TAES International Journal of Artificial Intelligence (IJ-AI)
Vol. 14, No. 4, August 2025, pp. 2826~2838
ISSN: 2252-8938, DOI: 10.11591/ijai.v14.i4.pp2826-2838 O 2826

Leveraging machine learning for column generation in the
dial-a-ride problem with driver preferences

Sana Ouasaid, Mohammed Saddoune

Machine Intelligence Laboratory, Department of Computer Science, Faculty of Sciences and Technologies, University of Hassan II

Casablanca, Casablanca, Morocco

Article Info

ABSTRACT

Article history:
Received Jun 18, 2024

The dial-a-ride problem (DARP) is a significant challenge in door-to-door trans-
portation, requiring the development of feasible schedules for transportation re-

quests while respecting various constraints. This paper addresses a variant of
DARP with time windows and drivers’ preferences (DARPDP). We introduce
a solution methodology integrating machine learning (ML) into a column gen-
eration (CG) algorithm framework. The problem is reformulated into a master
problem and a pricing subproblem. Initially, a clustering-based approach gener-
ates the initial columns, followed by a customized ML-based heuristic to solve
each pricing subproblem. Experimental results demonstrate the efficiency of our
approach: it reduces the number of the new generated columns by up to 25%,
accelerating the convergence of the CG algorithm. Furthermore, it achieves a
solution cost gap of only 1.08% compared to the best-known solution for large
instances, while significantly reducing computation time.
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1. INTRODUCTION

The dial-a-ride problem (DARP) is a well-known and thoroughly explored area of study that focuses
on designing efficient routing schedules for a fleet of vehicles to fulfill transportation requests, each involving
a pickup and delivery point [1]. Optimizing DARP requires balancing cost-effectiveness with high service
quality. It considers factors such as customer ride times and deviations from desired departure or arrival
times. This challenge becomes even more complex when incorporating driver preferences, as in the DARP
with time windows and drivers’ preferences (DARPDP) [2], [3]. In DARPDP, drivers aim to maximize served
requests while also considering preferred destinations and arrival times, adding another layer of complexity
to the optimization process. Existing approaches for DARPDP, such as those based on iterated local search
metaheuristics, have shown promise but struggle with large-scale instances [3[]. This scalability issue motivates
the need for more efficient solution methodologies, particularly those well-suited to large-scale problems. One
such method is column generation (CG), an iterative optimization technique that starts with a restricted set of
columns representing a feasible solution. The master problem is solved using this initial subset, producing a
current solution and dual variable values (shadow prices). These dual variables guide the pricing subproblem,
which identifies new columns with negative reduced costs. If such columns are found, they are added to the
master problem, and the process is repeated until no further improvement is possible.
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CG has proven effective for addressing DARP and similar transportation challenges. Garaix et al. [4]
optimized passenger occupancy in low-demand scenarios through efficient continuous relaxation of a set-
partitioning model. Hybrid approaches further enhance CG, such as Parragh and Schmid [3], who com-
bined it with variable and large neighborhood search to improve solutions. Rahmani et al. [6] used dynamic
programming within a branch-and-price framework to handle ride-time constraints in the pricing problem.
Beyond DARP, CG has been applied to other transportation contexts, including bus scheduling [7], ride-sharing
[8]], and selective DARP with Benders decomposition [9]. While CG is effective, integrating machine learning
(ML) into DARP solutions offers new possibilities. For example, Markov decision processes were used to
optimize dynamic DARP, improving customer insertion evaluation [10]. Random forests (RF) were utilized for
operator selection in dynamic E-ADARP with a two-phase metaheuristic [11]. Thompson sampling effectively
modeled dual values of requests, yielding faster solutions for large DARP instances [[12]. An adaptive logit
model significantly sped up traditional parallel insertion heuristics for generating feasible solutions [13].

Building on these efforts, integrating ML with CG enhances efficiency by guiding key decisions like
pricing and column selection [14]]. For example, deep learning has been used to predict flight connection prob-
abilities [15] and promising aircrew pairings [16], while support vector machines (SVM) efficiently generated
high-quality columns for graph coloring [[17]. This integration of ML into CG opens promising avenues for
improving large-scale DARP solutions. Recent work highlights its potential, particularly for intelligent column
selection. Morabit ef al. 18] used a graph neural network for column selection in vehicle and crew scheduling
and vehicle routing, reducing computation time by up to 30%. They later extended this to arc selection, further
refining the process [19]]. Chi er al. [20] proposed a Q-learning-based single-column selection policy with
a graph neural network, outperforming greedy heuristics. Gerbaux et al. [21] developed a CG heuristic for
multi-depot electric vehicle scheduling using graph neural networks and transfer learning for larger instances.

Addressing the DARP using ML methods is a relatively recent area of research and remains underex-
plored. While significant efforts have focused on integrating ML into CG algorithms, particularly for problems
like crew scheduling and vehicle routing, the application of such techniques to the DARP has been limited.
Existing studies in this domain primarily enhance the pricing subproblem by predicting promising variables,
such as routes or crew assignments, to improve optimization. However, for the DARPDP—a variant introduced
in prior work and initially tackled using a metaheuristic—the main challenge extends beyond the pricing sub-
problem to include identifying the most relevant requests to be served. This aspect is critical and requires
targeted strategies. Our approach builds upon this foundation by integrating ML into the request selection
process. This guides the CG algorithm, offering a novel perspective for addressing the DARPDP.

This paper addresses the scalability gap in existing DARPDP solutions by introducing a novel
approach that combines ML and CG. This integration offers a significant advancement over existing methods
by leveraging ML’s predictive capabilities to enhance the efficiency of CG. Our approach reformulates the
DARPDP into a master problem and a pricing subproblem within the CG framework. The master problem
selects optimal routes (columns), while the pricing subproblem generates promising new routes. We enhance
the CG process with two key innovations: a clustering-based strategy for initial CG to effectively structure
the search space, and a customized ML-based heuristic for solving the pricing subproblem. This ML heuristic
learns from past instances and adapts to the evolving solution, guiding the generation of high-quality columns
and accelerating convergence. This targeted approach allows us to tackle large-scale DARPDP instances more
efficiently than existing methods, providing valuable insights into the interplay between ML and optimization
algorithms for complex routing problems.

The remainder of this paper is organized as follows: section 2 details our proposed methodology,
including the integration of ML into the request selection process for CG. In section 3, we present the
experimental results and evaluate the performance of our approach. Finally, section 4 concludes the paper
and discusses potential future research directions.

2. METHOD

Although traditional CG works well for solving complex problems, early attempts to apply it revealed
limitations in exploring the entire range of potential solutions. Frequently, the algorithm became stuck in local
minima, preventing the sub-problem from generating new columns. Our proposed framework improves the
traditional CG process by integrating a learning mechanism. This mechanism improves both the quality of
generated columns and the algorithm’s convergence speed.
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As outlined in Algorithm [I] the proposed ML-CG algorithm starts by training a binary classification
model on optimally solved problem instances (line 1). To solve a new instance, it first extracts problem-
specific features (line 2). Then, it generates an initial set of columns using a two-phase heuristic: clustering
and the “randomized nearest heuristic” (RNI) (line 3). These columns are used as the initial variables for
solving the restricted master problem (RMP). The main part of the algorithm is an iterative loop (lines 4 to 11)
that continues until the stopping condition is met. In each iteration, the RMP is solved using the columns in
the pool up to that point (line 5). This solution provides the values for the dual variables of the constraints.
Then, statistical features are computed based on the solutions found up to the current iteration (line 7), and
these features are combined with the original problem-specific features and the dual information to create a
comprehensive set of features (line 8). The output of the model guides a diversification heuristic to generate
new columns with negative reduced costs, thus further reducing the objective function (line 9). These new
columns are added to the pool of variables for the RMP. Once the algorithm finishes iterating, it returns the
final solution by solving the RMP on the set of all columns generated during the execution of the algorithm
(line 12).

Algorithm 1 Column generation algorithm (ML-CG)

Require: P: Problem Instance, 7: Maximum Time Limit
Ensure: s: Solution
1: M < TrainBinaryClassificationModel()
f1 + ExtractProbFeatures(P)
C < ClusteringBasedRNH()
while cpu < T do
s < SolveMP(C)
D «+ SolveRLP(s)
fa < ExtractStatsFeatures(s)
features < Combine(fy, f2, D)
N <+ GeneratNewColumns(P, features, M)
C+CUN
: end while
: return s

R A A T o

S —

The ML-CG algorithm is built upon three fundamental components that work together to iteratively
improve the solution. First, it begins with the construction of an initial pool of columns that serve as a starting
point for the optimization. Then, through the formulation of the RMP and its subproblems, the algorithm
repeatedly generates new columns with negative reduced costs to enhance the RMP and guide the solution
process.

2.1. Generation of the initial set of columns

To generate initial columns, we propose a two-stage heuristic. In the first stage, requests are separated
into clusters, and each cluster is assigned to a vehicle. We use three clustering approaches to diversify the initial
columns: K-means, K-medoids, and random clustering. Then, for each cluster, a route is constructed using the
randomized nearest insertion heuristic (RNI) [22]]. The method is further detailed in Algorithm 2}

Algorithm [2] outlines the process of generating initial columns based on a given problem instance and
clustering methods. For each method, requests are clustered, and for each cluster, a route is built using the
RNI heuristic. Starting with a route from the vehicle’s origin to its destination, at each iteration, RNI ranks
the requests in increasing order of d, which is defined as the sum of four distances: the distances between
their respective pickup points, the delivery points, and the cross-distances between the delivery point of the
first request and the pickup point of the second request, and vice versa. RNI inserts the /th element in the
ordered set (¢ represents the randomized factor in the heuristic) into the route, and the remaining requests are
sequentially inserted at the best feasible position, which minimizes the increase in the route’s cost. The final
route is converted into a column and added to the ColumnsPool.
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Algorithm 2 Clustering based RNH

Require: P: Problem instance, CM: Clustering methods
Ensure: 7: Initial columns pool
1: ColumnsPool < ()
2: for M in CM do
3: Cluster requests (P.requests) into K groups, each associated with a vehicle in P.vehicles

4: for kin{1,..., K} do

5 requests < Cy.requests

6: Rank the requests in CY; in increasing order of d

7: Select the ¢th request as the seed request (¢ is a randomized_factor()) and insert it into routey,
8: Delete the seed request from requests

9: for request in requests do
10: Insert request into route;, using the least cost insertion method
11: end for
12: ColumnsPool < ColumnsPool U {Convert routey, to column}
13: end for
14: end for

2.2. Restricted master problem and pricing subproblem

To implement CG, the original mixed-integer programming (MIP) model outlined in [3]] needs to be
reformulated as a RMP. This RMP considers a subset of columns for the solution. Subsequently, one or more
subproblems are solved using the current dual solution of the RMP to identify new, advantageous columns to
add to the RMP to enhance the objective value.

Let © be the set of all possible routes. A feasible route is a Hamiltonian path that starts at the driver’s
origin node, ends at the driver’s destination node, and visits only a subset of nodes corresponding to the requests.
Define 2, as the subset of {2 containing routes assignable to a specific vehicle k € K. Use the variable y,, to
indicate the selection of a potential route ry, setting y,, to 1 when selecting r, and to 0 otherwise. Represent
the cost of a generated route 7y, as c,, . Additionally, set the constant a; ., to 1 if route ry, serves request ¢. Using
the LP relaxation of the Dantzig-Wolfe reformulation, we can describe the DARPDP with the following model.

Min Y > ey (1)

kEK 1, €Qy

Subject to the constraints:

Z Z air Yk <1 Yie P (m <0) 2)
keK rp€Q

Y oyk<l VkEK (1 <0) (3)
T EQ

33D ainym e (v20) )

i€P kEK 1, €,

In this (master problem), the objective minimizes the total routing cost of the vehicle routes used; the
first constraint ensures that each request is covered by at most one vehicle route, and the second constraint
ensures that at most one route is selected per vehicle. Since the rejection of a request is allowed, the third
constraint restricts the number of rejected requests. The dual variables associated with each constraint are
specified between parentheses next to the constraint in the model. Let 7; be the nonnegative dual variable
associated with the visit of request r (constraints 2), and let 5 be the nonpositive dual variable associated with
the fleet size constraint (constraint 3), and let ~y the one restricts the number of rejected requests. We derive
the RMP by replacing €, in the master problem with a subset Q, for which the problem is primal feasible.
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The subproblem, corresponding to a column in the RMP, determines the route, schedule, and passenger
assignments to a single vehicle. It retains the same variables as the original problem formulation [3]], excluding
the k index, as it now pertains to a specific vehicle. The objective function minimizes the reduced cost of the
route, considering the route cost and dual prices from the RMP:

min {Crk - Zai,rkﬂ'i — HE — WZ(MM <0:rp € Qk} )

i€P ieP

The cost of a route, c,,, aligns with the objective function of the original formulation but is specific to the
individual route k. The subproblem inherits the constraints from the original formulation. These ensure that
the generated route meets all feasibility requirements, including vehicle capacity, time windows, and passenger
service guarantees.

2.3. Generate new columns

In the problem addressed, rejecting a small portion of the requests is allowed if it benefits the overall
objective value. This means that the optimal solution does not necessarily serve all requests, which makes
it challenging to identify the most profitable combination of requests to serve. It is clear that diversifying the
search in the CG algorithm is necessary, but this should be done intelligently to avoid slowing down the process.
To address this, we train a model on problem-specific features, historical solutions, dual values, and statistical
measures to predict request profitability. Using the predicted probabilities, we rank requests from most to
least profitable, which will guide a diversification heuristic called the learning-based diversification heuristic
(LBDH) to solve each subproblem. In the following subsections, we first discuss the key aspects of training
the binary classification model, including reformulating the request selection problem as a binary classification
task, selecting and extracting relevant features, choosing suitable classification algorithms, optimizing hyperpa-
rameters, and evaluating the model’s performance using specific metrics. Next, we describe the diversification
process, where the ranked list of requests intelligently guides the diversification heuristic to explore the most
promising combinations of requests.

2.3.1. Training a classification model for request profitability

This section focuses on training a binary classification model to predict the profitability of requests,
a crucial step within our CG algorithm. We approach this as a standard classification problem. Each training
example is represented as a tuple (f,. € R™, ¢, € 0,1). Here, f, denotes the feature vector, encompassing n
distinct characteristics of the request. The variable ¢, acts as the binary class label, taking on a value of 1 if
the request is part of the optimal solution and 0 otherwise. By learning from these examples, the model aims
to accurately classify new requests, guiding the CG process effectively.

a. Collecting data

Initially, we aimed to construct a training set using small problem instances solved to optimality and
then apply this knowledge to tackle larger ones. However, the number of examples proved insufficient, and the
efficiency of ML algorithms relies on a large dataset. To address this, we extended the dataset by generating
additional small instances in the same manner as in [3] and solving them optimally using a commercial solver.
Ultimately, we constructed 1000 examples in total.

Given the significant imbalance in our dataset, where the majority class ('1’) covers almost 80% of
the sample, undersampling techniques are applied to address this issue. These techniques involve removing
instances from the training dataset that are part of the majority class to improve the balance between classes.
This adjustment ensures that majority and minority classes are on a similar scale, enhancing the learning
algorithm’s sensitivity to the minority class.

In this study, we addressed class imbalance in each classification model by combining KNNOrder and
synthetic minority over-sampling technique (SMOTE). KNNOrder, a KNN-based undersampling technique
introduced by [23], reduces the imbalance by selectively removing examples from the majority class. We
then apply SMOTE, a widely used oversampling method that generates synthetic examples for the minority
class [24], to further balance the dataset. We demonstrated the effectiveness of KNNOrder + SMOTE by
compared it with various other methods deal with unbalanced data: no sampling (serving as a baseline), random
undersampling (randomly removing majority class examples), random oversampling (randomly duplicating
minority class examples), SMOTE (generating synthetic examples for the minority class through interpolation),

Int J Artif Intell, Vol. 14, No. 4, August 2025: 2826-2838



Int J Artif Intell ISSN: 2252-8938 ) 2831

and finally KNNOrder (targeted removal of majority class examples near the decision boundary). The Table|T]
presents the results obtained in terms of accuracy, F1-score, precision, and recall for each method.

Table 1. Comparison of sampling methods

Method Accuracy  Fl-score  Precision  Recall
No Sampling 0.80 0.87 0.91 0.83
Random Undersampling 0.85 0.90 0.88 0.92
Random Oversampling 0.79 0.86 091 0.82
KNNOrder 0.83 0.89 0.88 0.91
SMOTE 0.82 0.88 0.90 0.87
KNNOrder + SMOTE 0.86 0.91 0.88 0.94

The results demonstrate that KNNOrder + SMOTE combination achieves strong performance, with an
F1-score of 0.91 and a recall of 0.94, surpassing the other tested techniques in terms of these metrics. A high
recall suggests that this approach will be more effective at identifying instances from minority class. However,
it is important to note that these results are specific to the dataset used in this study. Further investigation with
other datasets is necessary to confirm the robustness and generalizability of the KNNOrder + SMOTE method.

b. Feature extraction

i) Problem-specific features: the features extracted describe each request » € R in the context of the
DARPDP problem, namely:

— Request degree: indicates the number of requests that can be served simultaneously with this request
without violating any constraints.

— Request ride time: represents the duration between a request’s pickup and drop-off.

— Correlation between request pickup and other pickups: represents the average Pearson correlation coeffi-
cient between the pickup node of a given request (defined by its x-location, y-location, earliest time, and
latest time) and the pickup nodes of all other requests within the problem instance.

— Correlation between request delivery and other deliveries: similar to pickup correlation, this metric as-
sesses the relationship between the delivery node of a given request and the delivery nodes of all other
requests within the problem instance.

— Dual information: indicates how much the overall solution cost would change in response to a marginal
relaxation of the coverage constraint for a specific request.

— Request distance to vehicles: represents the average distance of each request from the set of all vehicles.

ii) Statistical-based features: in addition to the problem-specific features, two statistical measures are intro-
duced, inspired by [25]]. These measures are calculated from a set of up to IV feasible solutions, selected
from those obtained in previous iterations. % is a binary variable indicating whether request r is included
in solution i (% = 1) or not (x% = 0).

— Correlation-based measure: this measure evaluates the linear relationship between the presence of a
request and the quality of feasible solutions. The Pearson correlation coefficient for request r is calculated
as follows:

> ien () — Zr)(obj" — obj)
Vien (@ — 5%/ S x(0bj’ — obj)?
Where obj’ is the objective function value associated with solution i, Z, is the average of x! across
all solutions, and obj represents the average of the objective function values. This measure identifies
demands that contribute to higher-quality solutions. For instance, a correlation close to 1 indicates that

the presence of the request is often associated with high-quality solutions, while a correlation close to -1
indicates the opposite.

Corr(r) = (6)

— Ranking-based measure: this measure is based on the position of feasible solutions in a ranking deter-
mined by their quality (objective function value). For each solution ¢, its rank is denoted as rank;, where

a lower rank corresponds to a higher-quality solution. The score assigned to request r is given by:
i

- (7

rank;

X

RankScore(r) = Z

ieEN
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This measure favors requests that appear in higher-ranked solutions by assigning a higher score to those
present in high-quality solutions. Requests with higher scores are thus highlighted for their potential
contribution to optimal solutions. These statistical data are combined with the problem-specific features
of DARPDP. This results in a detailed representation of the requests, enabling ML models to more
effectively identify the best solutions to the problem.

c. Selection of the best classification model

We trained four state-of-the-art supervised ML algorithms to choose the appropriate classification
algorithm. The selected classification algorithms include the Gaussian naive Bayes (NB) classifier, an exten-
sion of the NB algorithm that relies on posterior probability estimation and assumes that the features used to
characterize instances are conditionally independent. The SVM determines the best hyperplane-based decision
boundaries that segregate n-dimensional space into classes, allowing for the easy categorization of new data
points. RF is an ensemble-based method. Several decision trees are employed with a random sample of
characteristics to improve predictive accuracy and manage complex relationships within the data. Finally, a
multi-layer perceptron (MLP) is a feed-forward artificial neural network. It consists of interconnected nodes
arranged into multiple layers (input, hidden, and output). For a comprehensive survey of supervised classifica-
tion techniques, see [26]].

Model optimization is finding the hyperparameters that minimize or maximize a scoring function for
a specific task. Each model has its hyperparameters with a set of possible values. This research employs the
grid search technique to uncover the optimum values of the hyperparameters. Grid search accepts the hyperpa-
rameter names (e.g., the learning rate in MLP or the kernel in SVM) and a vector of possible values for each.
Then, the function goes through all the combinations and returns a fine-tuned model using the best combination
of values. Even though grid search can require more resources and time than other optimization methods, it
works better with our problem since the datasets are not enormous. Table 2] shows both the hyperparameter
configuration of each algorithm used by grid search and the best value of the parameters.

Table 2. Hyperparameters configurations

Algorithm  Hyperparameter values Selected hyperparameters
SVM ’C’:[0.001, 0.01, 0.1, 1, 10, 100] C=10
“kernel’: [’linear’, "poly’, ’rbf’, *sigmoid’] kernel="linear’
’gamma’: [’scale’, auto’, 0.001, 0.01, 0.1, 1, 10] ~ gamma=’scale’
MLP “activation’: [’logistic’, "tanh’, ’relu’] activation="tanh’
“alpha’: [0.0001, 0.001, 0.01, 0.1] alpha=0.0001
’learning_rate_init’: [0.001, 0.01, 0.1, 0.5] learning_rate_init=0.5
“hidden_layer_sizes’: [(15, 10, 5), (50, 25, 10), hidden_layer_sizes=
((nbFeatures + nbClasses)/2,)] ((nbFeatures + nbClasses)/2,)
NB “priors’: [None, [0.3, 0.7], [0.4, 0.6], [0.5, 0.5]] priors= None
’var_smoothing’: [1e-9, le-8, le-7, 1e-6, le-5] var_smoothing= le-09
RF ‘n_estimators’: [10, 20, 30, 50] n_estimators=50
’max-depth’: [20, 30, None] max_depth=20
‘min_samples_split’: [2, 5, 10] min_samples_split=2

We evaluated the performance of the classification models over five runs for each of the SVM, RF,
MLP, and NB algorithms. The metrics used for this evaluation are accuracy (Acc), precision (P), recall
(R), Fl-score (F1), and time (T) measured in seconds. The detailed results for each run are presented in
Tables [3|and 4] allowing for an analysis of the variability in model performance.

Figure [T illustrates through box plots, the variations in key performance metrics and computational
time for each model over five runs. The MLP model stands out for its high performance and robustness,
achieving a maximum accuracy of 98.05% and stable median values for precision (80.7%), recall (78.1%), and
Fl-score (79.4%). Despite its slightly longer computational time (median of 3.2 seconds), its low variability
ensures consistent performance, making it a reliable option for applications requiring stability. The NB model
offers a good balance, with a maximum accuracy of 94.71% and a short computational time (1.1 seconds),
though its variability in recall and F1-score may reduce stability. The RF model demonstrates moderate perfor-
mance (median accuracy of 88% and computational time of 2.3 seconds) but suffers from high variability across
all metrics, limiting its reliability in certain applications. In comparison, although the SVM model is fast, the
MLP model emerges as the most relevant choice due to its balance between accuracy and computational cost.
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Table 3. Performances of SVM and RF algorithms for five runs
SVM RF
Run  Acc(%) P(%) R(%) Fl(%) T(s) Acc(%) P(®% R%) FlL(%) T
1 78.2 81.2 78.1 79.6 0.14 90.4 92.1 89.4 90.7 0.35
2 823 83.5 81.9 82.7 0.31 84.8 88.4 84.1 86.2 0.41
3 68.7 70.1 66.8 68.4 0.17 72.1 74.8 71.5 73.1 0.20
4 88.6 90.2 87.9 89.0 0.24 89.1 91.7 88.3 90.0 0.34
5 70.9 73.2 70.4 71.8 0.18 69.4 72.9 68.5 70.6 0.28
Table 4. Performances of MLP and NB algorithms for five runs
MLP NB
Run Acc(%) P(%) R(%) Fl(%) T() Acc(%) P(%) R(%) Fl(%) T(s)
1 96.4 95.6 94.8 95.2 0.27 94.7 93.8 924 93.1 0.15
2 89.4 92.1 90.4 91.2 0.31 87.2 90.5 88.7 89.6 0.19
3 79.2 82.6 80.1 81.3 0.11 79.4 81.4 78.6 79.9 0.30
4 98.1 96.9 96.4 96.7 0.16 94.3 93.3 91.9 92.6 0.20
5 78.0 80.7 78.1 79.4 0.22 61.7 64.1 61.8 62.9 0.25
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Figure 1. Comparative evaluation of four classification models: boxplot analysis

2.3.2. Learning-based diversification heuristic

ChatGPT said: At each iteration of the CG process, after solving the RMP and training the supervised
classification model, we use the model to predict the profitability of each request. Based on these predictions,
we construct three distinct subsets of requests from the current RMP solution. This is done to diversify the
solutions explored for each subproblem:
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— Reduced subset (R): created by removing a percentage p of the least profitable requests, i.e., those with
the lowest predicted probabilities of being included in the optimal solution according to the classification
model. This reduction focuses the exploration on potentially more relevant subsets of requests.

— Expanded subset (F): formed by adding percentage p of new requests deemed most profitable by classi-
fication model, selected from those not currently served by the route (column). This expansion enables
the exploration of more complex solutions, integrating requests that could enhance the overall solution.

— Diversified subset (M): generated by swapping a percentage p of the initially served requests with an
equal number of new requests. The removed requests are selected from the least profitable ones, while the
added requests are chosen from the most profitable according to the model’s predictions. This exchange
introduces additional diversity by altering the composition of routes, allowing for the examination of
potentially more effective alternative solutions.

After defining these subsets, we convert each into a graph. In these graphs, the nodes represent the
requests and the vehicle, while the edges carry weights based on the reduced costs from the RMP. Using the
CPLEX solver, we then solve these graphs to identify candidate columns with negative reduced costs.

3.  RESULTS AND DISCUSSION

We designed a two-stage experimental setup to evaluate the effectiveness of the ML-CG algorithm.
First, we assessed the benefits of integrating ML into CG by comparing ML-CG’s performance against a
standard CG approach. In the second stage, we compared the proposed ML-CG algorithm against the enhanced
iterated local search (E-ILS) algorithm described in [3] and the CG algorithm from [S], referred to as
constrained genetic programming (CGP). Both sets of tests utilized the same randomly generated data described
in [3]. We developed the algorithms using Python 3.5 and executed them on a personal computer with an Intel
Core 17-6700 processor operating at 2.6 GHz and 32 GB of RAM.

3.1. The effectiveness of incorporating machine learning techniques into CG

Initially, we discuss the number of columns handled by CG, examining scenarios with and without
learning to solve the pricing problem. Table [3] displays the average number of columns generated by the CG
algorithm, comparing results with and without the learning-based enhancement, across different numbers of
requests. One can observe that even though we diversified the search and increased the number of subproblems
solved on each iteration, the number of columns generated by CG with learning was consistently less than that
generated without learning. This discrepancy in the number of columns generated may arise because many of
these columns may have minimal or insignificant contributions to the RMP.

For example, in instances with 200 requests, the number of columns generated by ML-CG averaged
638.04, compared to 906.53 using traditional CG, resulting in an 18% reduction. This reduction suggests that
ML-CG enables a more efficient search process by focusing on fewer, more relevant columns, while many
of the columns generated by the standard CG approach may have minimal or insignificant contributions to
the RMP. This observation can be further supported by examining the correlation between the convergence of
the objective value and the CPU time. As shown in Figure [2] for certain selected instances, especially those
with more requests (50, 100, 200)—given that the proposed algorithm exhibits poor performance compared
to the commercial solver or other metaheuristics for small instances—CG with learning demonstrates a faster
convergence, highlighting the significance of efficient columns in boosting the search procedure’s effectiveness.
Therefore, learning can yield significant benefits for solving large-scale data by efficiently generating columns
without excessively increasing the number of variables for the RMP.

Table 5. Number of columns generated by CG algorithm with and without learning-based approach
Nbrequests ~ Without learning ~ With learning

10 4927.49 3738.27
15 3845.37 3039.24
20 3887.67 2926.61
30 2771.32 1993.27
50 1522.45 1102.60
100 1456.92 974.49
200 906.53 638.04

Int J Artif Intell, Vol. 14, No. 4, August 2025: 2826-2838



Int J Artif Intell ISSN: 2252-8938 ) 2835

inst_b50_6 inst_a50_5

CGL

1500 4

=R
N
u o
o &

1000 4 1250 4

1000 +

~
q
o

w
=]
S

750 1
T T T T T T
0 200 400 600 0 200 400 600

Objective Function Value

Objective Function Value

CPU Time CPU Time
inst_b100 11 inst_al00 12

4000
- — CGL

- |--- o

3000 4 3000

2000 4 2000

Objective Function Value

Objective Functien Value

T T T T U T T T T T
0 200 400 600 800 1000 0 200 400 600 800 1000

CPU Time CPU Time
inst_b200 23 inst_a200 22

7000
6000 - 5 — 6L
6000 |
5000 |
5000
4000 |
4000

3000
3000 4

Objective Functien Value
Objective Function Value

T T T T T T T T T T
] 200 400 600 800 1000 [¢] 200 400 600 800 1000
CPU Time CPU Time

Figure 2. Plots showing the evolution of objective function values over CPU time for selected experiments
(inst_b50_6, inst_a50_5, inst_b100_11, inst_a100_12, inst_b200_23, inst_a200_22)

3.2. Comparison with state-of-art algorithms

Tables [6] and [7] present the best objective values and average runtime for the a-type and b-type in-
stances, respectively, achieved by the three algorithms under comparison. Due to the computational complexity
of determining optimal solutions for all instances, we omit the gap to optimality. However, for instances with
up to 20 requests, previous analyses using the CPLEX solver have confirmed optimality. To compare the per-
formance of these algorithms, We compute the relative gap for each algorithm. This relative gap is calculated
as the percentage difference between an algorithm’s solution objective value and the best solution found by any
of the three algorithms for a given instance. The relative gap Gap; for algorithm ¢ is defined as:

Ob]z - Objbest
Ob.jbest

Where Obyj; is the solution objective value of algorithm i and Obj. is the best solution objective value found
by any of the three algorithms.

We evaluated the performance of each algorithm under the following configurations. All three algo-
rithms used a maximum time limit as the stopping criterion. For instances with up to 15, 50, and 100/200
requests, the time limits were set to 300, 900, and 1200 seconds, respectively. The E-ILS algorithm retained
its configuration as detailed in [3]], while the CGP algorithm utilized the following parameters: N interval — 9
Niterations — 900, and NXVS = 50. To fully understand these parameters and the CGP algorithm, consult
the relevant paper [S]]. Our proposed method’s configuration involved dynamically adjusting the percentage (p)
of requests considered for change within the LBDH. The percentage started at 20% and increased by 10% with
each iteration, resetting to 20% after reaching 60%.

Tables 6] and [7] demonstrate that proposed ML-CG algorithm can achieve at most 2.51% (3.86%) less
accuracy than the best solution for small-scale a-type instances (b-type). However, as complexity of problems
increases, ML-CG outperforms state-of-the-art algorithms, such as CGP and E-ILS, demonstrating its practical-
ity and high overall effectiveness, evidenced by its average gap of 1.08% (1.65%). In contrast, CGP algorithm
exhibits moderate performance with average gap of 17.52% (18.76%), while E-ILS algorithm, with the highest
average gap of 31.58% (35.27%), is the least effective in approximating optimal solutions. The incorporation
of learning mechanisms into ML-CG enhances solution accuracy while maintaining comparable computational
efficiency; specifically, its performance on larger instances highlights its potential in addressing DARPDP.

Gap; = x 100%
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Table 6. Comparison of objective values and computational time for the three algorithms for the
a-type instances

E-ILS CGP ML-CG
Instance Obj CPU(s) Gap(%) Obj CPU(s) Gap(%) Obj CPU(s) Gap(%)
inst_al0_1 331.893 1.19 0 331.893 4.24 0 331.893 3.48 0
inst_al0_2 137.1 16.15 0 197.325 20.33 43.93 148.6917 12.38 8.45
inst_al5_1 272.922 27.97 0 272.922 19.17 0 272.922 18.65 0
inst.al5_2 318.586 17.81 0 329.28 25.01 3.36 322.038 48.4 1.08
inst_a20_2 410.026 93.5 0 487.982 62.36 19.01 410.026 73.67 0
inst_a20_3 353.498 136.26 0 380.765 246.18 7.71 373.017 208.76 5.52
inst_a30_3 909.882 446.44 11.08 1096.379 404.73 33.85 819.104 368.51 0
inst_a30_4 812.369 612.28 48.11 676.759 289.15 23.38 548.504 270.19 0
inst_a50_.5 1147.149 848.16 71.31 764.571 723.1 14.18 669.629 368.42 0
inst_a50_6 1271.975 534.43 74.82 1034.511 953.84 42.18 727.585 827.32 0
inst_al00_11 2209.674 989.43 54.97 1714.193 1005.72 20.22 1425.891 882.45 0
inst_al00_12 1860.426 961.07 43.71 1475.75 1039.56 13.99 1294.546 843.35 0
inst_a200_22 4128.984 1007.03 59.96 2875.297 937.22 11.38 2581.325 1038.06 0
inst_a200_23 4600.176 1061.63 78.21 2894.439 1026.01 12.13 2905.262 1093.08 0
Average 1340.33 482.38 31.58 1038.00 482.62 17.52 916.46 432.62 1.08
Table 7. Comparison of objective values and computational time for the three algorithms for the
b-type instances
E-ILS CGP ML-CG

Instance Obj CPU(s) Gap(%) Obj CPU(s) Gap(%) Obj CPU(s) Gap(%)
inst_b10_1 172.758 4.47 0 172.758 4.82 0 172.758 5.02 0
inst_.b10_2 197.29 28.14 0 201.72 20.93 2.25 207.511 15.74 5.18
inst_b15_1 271.757 29.5 0 271.757 36.72 0 271.757 44.52 0
inst_.b152 333.858 120.82 0 454.382 112.25 36.1 351.79 103.07 5.37
inst_b20_2 253.495 349.72 0 354.326 308.49 39.78 269.89 269.83 6.47
inst_b20_3 403.057 671.9 0 457.778 552.35 13.58 427.691 423.12 6.11
inst_b30_3 784.352 871.79 60.92 769.495 613.94 57.87 487.413 456.03 0
inst_b30_4 732.154 629.29 57.59 626.338 589.88 34.81 464.594 520.69 0
inst_b50_5 1210.899 605.95 58.38 996.072 676.27 30.28 764.571 723.1 0
inst_b50_6 767.605 671.15 63.55 604.94 637.37 28.9 469.326 508.57 0
inst_b100_11 2580.933 1114.62 82.33 1467.14 1018.04 3.65 1415.54 980.52 0
inst_.b100.12 1993.452 1021.65 46.96 1463.291 1022.63 7.88 1356.466 1044.63 0
inst_b200_22 4423.672 1104.43 80.81 2532.009 1049.51 3.49 2446.644 1139.56 0
inst_b200-23 3733.878 1089.74 43.19 2713.741 1125.07 4.07 2607.598 1065.46 0
Average 1275.65 593.80 35.27 934.70 554.88 18.76 836.68 521.42 1.65

3.3. Discussion

While the ML-CG algorithm demonstrates strong scalability and quality of solutions, its performance
can be affected by the selection of hyperparameters for the learning model. Additionally, the existing im-
plementation depends on synthetic datasets, which might not adequately reflect the intricacies of real-world
situations. As a result, these aspects restrict the model’s ability to generalize, especially when utilized in more
diverse and dynamic cases of the DARPDP. Future research should focus on addressing these limitations. To
enhance the model’s predictive accuracy and robustness, investigating additional features and fine-tuning hy-
perparameters could be beneficial. The integration of more sophisticated ML approaches, like meta-learning,
may enable the model to adjust more effectively to diverse problem characteristics. Additionally, evaluating
the methodology on larger, real-world datasets would facilitate the assessment of its effectiveness and general-
ization in intricate, practical situations. Finally, merging ML-CG with other heuristic techniques could result in
hybrid algorithms that boost scalability and flexibility, offering a more versatile solution for the DARPDP and
comparable complex optimization challenges. The results demonstrate that integrating ML-CG significantly
boosts efficiency when compared to traditional methods. By minimizing the number of generated columns and
accelerating convergence, ML-CG proves particularly effective for larger instances. When evaluated against
two benchmark algorithms, E-ILS and CGP, ML-CG delivers the best solutions among the three methods for
instances a-type (b-type). As problem complexity increases, the advantages of ML-CG become increasingly
evident, providing an optimal balance between accuracy and computational time. These findings suggest that
ML-CG may offer an efficient and robust approach to complex problems like DARPDP.
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4. CONCLUSION

This paper integrates ML into a CG algorithm to solve the DARPDP. Our proposed ML-CG algorithm
utilizes a binary classification model to intelligently guide the CG process. This approach leads to a reduction
in the number of generated columns by an average of 18% compared to the standard CG, resulting in faster
computation times, especially for larger problem instances. ML-CG achieves an average deviation of 2.7%
from CPLEX’s optimal solutions (for instances where the optimum is known) and demonstrates superior per-
formance compared to both the E-ILS and CGP heuristics, outperforming E-ILS in 60% of the tested cases
and consistently outperforming CGP. The current algorithm relies on synthetic datasets and a limited set of
features, which may restrict its ability to generalize to real-world scenarios. To enhance its applicability, future
work should focus on expanding the training set and testing the algorithm on larger, more diverse datasets.
Additionally, exploring meta-learning and hybrid approaches could improve its adaptability and scalability.
Further investigation is also needed to assess the performance of the ML-CG framework across a broader range
of DARP variants and more realistic scenarios.
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