
IAES International Journal of Artificial Intelligence (IJ-AI)

Vol. 14, No. 1, February 2025, pp. 252~259

ISSN: 2252-8938, DOI: 10.11591/ijai.v14.i1.pp252-259  252

Journal homepage: http://ijai.iaescore.com

Comparative analysis of genetic algorithms for automated test

case generation to support software quality

Tiara Rahmania Hadiningrum, Siti Rochimah
Department of Informatics, Faculty of Intelligent Electrical and Informatics Technology, Institut Teknologi Sepuluh Nopember,

Surabaya, Indonesia

Article Info ABSTRACT

Article history:

Received Jun 19, 2024

Revised Jul 28, 2024

Accepted Aug 30, 2024

 Software testing is crucial for enhancing software quality, but designing test

cases is a labor-intensive, resource-intensive, and time-consuming process.

Additionally, test case designers often introduce subjectivity when creating

test cases manually. To address these challenges, this paper compares three

different approaches for automatically generating program branch coverage

test cases: the parallel data generation algorithm (PDGA), a standard genetic

algorithm (SGA), and a random test generation method. By leveraging genetic

algorithms and parallel data generation techniques, these automated

approaches aim to reduce the manual effort, resources, and potential biases

involved in test case design, while improving the efficiency and effectiveness

of achieving comprehensive branch coverage during software testing. The

experimental results, conducted using five datasets with programs written in

PHP, demonstrate that PDGA outperforms both SGA and random methods

across various tested programs, achieving higher maximum and average

coverage. Specifically, PDGA achieved an average coverage of 100% in the

"calculator" program, highlighting its superior stability and efficiency. While

SGA also shows good performance, it is not as optimal as PDGA, and the

random method shows the lowest performance among the three. These

findings underscore the potential of genetic algorithms, particularly PDGA, to

enhance the coverage and quality of software testing, thereby significantly

improving system reliability.

Keywords:

Automatic generation test cases

Genetic algorithms

Software quality assurance

Software testing

Test case generation

This is an open access article under the CC BY-SA license.

Corresponding Author:

Siti Rochimah

Department of Informatics, Faculty of Intelligent Electrical and Informatics Technology

Institut Teknologi Sepuluh Nopember

Surabaya, Indonesia

Email: siti@its.ac.id

1. INTRODUCTION

Software testing is a critical stage in the software development cycle that aims to ensure the quality,

reliability, and optimal performance of an application [1]–[3]. Through testing, various scenarios, and

conditions are tested to identify bugs, logic errors, and potential failures in the software [4], [5]. Comprehensive

testing methods involve functional testing, non-functional testing such as security and performance, as well as

cross-platform testing if required [6], [7]. The results of testing provide a better understanding of the software's

ability to address user needs and expectations and provide confidence that the application is ready for

widespread use [8], [9]. Thus, software testing is an important foundation in ensuring product success and

acceptance in the market [10].

Various algorithms have evolved to automate the test case generation process in software testing, with

the aim of improving efficiency and effectiveness in detecting bugs and increasing test coverage [11], [12].

https://creativecommons.org/licenses/by-sa/4.0/

Int J Artif Intell ISSN: 2252-8938 

Comparative analysis of genetic algorithms for automated test case … (Tiara Rahmania Hadiningrum)

253

These algorithms include methods such as genetic algorithms, model-based testing, and mutation-based testing

[13], [14]. Genetic algorithms utilize the concept of biological evolution to automatically create and adjust test

cases based on certain criteria [15]. Genetic algorithms adopt the principles of biological evolution, such as

natural selection and reproduction, to generate optimal solutions in the context of software testing [16].

The application of genetic algorithms in software automated testing is becoming increasingly

important to improve the efficiency and effectiveness of the testing process [13], [17]. Genetic algorithms

enable automatic creation, adjustment, and optimization of test cases, based on set criteria [14], [18].

Through integration with machine learning techniques, such as deep learning, genetic algorithms can

improve their ability to generate more effective test cases [6]. The evolutionary process in genetic

algorithms, which includes the formation of an initial population of test cases, genetic mutation, and natural

selection, enables dynamic adaptation to change in the software under test [19]. Genetic algorithms make

significant contributions in detecting bugs, increasing test coverage, and accelerating the overall software

development cycle [20], [21].

Various studies have been conducted in the field of automatic test case generation, but there is still a

lack of understanding of the relative effectiveness of the various algorithms used [22], [23]. This research

provides a comprehensive approach that compares automatic test case generation algorithms, namely parallel

data generation algorithm (PDGA), standard genetic algorithm (SGA), and random test generation method

(Random). Through this research, it can determine the relative effectiveness of these algorithms, to provide

guidance in the selection of the most appropriate and efficient algorithm for software testing needs. It is hoped

that the results of this research can provide deep insight into the advantages and disadvantages of each

approach, so that it can help in determining which algorithm is best to use to improve the efficiency and

effectiveness of software testing.

Research by Wambua and Wambugu [14] compares the effectiveness of Bat and genetic algorithms

for test case prioritization in regression testing, finding the Bat algorithm superior in some metrics such as

average percentage of fault detected (APFD), memory usage, and execution time. Rajagopal et al. [17]

highlight the efficiency of an adaptive genetic algorithm in generating test cases, emphasizing the use of

dynamic parameters and diverse datasets for effective test coverage. Chakraborty et al. [24] demonstrate the

effectiveness of genetic algorithm in generating test cases using benchmark programs, improving test

efficiency and performance. Alshammari et al. [25] propose a method using genetic algorithms to optimize test

data generation in Python, reducing crossover and mutation operations to speed up testing. Katoch et al. [26]

provide a comprehensive analysis of genetic algorithms, including their principles, improvements, and

applications in complex problems such as combinatorial optimization and scheduling, demonstrating their

effectiveness in finding optimal solutions.

Although research on automatic test case generation has been conducted extensively, understanding

of the effectiveness of the various algorithms used is still limited. Identifying knowledge gaps related to the

use of genetic algorithms in test case generation is important to provide a more in-depth view in selecting and

developing the most suitable approach in software testing. The lack of direct comparison between traditional

genetic algorithms and innovative approaches such as adaptive genetic algorithms and random test generation

methods is a gap in previous research. Therefore, further research is needed to explore and compare the

effectiveness of these three approaches in the context of software testing, to provide a more comprehensive

understanding of the optimal genetic algorithm approach.

This research is structured with the following organization: in section 1 introduction, this section

provides a general description of the background, motivation and objectives of the research conducted.

Section 2 related work reviews previous research relevant to the topic discussed, providing context and

theoretical basis for this research. In section 3 methodology, the methodology used in the research is

explained in detail, including the experimental environment, genetic algorithm parameters, evaluation

metrics, and the steps taken in the experiment. Section 4 experiment, results, and analysis presents the

experimental results obtained, both in the form of pictures, tables and descriptive explanations. This section

also analyzes and discusses these results, comparing the performance of the various genetic algorithms

tested, and relating them to theory and previous research. Finally, in section 5 conclusion, this study

summarizes the main findings, contributions, and potential for further research in the future based on the

results obtained.

2. METHOD

The methodology of this work consists of three main phases, reflecting the preparation,

implementation, and evaluation. The phases are data collection and preprocessing, algorithm implementation,

and evaluation. Experimental design of this work is illustrated by Figure 1.

  ISSN: 2252-8938

Int J Artif Intell, Vol. 14, No. 1, February 2025: 252-259

254

Figure 1. Methodology

2.1. Dataset

In this experiment, the primary objective is to evaluate the feasibility and effectiveness of the test case

generation method proposed within this paper, with a particular emphasis on branch coverage. To accomplish

this, a set of five distinct PHP programs serves as the focal point. These programs encompass diverse

functionalities, including calculator, todo list management, weather forecasting, currency conversion, and body

mass index (BMI) calculation. The structural intricacies, functionalities, and varying levels of complexity

inherent in each program are meticulously outlined in Table 1. This comprehensive delineation enables a

thorough assessment of the proposed genetic algorithm's efficacy in generating test cases that adequately cover

branch conditions across a spectrum of PHP applications.

Table 1. Dataset experiment
Program name Number of input

parameters

Number of

branches

Number of lines

of code

Program information

Calculator 2 10 89 Calculate arithmetic functions

Todo list 3 28 82 Record and organize tasks

Weather 2 18 167 Weather conversion calculations
Currency conversion 3 13 112 Currency conversion calculations

BMI calculator 2 25 75 Ideal body weight calculation

The selection of PHP programs, spanning different domains and functionalities, facilitates a robust

evaluation of the test case generation method's versatility and adaptability. By encompassing a diverse array

of programs, ranging from basic computational utilities to more complex functional implementations, the

experiment aims to provide nuanced insights into the algorithm's performance across varied scenarios. Through

this rigorous evaluation process, researchers and practitioners can gain a deeper understanding of the method's

strengths, limitations, and potential areas for refinement, ultimately contributing to the advancement of

software testing methodologies in PHP development environments.

2.2. Data preprocessing

Before applying genetic algorithms for automatic test case generation, an important step that needs to

be taken is to pre-process the data. In this research, the data in question is the source code of the program to be

tested. Data pre-processing aims to prepare the source code so that it can be accepted and processed properly

by the genetic algorithm. The data pre-processing steps performed include code cleaning, comment removal,

and tokenization. Code cleaning is carried out to remove characters or lines of code that are irrelevant or can

interfere with the test case generation process. Comment removal is necessary because comments do not affect

program execution, so they can be ignored in the test case generation process. Tokenization is the process of

breaking down source code into smaller lexical units (tokens), such as keywords, variables, and operators.

After the tokenization process, the resulting tokens can be represented in the form of chromosomes

for use in genetic algorithms. This chromosome representation can vary, such as a binary representation, an

integer representation, or any other suitable representation. Choosing the right chromosome representation is

very important because it will affect the effectiveness of genetic operators such as crossover and mutation in

producing good test cases. In addition, in the data pre-processing process, dependency analysis between tokens

or structural analysis of the source code can be carried out to obtain additional information that can be utilized

in the test case generation process. This information can help direct the search for genetic algorithms in a more

Int J Artif Intell ISSN: 2252-8938 

Comparative analysis of genetic algorithms for automated test case … (Tiara Rahmania Hadiningrum)

255

efficient direction and produce test cases that are better at uncovering errors or deficiencies in the program

under test.

2.3. Genetic algorithm

The methodology adopted in the research entitled revolves around harnessing the power of genetic

algorithms to streamline the process of generating test cases, thereby enhancing software quality. Genetic

algorithms, recognized as a global optimization method with strong capabilities in global search compared to

other intelligent optimization algorithms, are leveraged to automatically produce a diverse set of test cases that

thoroughly exercise software functionality [27]. However, in traditional genetic algorithm optimization

processes, parameters remain fixed. This rigidity becomes a hindrance when dealing with groups that

continually adapt to external factors. Fixed parameters fail to cater to the dynamic requirements of individuals

across various processes, consequently impacting the algorithm's performance and efficiency [28]. Therefore,

the methodology adapts by exploring avenues to dynamically adjust parameters to better suit the evolving

needs of the software under test. This flexible approach ensures that test cases are tailored to effectively uncover

defects and vulnerabilities, ultimately contributing to the overall enhancement of software quality.

Traditional genetic algorithms typically perform the crossover operation before mutation. While this

approach may yield favorable results early on, as the optimization progresses, the fitness values of individuals

in the population tend to become quite similar [29]. When fitness values are closely clustered, the crossover

operation can introduce significant changes in the offspring, making subsequent mutation operations more

likely to disrupt highly fit individuals, thereby slowing down convergence. To mitigate this issue, an improved

genetic algorithm adjusts the sequence of crossover and mutation operations based on the distribution of

individual fitness values within the population. This adaptation aims to maintain population diversity by

performing more effective genetic operations in later generations, facilitating better exploration of the search

space and potentially leading to improved solutions.

Figure 2 illustrates the genetic operation of the genetic algorithm employed in the research study. This

operation encompasses the selection of individuals (test cases), application of genetic operators (mutation and

crossover), and the generation of a new population for subsequent generations. By analyzing the distribution

of fitness values within the population, the algorithm adjusts the sequence of genetic operations to balance

exploration and exploitation, aiming to enhance the effectiveness of test case generation for branch coverage.

Figure 2. Genetic operation of genetic algorithm [30]

In the next step, the algorithm will decide whether the stop condition has been met or not. If not, the

process will continue by choosing which genetic operation to apply, i.e. mutation or crossover. The mutation

operation involves random modifications to the selected individuals, while crossover combines the traits of

two individuals to produce a new individual. After the genetic operations are performed, a new population will

be formed and re-evaluated iteratively until a stopping condition is reached, e.g. maximum number of

generations or no significant improvement in fitness. Finally, the best population containing the test cases with

the highest branch coverage will be generated as output.

  ISSN: 2252-8938

Int J Artif Intell, Vol. 14, No. 1, February 2025: 252-259

256

2.4. Evaluation

In this study, we will compare three methods used to generate branch coverage test cases. Firstly, we

have the adaptive genetic algorithm-based branch coverage adaptive genetic algorithm, designed to dynamically

adapt to environmental conditions and optimize the test case generation process [31]. Secondly, we will evaluate

the traditional genetic algorithm, which is a well-established approach but tends to have static parameters and

lacks adaptability to environmental changes [17]. Lastly, we will consider the random test generation method,

often used as a benchmark to measure the relative performance of more advanced methods [32].

The experiment's evaluation criteria include the average branch coverage rate, providing an overview

of how well each method can reach all code branches; the maximum branch coverage rate, indicating each

method's ability to find the most challenging code branches to reach; and the average convergence rate,

measuring the speed at which each method achieves an optimal solution or approaches an optimal solution in

a series of iterations. In the experiment, the standard parameters for all four-branch coverage test case

generation methods are established as follows: a population size of 50 and a maximum of 100 evolutionary

iterations. To mitigate the impact of randomness on the experiment's outcome, each method will be executed

50 times for every program under scrutiny. The assessment metrics for the experiment include the average

branch coverage rate, the maximum branch coverage rate, and the average convergence rate. The average

branch coverage rate (Ac) is calculated as in the(5):

𝐴𝑐 =
∑ 𝑡(1,2,…,𝑛)

𝑛
1

𝑛
 (1)

Average branch coverage rate (Ac) is an important metric that indicates the average branch coverage

rate achieved by a program when executed using a particular algorithm. To calculate Ac, branch coverage rate

data from each program execution is collected and averaged. The Ac value provides an overview of the

effectiveness of the algorithm in achieving good branch coverage. The higher the Ac value, the better the

algorithm’s ability to generate test cases that cover most of the branches in the program. However, Ac alone is

not enough to assess the overall performance of the algorithm.

The maximum branch coverage rate (MaxC) metric also needs to be considered. MaxC shows the

highest level of branch coverage achieved by a program after multiple executions using the same algorithm.

MaxC provides insight into the upper limits of an algorithm's ability to achieve branch coverage. By analyzing

Ac and MaxC together, developers can gain a more complete understanding of the algorithm's performance in

software testing. If Ac is quite high but MaxC is much higher, this indicates that the algorithm has the potential

to improve its performance. On the other hand, if Ac and MaxC have relatively close values, then the algorithm

has worked quite efficiently in generating test cases that cover most of the program branches.

3. RESULTS AND DISCUSSION

The experimental outcomes present the average branch coverage rate and the maximum branch

coverage rate for the five tested programs. Each program was executed 50 times across the four algorithms:

PDGA, SGA, Random, and control. Table 2 displays these results obtained from the 50 execution runs per

program per algorithm. These outcomes offer insights into algorithm performance across multiple runs, crucial

for refining testing methodologies and optimizing algorithmic efficiency in achieving comprehensive branch

coverage.

Table 2. Branch coverage experiment results of the three algorithms
 PDGA SGA RANDOM

Program Name AC (%) MaxC (%) AC (%) MaxC (%) AC (%) MaxC (%)

Calculator 100.00 100.00 99.50 99.80 67.39 89.20

Todo List 89.50 100.00 88.20 98.98 65.89 79.99
Weather 92.80 100.00 93.23 100.00 71.89 97.34

Currency Conversion 98.70 100.00 98.52 100.00 69.81 92.12

BMI Calculator 99.90 100.00 94.70 100.00 59.01 83.02

The results presented in Table 2 highlight the superior performance of the PDGA algorithm in

achieving higher branch coverage rates across multiple programs. For the "calculator" program, PDGA attained

a maximum branch coverage of 100%, whereas the Random algorithm only reached an average of 67.39%. In

the "todo list" application, PDGA again achieved a maximum coverage of 100%, while the Random approach

failed to surpass 80%, with an average coverage of merely 65.89%.

Int J Artif Intell ISSN: 2252-8938 

Comparative analysis of genetic algorithms for automated test case … (Tiara Rahmania Hadiningrum)

257

Similarly, for the "weather" program, both PDGA and SGA reached the maximum 100% branch

coverage, outperforming the Random algorithm's maximum of 97.34% and average of 71.89%. The "currency

conversion" program exhibited analogous results, with PDGA and SGA achieving the maximum 100%

coverage, contrasted by the Random algorithm's maximum of 92.12% and average of 69.81%. For the "BMI

calculator" program, both the PDGA and SGA algorithms demonstrated their superiority by achieving the

maximum branch coverage of 100%. However, the SGA method exhibited a higher average branch coverage

of 94.70% compared to the Random algorithm's average of only 59.01%. This disparity highlights the ability

of SGA to consistently outperform the Random approach in terms of average branch coverage.

Notably, in the "calculator" program, the PDGA algorithm not only attained the maximum branch

coverage of 100% but also maintained an impressive average branch coverage of 99.50%. This result

underscores the stability and robustness of PDGA, particularly in scenarios where the number of branches

increases, enabling it to deliver consistently high coverage rates, surpassing the performance of other

algorithms. From Figure 3, the PDGA algorithm shows superiority compared to other genetic algorithms,

namely SGA and RANDOM, in terms of the average code coverage rate. The PDGA algorithm can achieve a

higher level of code coverage than other algorithms in various programs tested, such as calculator, todo list,

weather, currency conversion calculator, and BMI calculator. These advantages can be attributed to efficient

search strategies, appropriate solution representation schemes, as well as well-designed genetic operators for

the automatic test case generation problem in the PDGA algorithm.

Figure 3. The average coverage rate of the program running in different algorithms

Figure 4 shows the maximum code coverage level achieved by each algorithm in the programs tested.

Once again, the PDGA algorithm outperforms the SGA and Random algorithms in achieving the maximum

level of code coverage in most of the programs tested. In the "calculator" program, the PDGA algorithm was

able to achieve a maximum code coverage rate of 100%, which is a remarkable achievement. These results

show that the PDGA algorithm not only excels in average code coverage rate, but also has great potential in

generating a set of test cases that cover all branches in the program under test.

Figure 4. The maximum coverage rate of the program running in different algorithms

  ISSN: 2252-8938

Int J Artif Intell, Vol. 14, No. 1, February 2025: 252-259

258

The success of the PDGA algorithm in generating high quality automated test cases makes a

significant contribution to improving the quality and reliability of software testing. With its ability to achieve

high code coverage, these algorithms can help uncover more errors or flaws in software, allowing for more

effective fixes before the software is released to the market. Additionally, automated test cases generated by

PDGA can be reused in subsequent software development cycles, saving the time and effort required to write

test cases manually. Thus, the PDGA algorithm contributes significantly to improving the efficiency and

quality of the overall software testing process.

4. CONCLUSION

In terms of automatically generating program branch coverage test cases, this paper proposes

comparing 3 genetic algorithms, namely PDGA, SGA, and Random. The results confirm that the PDGA

algorithm stands out with superior performance compared to SGA and Random methods in various tested

programs. Analysis of the five programs presented shows that PDGA can achieve higher maximum and average

coverage, illustrating strong stability and efficiency. For example, in the "calculator" program, the PDGA

algorithm even managed to achieve an average coverage of 100%, showing its dominance and robustness in

generating automatic test cases when compared with other algorithms. Nevertheless, the SGA algorithm also

shows good performance, although not as optimal as PDGA, while the random algorithm shows the lowest

performance among the three. Overall, these findings confirm that genetic algorithms, especially PDGA, have

great potential to improve the coverage and quality of software testing, presenting exciting prospects for

significantly improving system reliability.

REFERENCES
[1] Dr. Naveenkumar Jayakumar, Nilofar Mulla, “Role of machine learning and artificial intelligence techniques in software testing,”

Turkish Journal of Computer and Mathematics Education (TURCOMAT), vol. 12, no. 6, pp. 2913–2921, 2021, doi:

10.17762/turcomat.v12i6.5800.

[2] M. Krichen, “How artificial intelligence can revolutionize software testing techniques,” Innovations in Bio-Inspired Computing and
Applications (IBICA 2022), pp. 189–198, 2023, doi: 10.1007/978-3-031-27499-2_18.

[3] Z. Khaliq, S. U. Farooq, and D. A. Khan, “Artificial intelligence in software testing: impact, problems, challenges and prospect,”

arXiv-Computer Science, pp. 1-13, 2022.
[4] P. Singhal, S. Kundu, H. Gupta, and H. Jain, “Application of artificial intelligence in software testing,” The 2021 10th International

Conference on System Modeling and Advancement in Research Trends, SMART 2021, pp. 489–492, 2021, doi:

10.1109/SMART52563.2021.9676244.
[5] N. Jha and R. Popli, “Artificial intelligence for software testing-perspectives and practices,” 2021 4th International Conference on

Computational Intelligence and Communication Technologies, CCICT 2021, pp. 377–382, 2021, doi:

10.1109/CCICT53244.2021.00075.
[6] Y. Wang, “Software testing resource allocation algorithm based on improved evolutionary algorithm,” The 8th International Conference

on Communication and Electronics Systems, ICCES 2023, pp. 674–678, 2023, doi: 10.1109/ICCES57224.2023.10192849.

[7] S. Martínez-Fernández et al., “Software engineering for AI-based systems: a survey,” ACM Transactions on Software Engineering
and Methodology, vol. 31, no. 2, 2022, doi: 10.1145/3487043.

[8] G. J. Myers, T. Badgett, and C. Sandler, “The art of software testing,” IEEE Proceedings of the National Aerospace and Electronics

Conference, vol. 2, no. 112, pp. 757–760, 1991, doi: 10.1109/naecon.1991.165837.
[9] S. Kumar, “Reviewing software testing models and optimization techniques: an analysis of efficiency and advancement needs,”

Journal of Computers, Mechanical and Management, vol. 2, no. 1, pp. 32–46, 2023, doi: 10.57159/gadl.jcmm.2.1.23041.

[10] J. Wang, Y. Huang, C. Chen, Z. Liu, S. Wang, and Q. Wang, “Software testing with large language models: survey, landscape, and
vision,” IEEE Transactions on Software Engineering, vol. 50, no. 4, pp. 911–936, 2024, doi: 10.1109/TSE.2024.3368208.

[11] S. Alagarsamy, C. Tantithamthavorn, and A. Aleti, “A3Test: assertion-augmented automated test case generation,” arXiv-Computer

Science, pp. 1-18, 2023.
[12] C. Lemieux, J. P. Inala, S. K. Lahiri, and S. Sen, “CodaMosa: escaping coverage plateaus in test generation with pre-trained large

language models,” International Conference on Software Engineering, pp. 919–931, 2023, doi: 10.1109/ICSE48619.2023.00085.

[13] R. Sheikh, M. I. Babar, R. Butt, A. Abdelmaboud, and T. A. E. Eisa, “An optimized test case minimization technique using genetic
algorithm for regression testing,” Computers, Materials and Continua, vol. 74, no. 3, pp. 6789–6806, 2023, doi:

10.32604/cmc.2023.028625.

[14] A. W. Wambua and G. M. Wambugu, “A comparative analysis of bat and genetic algorithms for test case prioritization in regression
testing,” International Journal of Intelligent Systems and Applications, vol. 15, no. 1, pp. 13–21, 2023, doi:

10.5815/ijisa.2023.01.02.

[15] B. Alhijawi and A. Awajan, “Genetic algorithms: theory, genetic operators, solutions, and applications,” Evolutionary Intelligence,
vol. 17, no. 3, pp. 1245–1256, 2024, doi: 10.1007/s12065-023-00822-6.

[16] R. R. Chandan et al., “Genetic algorithm and machine learning,” Advanced Bioinspiration Methods for Healthcare Standards,

Policies, and Reform, IGI Global, pp. 167–182, 2023, doi: 10.4018/978-1-6684-5656-9.ch009.
[17] M. Rajagopal, R. Sivasakthivel, K. Loganathan, and L. E. Sarris, “An automated path-focused test case generation with dynamic

parameterization using adaptive genetic algorithm (AGA) for structural program testing,” Information, vol. 14, no. 3, 2023, doi:

10.3390/info14030166.
[18] W. Wang, S. Wu, Z. Li, and R. Zhao, “Parallel evolutionary test case generation for web applications,” Information and Software

Technology, vol. 155, 2023, doi: 10.1016/j.infsof.2022.107113.

[19] M. A. Anuar, M. Z. Sahid, and N. Zainal, “Comparative analysis of test case prioritization using ant colony optimization algorithm

and genetic algorithm,” Journal of Soft Computing and Data Mining, vol. 4, no. 2, pp. 52–58, 2023, doi:

Int J Artif Intell ISSN: 2252-8938 

Comparative analysis of genetic algorithms for automated test case … (Tiara Rahmania Hadiningrum)

259

10.30880/jscdm.2023.04.02.005.
[20] T. Abbas, “Optimizing software performance and bug detection: genetic algorithm-enhanced time convolution neural networks

(GA-TCN),” Easy Chair, pp. 1-7, 2024.

[21] S. T. Cynthia, B. Roy, and D. Mondal, “Feature transformation for improved software bug detection models,” ACM International
Conference Proceeding Series, 2022, doi: 10.1145/3511430.3511444.

[22] S. S. Sankar and S. S. V. Chandra, “An ant colony optimization algorithm based automated generation of software test cases,”

Advances in Swarm Intelligence (ICSI 2020), pp. 231–239, 2020, doi: 10.1007/978-3-030-53956-6_21.
[23] S. Ji, S. Zhu, P. Zhang, H. Dong, and J. Yu, “Test-case generation for data flow testing of smart contracts based on improved genetic

algorithm,” IEEE Transactions on Reliability, vol. 72, no. 1, pp. 358–371, 2023, doi: 10.1109/TR.2022.3173025.

[24] S. Chakraborty, V. B. Gujar, T. Choudhury, and B. K. Dewangan, “Improving software performance by automatic test cases through
genetic algorithm,” International Journal of Computer Applications in Technology, vol. 68, no. 3, pp. 228–234, 2022, doi:

10.1504/ijcat.2022.124946.

[25] M. Alshammari, M. A. Mezher, and K. Al-Utaibi, “Automatic test data generation using genetic algorithm for python programs,”
Proceedings of 2022 2nd International Conference on Computing and Information Technology, ICCIT 2022, pp. 197–205, 2022,

doi: 10.1109/ICCIT52419.2022.9711607.

[26] S. Katoch, S. S. Chauhan, and V. Kumar, “A review on genetic algorithm: past, present, and future,” Multimedia Tools and
Applications, vol. 80, no. 5, pp. 8091–8126, 2021, doi: 10.1007/s11042-020-10139-6.

[27] D. Liu, “Mathematical modeling analysis of genetic algorithms under schema theorem,” Journal of Computational Methods in

Sciences and Engineering, vol. 19, no. S1, pp. S131–S137, 2019, doi: 10.3233/JCM-191019.
[28] Y. Fang, X. Xiao, and J. Ge, “Cloud computing task scheduling algorithm based on improved genetic algorithm,” Proceedings of

2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference, ITNEC 2019, pp. 852–856,

2019, doi: 10.1109/ITNEC.2019.8728996.
[29] A. Gerami Matin, R. Vatani Nezafat, and A. Golroo, “A comparative study on using meta-heuristic algorithms for road maintenance

planning: Insights from field study in a developing country,” Journal of Traffic and Transportation Engineering (English Edition),

vol. 4, no. 5, pp. 477–486, 2017, doi: 10.1016/j.jtte.2017.06.004.
[30] X.-S. Yang, “Genetic algorithms,” Nature-Inspired Optimization Algorithms, Oxford, United Kingdom: Academic Press,

pp. 91–100, 2021.

[31] X. Bao, Z. Xiong, N. Zhang, J. Qian, B. Wu, and W. Zhang, “Path-oriented test cases generation based adaptive genetic algorithm,”
PLoS ONE, vol. 12, no. 11, 2017, doi: 10.1371/journal.pone.0187471.

[32] S. Lukasczyk, F. Kroiß, and G. Fraser, “An empirical study of automated unit test generation for Python,” Empirical Software

Engineering, vol. 28, no. 2, 2023, doi: 10.1007/s10664-022-10248-w.

BIOGRAPHIES OF AUTHORS

Tiara Rahmania Hadiningrum successfully earned a bachelor's degree

(S. Kom.) in information systems from Telkom University in 2023. She is currently studying

for a master's degree at the Department of Information Engineering, Institut Teknologi Sepuluh

Nopember. Her research interests include aspects of software quality, traceability, and testing.

She can be contacted at email: 6025231079@student.its.ac.id.

Siti Rochimah successfully earned a doctoral degree (Ph.D.) in software

engineering from Universiti Teknologi Malaysia in 2010. Currently, she serves as the head of

the Software Engineering Laboratory at the Department of Informatics Engineering, Institut

Teknologi Sepuluh Nopember. His work involves writing more than 80 articles related to

software engineering. Her research interests include aspects of software quality, traceability,

and testing. She can be contacted at email: siti@its.ac.id.

https://orcid.org/0009-0007-1562-6646
https://scholar.google.com/citations?hl=id&user=KatZk0kAAAAJ
https://www.webofscience.com/wos/author/record/KPY-7140-2024
https://orcid.org/0000-0002-5603-749X
https://scholar.google.co.id/citations?user=ZihT82EAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=24476646200
https://www.webofscience.com/wos/author/record/X-3638-2019

