penetration 

testing process. 

Combining penetration testing with RL presents a promising strategy to enhance conventional 

methodologies. RL algorithms can automatically prioritize vulnerabilities based on their likelihood  

and potential impact, minimizing the need for manual intervention. These algorithms adapt effectively  

to dynamic environments and evolving threat landscapes, ensuring that penetration testing techniques 

https://creativecommons.org/licenses/by-sa/4.0/
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remain effective over time. Furthermore, RL enables parallel exploration of various attack strategies, 

leading to more comprehensive vulnerability assessments. This scalability makes RL well-suited for 

handling extensive and intricate networks, providing organizations with a compre­hensive approach to 

security evaluations. 

Penetration testing primarily relies on model-based techniques, where experts create a detailed 

model of the network using data from scans and analyses to identify vulnerabilities. While effective in 

controlled environments, this approach struggles with the dynamic nature of modern networks. The 

emergence of new vulnerabilities and network changes make maintaining an accurate model challenging.  

To address this, integrating RL into model-based methodologies can provide adaptive capabilities. By doing 

so, organizations can improve the accuracy and effectiveness of their vulnerability assessments, leading to 

robust security measures. 

Penetration testing methods have evolved, yet obstacles persist in efficiently detecting and 

prioritizing vulnerabilities, especially across extensive, intricate networks. Manual processes demand 

substantial time and effort, potentially resulting in oversight or incorrect prioritization of security 

vulnerabilities due to human fallibility. Additionally, the complexity of modern networks can make it 

difficult to identify the most critical vulnerabilities that pose the greatest risk to an organization.  

Traditional model-based approaches struggle to adapt to new problems, resulting in less effective 

vulnerability assessments. 

The proposed solution addresses challenges in penetration testing by developing an automated 

framework using RL to identify and prioritize vulnerabilities in a network. The framework dynamically 

learns and adapts its strategies based on network data from a comprehensive scanner. It consists of three 

modules: network analyzer, RL engine using deep Q-network (DQN), deep deterministic policy gradient 

(DDPG), and asynchronous episodic deep deterministic policy gradient (AE-DDPG) algorithms, and a pen-

testing module. The network analyzer collects and analyses network data, identifying vulnerabilities and 

attack paths. The RL engine prioritizes vulnerabilities and determines optimal attack paths, while the pen-

testing module verifies these paths using industry-standard tools. This integration aims to automate and 

optimize penetration testing, adapting to network changes and reducing cyberattack risks. Ultimately, the 

framework seeks to revolutionize cybersecurity practices, providing defenders with adaptive and intelligent 

tools to combat cyber threats effectively. 

 

 

2. RELATED WORKS 

The concept of automating penetration testing [2] has been a longstanding pursuit, initially 

manifesting in the form of attack graphs [3]. Attack graphs [4] serve as models to depict systems and their 

susceptibility to particular exploits. Traditionally, identifying these attack paths involved employing classical 

planning methodologies. However, a substantial disadvantage of this approach is its reliance on 

comprehensive knowledge of the network topology and the configuration of each machine, rendering it 

impractical from the perspective of an attacker. 

An alternative approach to modelling and strategizing attacks against a system involves 

employing a Markov decision process (MDP) to simulate the operational environment. An MDP [5] serves 

as a versatile framework for representing discrete decision-making scenarios amid uncertainty. When 

applied to penetration testing, the state space within the MDP encompasses the potential configurations of 

target machines or the network, with actions representing available exploits or scans and rewards 

contingent upon the costs associated with actions and the value accrued upon successfully compromising a 

system. RL emerges as a technique capable of deriving optimal policies for MDPs. It leverages 

interactions with the environment to generate samples, thereby optimizing performance. Distinct 

advantages over classical planning methodologies include its adeptness at handling expansive 

environments and its applicability in scenarios where either a model of the environment is absent or 

utilizing the model proves computationally intractable. 

A partially observable Markov decision process (POMDP) is a variant of the MDP that 

incorporates uncertainty about the precise state of the system. In a POMDP, the current state is modelled 

as a probability distribution encompassing all potential states. When applied to penetration testing, the 

state space within the POMDP encompasses the potential configurations of the target machine or network. 

Actions represent available exploits or scans, while the observation space comprises the information 

gathered when an exploit or scan is executed (e.g., open ports, success, or failure of the exploit). Rewards 

are determined based on the cost of an action and the value gained from successfully compromising a 

system. POMDP leverages the concept of "belief" to represent uncertainty in decision-making during 

attacks. POMDP is used to simulate [6] the "Pentest" task, aiming to find the shortest path to the target 

node. However, due to the inherent complexity of POMDP algorithms, their applicability is confined to 
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environments involving only two hosts. Recognizing the limitations posed by POMDP algorithms, 

intelligent automated penetration testing system (IAPTS) [7] is developed to address the challenge of 

automating pen-testing in large network environments.  

Despite its utility, POMDP-based solvers encounter a critical limitation in scaling efficiently. As the 

state space increases in size, POMDP-based solvers often become computationally infeasible, hampering 

their practical application in large-scale scenarios. Consequently, an increasing number of researchers are 

opting to model the pen-test task using the MDP, where action outcomes are deterministic, thereby 

circumventing the computational complexities associated with POMDP-based approaches. 

While model-based methods have proven effective, they are inherently constrained by the 

requirement for human experts to define the dynamics of the models. In recent times, there has been a shift 

towards employing model-free RL algorithms to address penetration testing challenges. Unlike model-based 

approaches reliant on expert-designed models, model-free agents autonomously interact with the 

environment to derive optimal strategies.  

Our research adopts a similar model-free RL approach, albeit with a primary focus on critically 

assessing both model-based and model-free RL techniques and evaluating their efficacy in automating 

penetration testing processes. A framework [8] is proposed for using RL to learn attack paths, which is 

evaluated on a simulated environment and showed that it can learn to find effective attack paths more 

efficiently than traditional penetration testing methods. Then comes the traditional DQN algorithm. Although 

it incorporates RL, it easily overestimates the Q value, which leads to ineffective policy updates and unstable 

behaviour [9]. The DDPG algorithm, as presented in [10], offers a model-free, off-policy actor-critic 

approach employing deep function approximators capable of learning policies in high-dimensional, 

continuous action spaces.  

By integrating insights from the success of DDPG, AE-DDPG [11] addresses the challenge of 

sample imbalance. Additionally, the AE-DDPG algorithm introduces episodic memory into deep RL 

techniques for continuous problems, leveraging episodic control (EM) thinking to redesign the experience 

replay of DDPG, thereby facilitating rapid acquisition of high-reward policies. Notably, AE-DDPG is the 

first model to incorporate episodic memory into deep-reinforcement learning (DRL) techniques for 

continuous problems. It also incorporates multiple agents [12] which interact with the environment 

asynchronously in [13], a comprehensive examination of DRL challenges and corresponding solutions is 

presented, particularly focusing on the reward design issue within human-robot collaboration contexts. 

Furthermore, the study explores potential avenues for future research within this domain.  

The multi-dimensional deep Q-network (MDDQN) algorithm, introduced by Chen [14], integrates 

attack graphs from multihost, multistage vulnerability analysis language (MulVAL) with double deep Q-

network (DDQN) to enhance attack path planning. Following this, MulVAL [15] and depth-first search 

(DFS) were utilized to construct an attack matrix, with DQN employed to analyze the matrix and identify the 

most vulnerable attack path for the network. This identified attack path could then undergo testing using 

industry-standard tools such as Metasploit and Wireshark, as outlined in [16]. To elucidate the usage of the 

Metasploit framework tool in a detailed manner, outlining procedures for each testing phase along with the 

requisite commands (syntax) conducted within a Kali Linux environment [17]. Additionally, an innovative 

approach to automated penetration testing employing DRL is presented in a study by [18]. This framework 

utilizes DRL techniques to identify optimal attack paths within simulated network environments, leveraging 

tools such as network mapper (Nmap), MulVAL, and the national vulnerability database (NVD) to analyze 

attack graphs and determine the most effective path based on common vulnerability scoring system (CVSS) 

scores [19]. This paper significantly enhances our understanding of network analysis tools and 

methodologies. Given the capabilities of these algorithms, our research focuses on comparing DQN as a 

representative of model-based learning with DDPG and AE-DDPG for model-free learning in the context of 

automating penetration testing [20]. 

 

 

3. METHOD 

Figure 1 shows the proposed architectural framework which is divided into three distinct 

modules: i) network scanning and information gathering, ii) RL, and iii) pen-testing. A detailed 

examination of each module, including their respective inputs and outputs, is provided below in order to 

impart a comprehensive understanding of their roles within the overall architecture. The framework 

collects user input on the logical target network, including vulnerability information. Next, prospective 

attack trees are identified using the MulVAL attack-graph generator and fed into the RL engine in a 

reduced format. The user can then examine how the attack could be executed on an actual target network 

by using penetration testing tools like Metasploit to leverage the attack paths produced by the RL engine in 

the framework. 
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Figure 1. Architecture diagram of the proposed framework 

 

 

3.1.  Network scanning and information gathering 

Our research employs MulVAL [21] as the network analyzer. MulVAL is a logic-based network 

security analyzer that is accessible as an open-source tool designed to construct an attack graph for a 

specified network architecture. All experiments in our study are conducted within a simulated network 

environment. The input, comprising network information, is expressed in Datalog. MulVAL processes this 

network data, producing outputs that include the identification of vulnerabilities and machine configuration 

details presented in the form of predicates. The vulnerabilities are compared with the common vulnerabilities 

and exploits (CVE) in the NVD, which is the U.S. government's repository of vulnerability management data 

based on National Institute of Standards and Technology (NIST) standards. We are also using the Metasploit 

Exploit Database, which contains a list of vulnerabilities that have been discovered. These vulnerabilities are 

identified and analyzed by MulVAL through the integration of formal vulnerability specifications from bug-

reporting communities, host and network configuration information, and other relevant data encoded as 

Datalog facts. MulVAL's reasoning engine is meant to scale efficiently with network size, enabling efficient 

analysis of networks containing thousands of machines. 

 

3.2.  Reinforcement learning engine 

Following the analysis conducted by MulVAL, the outputs, encompassing identified vulnerabilities 

and machine configuration details in the form of predicates, serve as crucial inputs for our RL model. The RL 

model is tasked with determining the most vulnerable paths within the network topology, employing 

advanced algorithms such as DQN, DDPG and AE-DDPG. These algorithms undergo a comprehensive 

evaluation to discern their effectiveness in prioritizing and navigating potential vulnerabilities within the 

network and enhance the efficiency of automated penetration testing [22]. Figure 2 depicts the outline of the 

RL engine. 

 

 

 
 

Figure 2. Outline of the RL engine 

 

 

3.2.1.  Deep Q-network 

DQN is a sophisticated deep RL model which achieved extraordinary performance in learning 

control policies from high-dimensional sensory input. The training DQN implements a variant of the  

Q-learning algorithm [23], which involves an iterative update of network weights using stochastic gradient 
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descent. DQN, an RL model, poses some difficulties during training due to sparse and delayed rewards, 

correlated data, and non-stationary distributions. To overcome this, DQN adopts a technique called 

experience replay, where the agent's experiences, consisting of tuples of (state, action, reward, and next 

state), are stored in a replay memory. Random uniform sampling of experiences from this memory enables a 

more efficient use of past experiences, thereby smoothing out the training distribution and improving data 

efficiency. Additionally, it stabilizes the learning process by reducing the correlation between consecutive 

samples. Additionally, DQN employs a frame-skipping technique, which reduces the computational demands 

by repeating the agent's chosen action for a certain number of frames. This technique enables the agent to 

process more game frames without significantly increasing the computational cost. Furthermore, during 

training, DQN employs an epsilon-greedy policy to strike a balance between exploration and exploitation. 

 

3.2.2. Deep deterministic policy gradient 

The DDPG algorithm is a model-free algorithm that utilizes the deterministic policy gradient to 

operate in continuous action spaces. The architecture is based on an actor-critic framework with a replay 

buffer and utilizes a target network to stabilize the learning process. DDPG employs four neural networks: 

a Q-network, a deterministic policy network, a target Q-network, and a target policy network. The 

interaction between the Q-network and policy network is very similar to a simple Advantage Actor-Critic. 

However, in DDPG, the actor directly maps states to actions rather than producing a probability 

distribution across a discrete action space. The target networks are time-delayed duplicates of their 

original networks that gradually follow the taught networks. The use of target value networks significantly 

increases learning stability.  

DDPG utilizes a replay buffer to sample experiences and update the neural network parameters. 

Throughout each trajectory roll-out, all experience tuples (state, action, reward, and next_state) are saved and 

maintained in a finite cache called a "replay buffer." Random mini-batches of experience from the replay 

buffer are then sampled while the value and policy networks are updated. The value network is updated in a 

manner similar to Q-learning. The target value network and target policy network, on the other hand, 

generate the next-state Q-values, which are then utilized to minimize the mean-squared loss between the 

updated Q-value and the original Q-value. The policy function seeks to maximize the expected return and 

compute the policy loss, so the derivative of the objective function with respect to the policy parameter is 

used. Exploration in continuous action spaces involves adding noise to both the action and the parameter 

space. The noise is added to the actor policy to allow for exploration independent of the learning procedure, 

and it is created using the Ornstein-Uhlenbeck process to offer temporally correlated exploration. 

 

3.2.3. Asynchronous episodic deep deterministic policy gradient 

The AE-DDPG algorithm is developed for continuous control in computationally complex 

environments. The algorithm comprises an actor-critic duo, where the actor interacts with multiple stochastic 

environments simultaneously to collect data asynchronously. The collected data is stored in memory buffers 

for experience replay, with a focus on balancing data generation and utilization to improve sample efficiency 

and diversity. AE-DDPG distinguishes itself from DDPG by addressing data insufficiency and training 

inefficiency through an asynchronous framework, episodic control, and the injection of new noise in the 

action space, which ultimately leads to improved learning efficiency and performance in complex 

environments. The architecture of AE-DDPG includes memory buffers for experience replay, with separate 

cache buffers for individual interaction threads and two memory buffers for experience replay. This 

algorithm incorporates the concept of episodic control to swiftly acquire advanced knowledge from high-

reward experiences while also increasing the diversity of sampling paths for experience replay. 

In terms of algorithm functionality, asynchronous interaction enables the actor to collect more data 

for policy learning, particularly in computationally complex environments. The memory buffers store 

trajectories for experience replay, utilizing a novel bio-inspired episodic experience replay approach that 

aims to balance data generation and utilization speeds to prevent sample imbalance and enhance sample 

diversity. In addition, a novel type of noise called random walk noise has been developed to enhance 

exploration efficiency and sample diversity in RL. 

 

3.3.  Pentesting 

Subsequently, to validate the identified vulnerable paths prioritized by RL, we utilize established 

penetration testing tools, like Metasploit. Metasploit aids in assessing the real-world exploitability of 

vulnerabilities [24], [25]. This comprehensive validation approach ensures the practicality and reliability of 

the RL-driven results, offering a thorough assessment of potential security weaknesses within the network. 

By integrating these robust penetration testing tools into our validation process, we aim to rigorously evaluate 

the effectiveness and reliability of the RL-driven results, ensuring that the identified vulnerabilities align with 

real-world scenarios and enhancing the overall security posture of the network. 
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4. RESULTS AND DISCUSSION 

The initial phase encompasses the development of the network scanning and information-gathering 

module, which uses MulVAL to generate attack graphs predicated on simulated network conditions. These 

graphs subsequently serve as inputs for our RL engine. 

 

4.1.  Multistage vulnerability analysis language 

The initial phase encompasses the development of the network scanning and information-gathering 

module. The central aim of this phase was the seamless integration of MulVAL into our project framework. 

This integration facilitated the generation of attack graphs predicated on simulated network conditions, which 

subsequently serve as inputs for our RL engine. Prerequisites for the installation of MulVAL include XSB, 

GraphViz, and MariaDB, an open-source-compatible version of MySQL. These components constitute 

essential dependencies for MulVAL's proper functioning. Figure 3 presents the input Datalog code furnished 

to MulVAL for network scanning and information gathering and Figure 4 shows implementation of MulVal. 

 

 

 
 

Figure 3. Datalog code for a 3-host network to be fed to MulVAL 

 

 

 
 

Figure 4. Implementation of MulVal 

 

 

Firstly, we establish the location of the attacker, identifying them as situated within the "internet" 

entity. Additionally, we specify the attack goal of the attacker, indicating their intent to execute code on the 

"workStation" entity. Next, we define rules regarding network access, denoted by the "hack" predicate. These 

rules permit access between various entities within the network, such as the "webServer," "fileServer," and 

"workstation." The configuration information for network entities, including the "fileServer," "webServer," 

and "workStation," is then detailed. This information encompasses network service details, vulnerability 

identifiers, and network file system (NFS) configurations. For instance, the configuration information for the 

"fileServer" entity specifies that it runs the "mountd" service over the remote procedure call (RPC) protocol 

on port 100005, granting root privileges. Furthermore, NFS export information indicates that the "/export" 

directory on the file server is accessible with any permissions by the "workStation." 
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Vulnerability information is also provided, identifying vulnerabilities associated with the 

"fileServer" and "webServer" entities. Properties of these vulnerabilities, such as their exploitability and 

potential impact, are outlined within the code. This code is now furnished as input to MulVAL. By default, 

MulVAL outputs the resulting attack graph in both textual (AttackGraph.txt) and XML (AttackGraph.xml) 

formats, with the intended semantics being self-evident. Furthermore, the invocation of the -v option 

facilitates the generation of a visual representation of the attack graph in PDF format (AttackGraph.pdf) 

through GraphViz. 

Upon specification of the appropriate options, MulVAL extends its output capabilities to include 

attack-graph information in CSV format, comprising VERTICES.CSV and ARCS.CSV files. These CSV 

files are instrumental for subsequent rendering programs to generate diverse views of the attack graph at a 

later stage. We have also generated the attack graph for another network where there are two more web 

servers associated with the "httpd" service, marked as a local exploit with the potential impact of a denial of 

service (DoS) and "webServer3" has a vulnerability with the ID 'VULN-ID-3' associated with the "ftpd" 

service, marked as a remote exploit with the potential impact of unauthorized access respectively. Figure 5 

shows the output of MulVAL and the generated attack graph. 

 

 

 
 

Figure 5. Execution of MulVAL on 3-host input and terminal output 

 

 

4.2.  Reinforcement learning engine 

The attack graphs generated by MulVAL serve as crucial inputs for three RL engine models:  

i) DQN, ii) DDPG, and iii) AE-DEPG. These graphs, encapsulating potential attack vectors and network 

vulnerabilities, guide the model’s exploration process. By analyzing the attack graph, the models can learn 

the relationships between network entities, vulnerabilities, and potential exploits. Using the learned details, 

the model can identify and prioritize the most vulnerable path within the network, ultimately leading to the 

most effective attack strategy for the simulated penetration testing scenario. The most vulnerable path in the 

attack graph is produced as output refer Figures 6 to 8. 

 

4.3.  Performance metrics 

These are the performance metrics used to evaluate and compare the performance of the three 

algorithms: 

‒ Average reward per episode: this metric measures the average reward obtained by the RL algorithm in 

each episode of training. A higher average reward indicates that the algorithm is performing better at 

achieving its objectives. 

‒ Training time (in seconds): this metric measures the time taken for the algorithm to complete training.  

A shorter training time is desirable as it indicates that the algorithm can learn and adapt more quickly to 

the environment. 

‒ Convergence speed (in episodes): convergence speed refers to the number of episodes it takes for the 

algorithm to converge to a stable policy. A lower convergence speed indicates that the algorithm learns 

more quickly and efficiently. 

‒ Sample efficiency: sample efficiency measures how well the algorithm utilizes the available training 

data. A higher sample efficiency indicates that the algorithm can achieve good performance with fewer 

training samples. 

‒ Average path length (APL): in the context of penetration testing, APL refers to the average number of 

steps or actions taken by the algorithm to reach the target (e.g., identifying and prioritizing 

vulnerabilities). A shorter APL indicates that the algorithm is able to find more efficient solutions. 
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Figure 6. Execution and terminal output of DQN algorithm 

 

 

 
 

Figure 7. Execution and terminal output for DDPG algorithm 

 

 

 
 

Figure 8. Execution and terminal output for AE-DDPG algorithm 

 

 

4.3.1. Epsilon delay 

An epsilon delay graph (ε-delay graph) Figure 9 can provide insights into the exploration-

exploitation trade-off during the training process. A log-like decreasing ε-delay graph of DQN and DDPG 

indicates that the RL model might be prioritizing exploitation over exploration too heavily. A straight-line 

downward trend in the ε-delay graph suggests the RL model is prioritizing exploitation over exploration too 

heavily. Overall, the straight-line downward graph suggests that the AE-DDPG model suffers from severe 

over-exploitation, potentially missing better attack paths. While log-like graphs for DQN and DDPG models 

indicate a potential exploration-exploitation imbalance, they might have explored more than AE-DDPG, 

which makes them potentially better candidates for finding vulnerabilities due to some level of exploration. It 

is difficult to definitively say which model is the best performer without considering other factors alongside 

the ε-delay graphs. 
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Figure 9. Exploration vs exploitation curve for DQN, DDPG, and AE-DDPG 

 

 

4.3.2. Average path length 

An APL graph in the context of RL models performing penetration testing provides insights into the 

efficiency of the model in finding vulnerabilities within the attack graph. It is the number of steps the model 

takes per episode, in other words, it is the number of actions of the agent in RL. It does not depend on the 

length of the path that contains vulnerabilities, which we refer to as the 'vulnerable path'. 

A model that consistently demonstrates a lower APL throughout training episodes hints at its 

superior efficiency in navigating the attack graph. Such a model requires fewer steps (actions) on average to 

detect and exploit vulnerabilities, indicating a more direct and effective attack strategy. Conversely, a model 

with a consistently higher APL may be less efficient, as it necessitates more steps (actions) on average to 

reach vulnerabilities. 

The graph Figure 10, with their distinctive peaks and troughs, provide a visual depiction of the path 

length for each training episode. The peaks signify episodes where the model took a longer path to identify a 

vulnerability, while the troughs represent episodes with shorter paths. The dotted line in the graph represents 

the APL. From these graphs, we can deduce that DQN boasts the lowest APL, approximately 9.610, 

indicating its superior efficiency in navigating the attack graph. On the other hand, AE-DDPG exhibits the 

highest APL of 54.864, suggesting it is the least efficient model, followed by DDPG with an APL of 34.735. 

 

4.3.3. Average reward 

The average reward per episode graph in the context of RL models performing penetration testing 

provides insights into the effectiveness of the model in identifying and prioritizing vulnerabilities. A model 

with a consistently higher average reward across training episodes suggests it is more effective at achieving 

the objective of the penetration testing scenario. This means the model is successfully identifying and 

exploiting vulnerabilities that lead to higher rewards. A model with a consistently lower average reward 

might be less effective. 

The graph Figure 11 with total reward on the Y-axis and episode on the X-axis shows the 

cumulative reward achieved by the RL model throughout training. However, it does not directly display the 

average reward per episode. In this experiment, we meticulously calculated the average reward from this 

graph by dividing the X-axis (number of episodes) into equal intervals. For each interval, we estimated the 

average slope of the cumulative reward line, a process that requires careful attention to detail. A steeper slope 

indicates a higher average reward for episodes within that interval. After calculating an estimated average 



                ISSN: 2252-8938 

Int J Artif Intell, Vol. 14, No. 5, October 2025: 4061-4073 

4070 

reward for each interval, we sum it and divide it by the total number of intervals to calculate the overall 

average reward, ensuring the precision and accuracy of our analysis. 

 

 

  
  

 
 

Figure 10. APL per episode for DQN, DDPG, and AE-DDPG 

 

 

  
  

 
 

Figure 11. Average reward per episode for DQN, DDPG, and AE-DDPG 
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Therefore, based on the comprehensive analysis of the above graphs, it is clear that AE-DDPG is the 

most effective at successfully identifying and exploiting vulnerabilities. This is evidenced by its highest 

average reward per episode of 8.909. It is followed by DQN with 0.208, and DDPG, which is the least 

effective with a value of 0.010. These rankings provide a clear and certain understanding of the performance 

of these models in the context of penetration testing. 

 

4.4.  Inference 

We have evaluated the performance of the algorithms using several metrics. The average reward per 

episode reflects how well the algorithm achieves its goals. Training time measures training speed, with 

shorter times being preferable. Convergence speed refers to how quickly the algorithm learns a stable policy, 

with lower numbers indicating faster learning. Sample efficiency measures how well the algorithm uses 

training data, and APL reflects the number of steps the algorithm takes to reach a solution. Table 1, which 

summarizes the experimental results from which we can infer that AE-DDPG demonstrates superior 

performance in comparison to DDPG and DQN. 

Based on these results, it is evident that AE-DDPG demonstrates the best performance in terms of 

average reward per episode, training time and convergence speed. We can also infer that the path lengths of 

the model-free algorithms are significantly higher than the model-based algorithm. Due to the fact that more 

than one neural network is used in the model-free algorithms, the complexity of steps taken, and path length 

is increased. 

 

 

Table 1. Experimental results of the algorithms in terms of the performance metrics 
Performance metric AE-DDPG DDPG DQN 

Average reward per episode 8.909 0.010 0.208 

Training time (in seconds) 0.08 8.92 3.80 

Convergence speed (in episodes) 22 399 499 

Sample efficiency 4.545 5.820 3.257 
APL 54.864 34.735 9.610 

 

 

5. CONCLUSION 

In this paper, we proposed an automated penetration testing framework that leverages RL to identify 

and prioritize vulnerabilities within a network. The framework was evaluated using three RL algorithms-

DQN, DDPG and AE-DDPG-to compare their effectiveness in automated vulnerability assessment. Our 

experimental results indicate that while model-based RL algorithm DQN demonstrated shorter APL 

compared to model-free algorithms DDPG and AE-DDPG, the latter two algorithms showed competitive 

performance in other metrics such as average reward per episode and faster convergence speed. Overall, our 

framework shows promise in automating and enhancing the penetration testing process, leading to more 

efficient and effective security assessments. Automated penetration testing with RL has the potential to 

minimize the time and resources necessary for security assessments, helping firms uncover and address 

vulnerabilities faster, strengthening the overall security posture, and enhancing the resilience of systems 

against emerging cyber threats. Further research can delve into optimizing the existing RL algorithms used 

within the framework. This could involve hyperparameter tuning, exploring more advanced RL architectures, 

and potentially incorporating multi-objective reward functions to incentivize not only shorter paths but also 

the discovery of more critical vulnerabilities. Scaling the framework to handle larger and more intricate 

network environments is crucial for real-world applications. 
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