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 This study presents a novel sensor data fusion framework designed to 

improve accuracy and energy efficiency in internet of things (IoT)-driven 

wireless sensor networks (WSNs). The proposed approach combines 

machine learning techniques with the Kalman filter, addressing the 

limitations of traditional methods, such as high computational overhead and 

limited precision. By utilizing machine learning algorithms for pattern 

recognition and the Kalman filter for precise state estimation, the framework 
optimizes data processing while minimizing energy consumption. 

MATLAB-based simulations validate the model’s effectiveness, 

demonstrating a significant improvement in key performance metrics, 

including F1-score, recall, and precision, with an overall accuracy of 
98.36%. The results highlight the framework’s ability to enhance fault 

tolerance, accelerate convergence rates, extend network lifespan, and 

optimize energy utilization, making it highly suitable for real-time data 

fusion applications in complex sensor environments. Furthermore, the 
proposed hybrid model is scalable and adaptable, allowing it to be 

implemented across various fields, including environmental surveillance, 

industrial automation, and healthcare monitoring. With integration of 

intelligent data processing techniques, this research contributes to the 
development of sustainable and efficient IoT-based monitoring systems 

capable of handling dynamic and resource-constrained environments. 
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1. INTRODUCTION 

Sensor networks are integral to numerous modern applications, including environmental monitoring, 

healthcare, smart cities, and industrial automation [1]. These networks consist of multiple sensor nodes that 

work together to collect, process, and transmit data, offering a detailed understanding of the monitored 

environment. However, the efficiency of these networks largely depends on effective data management and 

utilization [2]. Sensor data fusion plays a critical role in this process by integrating information from multiple 

sensors, thereby improving data accuracy, reliability, and overall system performance. By addressing the 

shortcomings of individual sensors such as interference, limited coverage, and environmental disruptions, 

data fusion enhances the quality and interpretability of collected data [3], [4]. Additionally, it minimizes 

redundancy, streamlines data transmission, and boosts the overall efficiency of sensor networks. 

With wireless sensor networks (WSNs) getting increasingly complex and a need to become more 

accurate in real-time operations, data fusion methods become an increasingly necessary advanced 
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component. Although conventional methods such as Kalman filter present solid theoretical basis in regards to 

state estimation [5], they are generally ineffective in application to the nonlinear data found in high 

dimensions that is characteristic of contemporary internet of things (IoT)-based WSNs. Machine learning, 

specifically deep neural networks (DNNs), has shown to be successful when it comes to extracting features 

and coping with complex sensor data [6], [7]. In addition, reinforcement learning (RL) will improve 

adaptability based on the optimum data aggregation, being adaptable to environmental changes, and increase 

the energy efficiency due to dynamic clustering [8], [9]. This is particularly relevant in energy limited 

networks where saving of power is essential. It has been determined that RL-based strategies promise to 

reduce energy consumption, increase network lifetime, and preserve monitoring capabilities [10]. Application 

of DNNs and RL to work together allows smarter node selection and data transference decisions leading to 

an enhanced fault tolerance and accuracy of tracking. 

This study introduces a hybrid sensor data fusion model that integrates deep learning and RL with 

the Kalman filter to enhance both accuracy and energy efficiency in IoT-based WSNs. The proposed 

methodology leverages DNNs for feature extraction, RL for dynamic clustering and decision-making, and the 

Kalman filter for precise state estimation and noise reduction. MATLAB-based simulations validate the 

model’s performance, demonstrating superior results in accuracy, network longevity, and fault resilience 

compared to conventional methods. The approach is designed to be scalable and adaptable, making it well-

suited for a wide range of IoT applications, including environmental monitoring, industrial automation, and 

healthcare systems. 

 

 

2. BACKGROUND 

There are some challenges related to data fusion, especially under a circumstance of incomplete, 

unreliable, or inaccurate documented data. Combining information found in the different resources and 

deriving valuable data points continue to be a subtle job to the system operators and scientists. To solve those 

problems, probabilistic methods have been suggested, Bayesian networks being a prominent example that 

endeschuses probability density functions (PDFs) in order to capture uncertainty [11], [12]. Although they 

work well against ambiguity, these techniques fail to support missing data and correlations across  

datasets [13]. In an alternative approach, fuzzy logic has also been employed to cope with uncertainty and 

user-defined flexibility in application [14]. Uncertainty-aware fusion present in the fuzzy-based architectures 

has also been used to minimize risks of failures in interconnected systems [15], [16]. But they are only 

applicable to datasets that present ambiguity due to this limitation, thereby making them less useful in fusion 

scenarios of a broader nature [17]. 

Kang and Long [18] proposed an evidence-based method for dataset classification that does not rely 

on probabilistic models, making it suitable for handling ambiguous or uncertain data. However, this approach 

falls short when merging fundamentally different datasets [19]. To address multi-modal data challenges, 

researchers have explored rough set theory, which does not require additional background information like 

database structures [20]. While effective in certain cases, its performance declines when fine-grained data 

approximation is needed, and its applicability remains limited to a small range of known failure types. 

Another technique, covariance overlap, was introduced in [21] to enhance fusion accuracy by estimating data 

correlation. Though this method improves performance, it is less suitable for real-time applications due to its 

computational demands. As networks become more complex, these fusion techniques face greater challenges 

from data inconsistencies, noise, and uncertainty [22]. Network administrators often struggle with  

decision-making due to incomplete knowledge about detected objects or their statistical properties [23]. Due 

to these challenges, there is growing interest in soft computing techniques, which are increasingly effective in 

managing uncertainty. These methods rely on training data for classification and prediction, offering a more 

adaptable framework for handling imprecise sensor inputs [24], [25]. 

 

 

3. PROPOSED METHODOLOGY 

To overcome the obstacles presented by contemporary sensor networks, the proposed approach to 

energy-efficient sensor data fusion makes use of the Kalman filter in conjunction with machine learning 

methods as shown in Figure 1. The framework's many essential parts coordinate their efforts to handle data 

in an accurate, dependable, and energy-efficient manner. At the outset, a network of sensors 

(𝑆𝑒𝑛𝑠𝑜𝑟1, 𝑆𝑒𝑛𝑠𝑜𝑟2, 𝑆𝑒𝑛𝑠𝑜𝑟3, . . . , 𝑆𝑒𝑛𝑠𝑜𝑟 𝑛) gathers data about its immediate surroundings. All these 

sensors send their readings to a single large data center, which stores all the raw sensor. After this, a node 

known as the sink receives the data from the sensor nodes via a WSN nodes. 

The next phase involves applying an advanced machine learning algorithm to perform anomaly 

detection, initial data fusion, and pattern recognition across sensor inputs. Unlike traditional methods, this 
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algorithm effectively handles complex, non-linear relationships in the data. A centralized data fusion module 

then integrates outputs from multiple sensors, enhancing consistency and reliability by generating a unified 

dataset. To further refine the results, a Kalman filter is applied, enabling noise reduction, data smoothing, and 

optimal estimation of system states, particularly for time-series data in real-time settings. The final stage 

includes implementing decision rules and predictive fault detection, allowing the system to anticipate 

potential issues and take pre-emptive actions, thereby minimizing downtime and ensuring the smooth 

operation of the sensor network. 

 

 

 
 

Figure 1. Proposed method block diagram 

 

 

The core innovation of this approach lies in its hybrid integration of machine learning and the 

Kalman filter as illustrated in Figure 2, combining the strengths of pattern recognition and optimal state 

estimation. This fusion enables more efficient processing of complex data than conventional methods alone. 

The framework is also designed for energy efficiency, extending the sensor network’s lifespan by optimizing 

data processing and transmission to reduce energy use at sensor nodes. A built-in fault prediction mechanism 

supports real-time monitoring and proactive maintenance, helping to minimize downtime. The system's 

scalable and adaptable architecture allows easy integration of additional sensors and data types, making it a 

versatile solution for various sensor network applications. 

 

 

 
 

Figure 2. Kalman filter algorithm 

 

 

3.1.  Advanced machine learning algorithm 

This proposed advanced machine learning technique utilizes a blend of RL and DNNs to improve 

the effectiveness and efficiency of fusing sensor data and tracking targets. The algorithm specifically aims to 

adapt flexibly to changes in the sensor network environment, optimize energy consumption efficiently, and 

ensure precise target localization and prediction. Steps of the proposed algorithm is as follows: 
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− Step 1: initialization, initialize the sensor nodes (FS) and the base station at coordinates (100, 100). Set 

initial parameters including sensing range, communication range, initial energy, and threshold limits. 

− Step 2: target detection and data preprocessing, each sensor node continuously monitors its coverage 

area for target detection. Upon detecting a target, the sensor node collects relevant data such as signal 

strength, distance, and other sensory information. Preprocess the collected data to filter out noise and 

normalize values for further processing. 

− Step 3: feature extraction using deep learning, high-dimensional feature vector representing the state of 

the environment and target characteristics. 

− Step 4: RL-based dynamic clustering, define the state S_t as the feature vector obtained from the DNN 

and the energy levels of the sensor nodes. Define actions as possible clustering configurations and 

sensor node activations. Define a reward function that balances energy consumption and accuracy of 

target localization. Use a deep Q-learning to learn the optimal policy π(S_t) that maximizes the 

cumulative reward. 

− Step 5: dynamic cluster formation, based on the learned policy, dynamically select cluster heads (CH) 

that have high residual energy and are in proximity to the detected target. Form clusters around the 

selected CH with sensor nodes that are within the communication range. 

− Step 6: target position prediction, use the Kalman filter to predict the target’s next position based on the 

current state and the observations from the CH. 

− Step 7: decision making and fault tolerance, calculate the error between the predicted and actual target 

positions. Compare the error with the pre-set threshold limit δ. 

− Step 8: continuous learning and adaptation, monitor the energy levels of sensor nodes and adapt the 

clustering strategy to extend the network lifetime. 

− Step 9: repeat process, repeat steps 2 to 8 every fixed interval (0.7 seconds) to ensure continuous and 

accurate tracking of the target within the network coverage area. 

The proposed machine learning approach combines several advanced techniques to improve sensor 

data fusion. Deep learning is used for effective feature extraction, while RL enables dynamic clustering and 

adaptive decision-making in changing environments. A Kalman filter enhances tracking accuracy by 

predicting target positions. Together, these methods boost both the accuracy and reliability of data fusion, 

while also reducing energy consumption, making the system highly suitable for IoT sensor networks. This 

integrated framework provides a robust and adaptable solution for enhancing network performance. 

 

3.2. Simulation parameters 

The availability and quality of sensor data remain major challenges in IoT-based sensor networks, 

affecting tasks such as data mining, analysis, and management. To support effective decision-making, these 

processes increasingly rely on machine learning and deep learning techniques. Running machine learning 

models on embedded IoT sensor CPUs requires specialized software and well-structured data frameworks to 

handle real-time data characteristics. To address the diverse nature of sensor data, researchers have proposed 

a hybrid model combining machine learning algorithms with a Kalman filter, aimed at improving data 

management and enhancing network efficiency. A summary of the selected simulation parameters is 

provided in Table 1. 

 

 

Table 1. Simulation parameters 
Sl. No. Parameters Values 

1 Size of the area 500×500 m2 

2 Sensing nodes {100, 200, 300, 400, 500, 600} 

3 Threshold limit δ 150 m 

4 Base station coordinates 100, 100 

5 Coverage of sensing 120 m 

6 Range of communications 200 m 

7 Beginning energy 2.0 J 

8 Speed of the target 0–100 m/s 

 

 

The selected parameters are crucial for optimizing IoT sensor network performance. Spatial 

coverage depends on deployment area size, larger areas require more sensors and advanced fusion techniques 

to maintain accuracy and robustness. Sensor node count influences data density and resolution; while more 

nodes enhance coverage, they also increase fusion complexity, requiring a balance between performance and 

energy use. The threshold limit affects data reliability over distance, playing a key role in noise filtering and 

fusion precision. Base station placement significantly impacts communication efficiency, strategic 
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positioning minimizes delays and reduces energy consumption. Each sensor’s sensing range determines its 

ability to detect relevant parameters, which is essential for avoiding blind spots and achieving full area 

coverage. The communication range affects data transmission efficiency; although extended range improves 

connectivity, it can raise power demands, so optimization is needed for energy-efficient communication. The 

network’s operational lifespan hinges on the initial energy of sensor nodes, as sensing, processing, and 

transmission are energy-intensive tasks. Finally, target speed within the monitored area affects data 

acquisition and system responsiveness faster targets require real-time processing and fusion. The proposed 

hybrid model, combining a Kalman filter with machine learning algorithms, depends on these parameters for 

optimal performance, underscoring the importance of tailoring the system to specific deployment scenarios. 

 

 

4. RESULTS AND ANALYSIS 

This section presents the results of mathematical simulations conducted using MATLAB to assess 

the performance of the proposed machine learning technique. The evaluation incorporated both a statistical 

base station model and a cellular network setup. Data fusion in IoT-based WSNs remains challenging due to 

computational complexity and reduced accuracy in earlier models. To address these limitations, this study 

introduces an improved framework that integrates machine learning algorithms with the Kalman filter, 

offering a more precise and efficient solution. To evaluate the proposed sensor data fusion model, ten test 

scenarios were designed to assess performance under diverse conditions. Scenarios 1 and 2 examined the 

impact of varying sensor densities in static environments, while scenarios 3 to 5 focused on tracking targets 

with different movement speeds. Scenario 6 tested adaptability to speed variation, scenario 7 assessed 

robustness in noisy conditions, and scenario 8 evaluated energy efficiency with low-power nodes. Scenario 9 

analyzed performance under non-uniform sensor distributions, and scenario 10 tested the system’s ability to 

track multiple targets simultaneously. Localization accuracy was measured using root mean square error 

(RMSE) and mean absolute error (MAE), as shown in Figure 3. Results showed RMSE values ranging from 

1.1 to 1.6 meters and MAE values between 0.8 and 1.4 meters, indicating strong and consistent tracking 

performance across scenarios. These low error margins demonstrate the model’s reliability and precision in 

various conditions. The integration of machine learning with the Kalman filter significantly improves over 

previous methods by reducing computational complexity and enhancing accuracy. 

 

 

 
 

Figure 3. Localization accuracy 

 

 

The examination of energy consumption over 10 distinct test scenarios, as depicted in Figure 4, 

provides valuable insights into the effectiveness and efficiency of the proposed sensor data fusion technique. 

The "Total energy consumed" measure displays a spectrum ranging from 150 to 300 joules, signifying 

different degrees of energy consumption based on the intricacy of the scenario and the density of nodes. The 

"average energy per node" varies between 1.5 and 3.0 joules, indicating the amount of energy used by each 

individual node. Scenarios that involve a greater number of nodes and faster motions of the target  

(scenario 10) generally use more energy, indicating higher computational and communication requirements. 
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In contrast, scenarios that have a smaller number of nodes or stationary targets (scenario 1) exhibit reduced 

energy consumption, highlighting the model's effectiveness in less complex situations. 

 

 

 
 

Figure 4. Energy consumption analysis 

 

 

Looking at how long the network lasts in 10 different test situations helps us understand how 

durable and reliable the suggested sensor data fusion architecture is. The "Time to first node failure" varies 

between 100 and 150 hours, whereas the "Total network lifetime" ranges from 200 to 300 hours. Scenarios 

characterized by larger node densities and more dynamic target motions typically have shorter network 

lifetimes due to increased energy consumption and greater strain on the sensor nodes. In contrast, situations 

where there are fewer nodes or stationary targets have extended lifespans, suggesting a higher level of energy 

efficiency. This research affirms that the proposed model successfully handles energy consumption. 

However, by refining the configuration and deployment tactics, we can further improve the network's 

operating lifespan, ensuring consistent performance and reliability in different conditions. Figure 5 gives the 

network lifetime simulation analysis. 

 

 

 
 

Figure 5. Network lifetime analysis simulation 

 

 

By looking into fault tolerance across 10 different test scenarios, the proposed sensor data fusion 

method is shown to be strong and reliable, as seen in Figure 6. The "Number of successful recoveries" varies 

between 8 and 18, which demonstrates the model's capacity to efficiently manage and overcome problems. 

The "Mean time to recovery" ranges from 4.8 to 7.5 seconds, indicating the model's effectiveness in restoring 

functionality following a fault. Scenarios that involve more nodes and targets that move unpredictably tend to 
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result in more effective recoveries, but also longer recovery times. This is because these scenarios are more 

complex and require a greater amount of effort to handle faults. In summary, the research verifies that the 

suggested model maintains strong resilience to faults, guaranteeing uninterrupted and dependable 

performance even in difficult circumstances. 

 

 

 
 

Figure 6. Fault tolerance analysis 

 

 

An investigation of the convergence time seen in Figure 7 in 10 different test scenarios offers 

valuable insights into the effectiveness and efficiency of the proposed approach for fusing sensor data. The 

"Number of iterations to convergence" range is 45 to 80, while the "Total training time" range is 110 to  

220 seconds. Scenarios that are more complicated, like scenario 10, have longer convergence periods, which 

suggests that the model requires more work to be stable under more difficult conditions. In contrast, less 

complex situations, such as scenario 3, exhibit faster convergence, indicating the model's effectiveness in less 

challenging settings. Comprehending the time, it takes for convergence is essential for assessing the model's 

feasibility in real-world scenarios. Quicker convergence times indicate faster deployment and adjustment, 

which are crucial for dynamic and time-sensitive environments. Furthermore, the correlation between the 

number of iterations and training time emphasizes the model's computational efficiency, guaranteeing its 

suitability for IoT networks that are both large-scale and resource constrained. This analysis confirms the 

model's ability to adjust and maintain stability effectively in different situations, ensuring consistent 

performance in various operational conditions. 

 

 

 
 

Figure 7. Convergence time analysis 
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The comparison between the model cited [26] and the suggested model demonstrates substantial 

enhancements in performance measures for the latter as shown in Figure 8. The suggested model 

demonstrates a notable improvement in accuracy, with a rate of 98.36%, compared to the 88.99% accuracy 

found in the model [26]. Comparatively, the suggested model achieves an F1-score of 96.36% and a recall of 

97.78%, while the model [26] achieves an F1-score of 89.88% and a recall of 91.22%. The precision is 

significantly higher, at 98.22% compared to 90.45%. The results show that the suggested model not only 

improves the overall accuracy but also makes the balance between precision and recall better. This makes 

sensor data fusion activities more reliable and effective in IoT-based WSN context. 

 

 

 
 

Figure 8. Comparative analysis 

 

 

5. CONCLUSION 

This study introduces an advanced sensor data fusion model that integrates machine learning 

techniques with the Kalman filter to enhance accuracy and energy efficiency in IoT-enabled WSNs. The 

proposed framework combines deep learning for feature extraction, RL for adaptive clustering, and the 

Kalman filter for precise state estimation, addressing key limitations of traditional methods, such as high 

computational costs and reduced accuracy. MATLAB-based simulations confirm significant improvements 

in performance metrics, achieving an accuracy of 98.36%, along with enhanced F1-score, recall, and 

precision. Additionally, the model improves network lifespan, strengthens fault tolerance, and optimizes 

energy consumption, making it highly effective for real-time IoT applications. The findings highlight the 

framework’s potential for deployment in critical domains, including environmental monitoring, industrial 

automation, and smart healthcare. Looking ahead, future research can explore its scalability for larger 

networks, its integration with emerging deep learning techniques, and its applicability across diverse  

IoT-based systems. By advancing the development of intelligent, adaptable, and energy-efficient sensor 

networks, this work paves the way for more reliable and sustainable monitoring solutions, ensuring enhanced 

efficiency and accuracy in IoT-driven environments. 
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