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 Software testing is crucial for enhancing software quality, but designing test 

cases is a labor-intensive, resource-intensive, and time-consuming process. 

Additionally, test case designers often introduce subjectivity when creating 

test cases manually. To address these challenges, this paper compares three 

different approaches for automatically generating program branch coverage 

test cases: the parallel data generation algorithm (PDGA), a standard genetic 

algorithm (SGA), and a random test generation method. By leveraging genetic 

algorithms and parallel data generation techniques, these automated 

approaches aim to reduce the manual effort, resources, and potential biases 

involved in test case design, while improving the efficiency and effectiveness 

of achieving comprehensive branch coverage during software testing. The 

experimental results, conducted using five datasets with programs written in 

PHP, demonstrate that PDGA outperforms both SGA and random methods 

across various tested programs, achieving higher maximum and average 

coverage. Specifically, PDGA achieved an average coverage of 100% in the 

"calculator" program, highlighting its superior stability and efficiency. While 

SGA also shows good performance, it is not as optimal as PDGA, and the 

random method shows the lowest performance among the three. These 

findings underscore the potential of genetic algorithms, particularly PDGA, to 

enhance the coverage and quality of software testing, thereby significantly 

improving system reliability.  
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1. INTRODUCTION 

Software testing is a critical stage in the software development cycle that aims to ensure the quality, 

reliability, and optimal performance of an application [1]–[3]. Through testing, various scenarios, and 

conditions are tested to identify bugs, logic errors, and potential failures in the software [4], [5]. Comprehensive 

testing methods involve functional testing, non-functional testing such as security and performance, as well as 

cross-platform testing if required [6], [7]. The results of testing provide a better understanding of the software's 

ability to address user needs and expectations and provide confidence that the application is ready for 

widespread use [8], [9]. Thus, software testing is an important foundation in ensuring product success and 

acceptance in the market [10].  

Various algorithms have evolved to automate the test case generation process in software testing, with 

the aim of improving efficiency and effectiveness in detecting bugs and increasing test coverage [11], [12]. 
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These algorithms include methods such as genetic algorithms, model-based testing, and mutation-based testing 

[13], [14]. Genetic algorithms utilize the concept of biological evolution to automatically create and adjust test 

cases based on certain criteria [15]. Genetic algorithms adopt the principles of biological evolution, such as 

natural selection and reproduction, to generate optimal solutions in the context of software testing [16].  

The application of genetic algorithms in software automated testing is becoming increasingly 

important to improve the efficiency and effectiveness of the testing process [13], [17]. Genetic algorithms 

enable automatic creation, adjustment, and optimization of test cases, based on set criteria [14], [18]. 

Through integration with machine learning techniques, such as deep learning, genetic algorithms can 

improve their ability to generate more effective test cases [6]. The evolutionary process in genetic 

algorithms, which includes the formation of an initial population of test cases, genetic mutation, and natural 

selection, enables dynamic adaptation to change in the software under test [19]. Genetic algorithms make 

significant contributions in detecting bugs, increasing test coverage, and accelerating the overall software 

development cycle [20], [21].  

Various studies have been conducted in the field of automatic test case generation, but there is still a 

lack of understanding of the relative effectiveness of the various algorithms used [22], [23]. This research 

provides a comprehensive approach that compares automatic test case generation algorithms, namely parallel 

data generation algorithm (PDGA), standard genetic algorithm (SGA), and random test generation method 

(Random). Through this research, it can determine the relative effectiveness of these algorithms, to provide 

guidance in the selection of the most appropriate and efficient algorithm for software testing needs. It is hoped 

that the results of this research can provide deep insight into the advantages and disadvantages of each 

approach, so that it can help in determining which algorithm is best to use to improve the efficiency and 

effectiveness of software testing. 

Research by Wambua and Wambugu [14] compares the effectiveness of Bat and genetic algorithms 

for test case prioritization in regression testing, finding the Bat algorithm superior in some metrics such as 

average percentage of fault detected (APFD), memory usage, and execution time. Rajagopal et al. [17] 

highlight the efficiency of an adaptive genetic algorithm in generating test cases, emphasizing the use of 

dynamic parameters and diverse datasets for effective test coverage. Chakraborty et al. [24] demonstrate the 

effectiveness of genetic algorithm in generating test cases using benchmark programs, improving test 

efficiency and performance. Alshammari et al. [25] propose a method using genetic algorithms to optimize test 

data generation in Python, reducing crossover and mutation operations to speed up testing. Katoch et al. [26] 

provide a comprehensive analysis of genetic algorithms, including their principles, improvements, and 

applications in complex problems such as combinatorial optimization and scheduling, demonstrating their 

effectiveness in finding optimal solutions. 

Although research on automatic test case generation has been conducted extensively, understanding 

of the effectiveness of the various algorithms used is still limited. Identifying knowledge gaps related to the 

use of genetic algorithms in test case generation is important to provide a more in-depth view in selecting and 

developing the most suitable approach in software testing. The lack of direct comparison between traditional 

genetic algorithms and innovative approaches such as adaptive genetic algorithms and random test generation 

methods is a gap in previous research. Therefore, further research is needed to explore and compare the 

effectiveness of these three approaches in the context of software testing, to provide a more comprehensive 

understanding of the optimal genetic algorithm approach. 

This research is structured with the following organization: in section 1 introduction, this section 

provides a general description of the background, motivation and objectives of the research conducted.  

Section 2 related work reviews previous research relevant to the topic discussed, providing context and 

theoretical basis for this research. In section 3 methodology, the methodology used in the research is 

explained in detail, including the experimental environment, genetic algorithm parameters, evaluation 

metrics, and the steps taken in the experiment. Section 4 experiment, results, and analysis presents the 

experimental results obtained, both in the form of pictures, tables and descriptive explanations. This section 

also analyzes and discusses these results, comparing the performance of the various genetic algorithms 

tested, and relating them to theory and previous research. Finally, in section 5 conclusion, this study 

summarizes the main findings, contributions, and potential for further research in the future based on the 

results obtained. 

 

 

2. METHOD 

The methodology of this work consists of three main phases, reflecting the preparation, 

implementation, and evaluation. The phases are data collection and preprocessing, algorithm implementation, 

and evaluation. Experimental design of this work is illustrated by Figure 1.  
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Figure 1. Methodology 

 

 

2.1.  Dataset 

In this experiment, the primary objective is to evaluate the feasibility and effectiveness of the test case 

generation method proposed within this paper, with a particular emphasis on branch coverage. To accomplish 

this, a set of five distinct PHP programs serves as the focal point. These programs encompass diverse 

functionalities, including calculator, todo list management, weather forecasting, currency conversion, and body 

mass index (BMI) calculation. The structural intricacies, functionalities, and varying levels of complexity 

inherent in each program are meticulously outlined in Table 1. This comprehensive delineation enables a 

thorough assessment of the proposed genetic algorithm's efficacy in generating test cases that adequately cover 

branch conditions across a spectrum of PHP applications. 

 

 

Table 1. Dataset experiment 
Program name Number of input 

parameters 

Number of 

branches 

Number of lines 

of code 

Program information 

Calculator 2 10 89 Calculate arithmetic functions 

Todo list 3 28 82 Record and organize tasks 

Weather 2 18 167 Weather conversion calculations 
Currency conversion 3 13 112 Currency conversion calculations 

BMI calculator 2 25 75 Ideal body weight calculation 

 

 

The selection of PHP programs, spanning different domains and functionalities, facilitates a robust 

evaluation of the test case generation method's versatility and adaptability. By encompassing a diverse array 

of programs, ranging from basic computational utilities to more complex functional implementations, the 

experiment aims to provide nuanced insights into the algorithm's performance across varied scenarios. Through 

this rigorous evaluation process, researchers and practitioners can gain a deeper understanding of the method's 

strengths, limitations, and potential areas for refinement, ultimately contributing to the advancement of 

software testing methodologies in PHP development environments.  

 

2.2.  Data preprocessing 

Before applying genetic algorithms for automatic test case generation, an important step that needs to 

be taken is to pre-process the data. In this research, the data in question is the source code of the program to be 

tested. Data pre-processing aims to prepare the source code so that it can be accepted and processed properly 

by the genetic algorithm. The data pre-processing steps performed include code cleaning, comment removal, 

and tokenization. Code cleaning is carried out to remove characters or lines of code that are irrelevant or can 

interfere with the test case generation process. Comment removal is necessary because comments do not affect 

program execution, so they can be ignored in the test case generation process. Tokenization is the process of 

breaking down source code into smaller lexical units (tokens), such as keywords, variables, and operators. 

After the tokenization process, the resulting tokens can be represented in the form of chromosomes 

for use in genetic algorithms. This chromosome representation can vary, such as a binary representation, an 

integer representation, or any other suitable representation. Choosing the right chromosome representation is 

very important because it will affect the effectiveness of genetic operators such as crossover and mutation in 

producing good test cases. In addition, in the data pre-processing process, dependency analysis between tokens 

or structural analysis of the source code can be carried out to obtain additional information that can be utilized 

in the test case generation process. This information can help direct the search for genetic algorithms in a more 
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efficient direction and produce test cases that are better at uncovering errors or deficiencies in the program 

under test. 

 

2.3.  Genetic algorithm 

The methodology adopted in the research entitled revolves around harnessing the power of genetic 

algorithms to streamline the process of generating test cases, thereby enhancing software quality. Genetic 

algorithms, recognized as a global optimization method with strong capabilities in global search compared to 

other intelligent optimization algorithms, are leveraged to automatically produce a diverse set of test cases that 

thoroughly exercise software functionality [27]. However, in traditional genetic algorithm optimization 

processes, parameters remain fixed. This rigidity becomes a hindrance when dealing with groups that 

continually adapt to external factors. Fixed parameters fail to cater to the dynamic requirements of individuals 

across various processes, consequently impacting the algorithm's performance and efficiency [28]. Therefore, 

the methodology adapts by exploring avenues to dynamically adjust parameters to better suit the evolving 

needs of the software under test. This flexible approach ensures that test cases are tailored to effectively uncover 

defects and vulnerabilities, ultimately contributing to the overall enhancement of software quality. 

Traditional genetic algorithms typically perform the crossover operation before mutation. While this 

approach may yield favorable results early on, as the optimization progresses, the fitness values of individuals 

in the population tend to become quite similar [29]. When fitness values are closely clustered, the crossover 

operation can introduce significant changes in the offspring, making subsequent mutation operations more 

likely to disrupt highly fit individuals, thereby slowing down convergence. To mitigate this issue, an improved 

genetic algorithm adjusts the sequence of crossover and mutation operations based on the distribution of 

individual fitness values within the population. This adaptation aims to maintain population diversity by 

performing more effective genetic operations in later generations, facilitating better exploration of the search 

space and potentially leading to improved solutions. 

Figure 2 illustrates the genetic operation of the genetic algorithm employed in the research study. This 

operation encompasses the selection of individuals (test cases), application of genetic operators (mutation and 

crossover), and the generation of a new population for subsequent generations. By analyzing the distribution 

of fitness values within the population, the algorithm adjusts the sequence of genetic operations to balance 

exploration and exploitation, aiming to enhance the effectiveness of test case generation for branch coverage. 

 

 

 
 

Figure 2. Genetic operation of genetic algorithm [30] 

 

 

In the next step, the algorithm will decide whether the stop condition has been met or not. If not, the 

process will continue by choosing which genetic operation to apply, i.e. mutation or crossover. The mutation 

operation involves random modifications to the selected individuals, while crossover combines the traits of 

two individuals to produce a new individual. After the genetic operations are performed, a new population will 

be formed and re-evaluated iteratively until a stopping condition is reached, e.g. maximum number of 

generations or no significant improvement in fitness. Finally, the best population containing the test cases with 

the highest branch coverage will be generated as output. 
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2.4.  Evaluation 

In this study, we will compare three methods used to generate branch coverage test cases. Firstly, we 

have the adaptive genetic algorithm-based branch coverage adaptive genetic algorithm, designed to dynamically 

adapt to environmental conditions and optimize the test case generation process [31]. Secondly, we will evaluate 

the traditional genetic algorithm, which is a well-established approach but tends to have static parameters and 

lacks adaptability to environmental changes [17]. Lastly, we will consider the random test generation method, 

often used as a benchmark to measure the relative performance of more advanced methods [32].  

The experiment's evaluation criteria include the average branch coverage rate, providing an overview 

of how well each method can reach all code branches; the maximum branch coverage rate, indicating each 

method's ability to find the most challenging code branches to reach; and the average convergence rate, 

measuring the speed at which each method achieves an optimal solution or approaches an optimal solution in 

a series of iterations. In the experiment, the standard parameters for all four-branch coverage test case 

generation methods are established as follows: a population size of 50 and a maximum of 100 evolutionary 

iterations. To mitigate the impact of randomness on the experiment's outcome, each method will be executed 

50 times for every program under scrutiny. The assessment metrics for the experiment include the average 

branch coverage rate, the maximum branch coverage rate, and the average convergence rate. The average 

branch coverage rate (Ac) is calculated as in the(5): 

 

𝐴𝑐 =  
∑ 𝑡(1,2,…,𝑛)

𝑛
1

𝑛
 (1) 

 

Average branch coverage rate (Ac) is an important metric that indicates the average branch coverage 

rate achieved by a program when executed using a particular algorithm. To calculate Ac, branch coverage rate 

data from each program execution is collected and averaged. The Ac value provides an overview of the 

effectiveness of the algorithm in achieving good branch coverage. The higher the Ac value, the better the 

algorithm’s ability to generate test cases that cover most of the branches in the program. However, Ac alone is 

not enough to assess the overall performance of the algorithm. 

The maximum branch coverage rate (MaxC) metric also needs to be considered. MaxC shows the 

highest level of branch coverage achieved by a program after multiple executions using the same algorithm. 

MaxC provides insight into the upper limits of an algorithm's ability to achieve branch coverage. By analyzing 

Ac and MaxC together, developers can gain a more complete understanding of the algorithm's performance in 

software testing. If Ac is quite high but MaxC is much higher, this indicates that the algorithm has the potential 

to improve its performance. On the other hand, if Ac and MaxC have relatively close values, then the algorithm 

has worked quite efficiently in generating test cases that cover most of the program branches. 

 

 

3. RESULTS AND DISCUSSION 

The experimental outcomes present the average branch coverage rate and the maximum branch 

coverage rate for the five tested programs. Each program was executed 50 times across the four algorithms: 

PDGA, SGA, Random, and control. Table 2 displays these results obtained from the 50 execution runs per 

program per algorithm. These outcomes offer insights into algorithm performance across multiple runs, crucial 

for refining testing methodologies and optimizing algorithmic efficiency in achieving comprehensive branch 

coverage.  

 

 

Table 2. Branch coverage experiment results of the three algorithms 
 PDGA SGA RANDOM 

Program Name AC (%) MaxC (%) AC (%) MaxC (%) AC (%) MaxC (%) 

Calculator 100.00 100.00 99.50 99.80 67.39 89.20 

Todo List 89.50 100.00 88.20 98.98 65.89 79.99 
Weather 92.80 100.00 93.23 100.00 71.89 97.34 

Currency Conversion 98.70 100.00 98.52 100.00 69.81 92.12 

BMI Calculator 99.90 100.00 94.70 100.00 59.01 83.02 

 

 

The results presented in Table 2 highlight the superior performance of the PDGA algorithm in 

achieving higher branch coverage rates across multiple programs. For the "calculator" program, PDGA attained 

a maximum branch coverage of 100%, whereas the Random algorithm only reached an average of 67.39%. In 

the "todo list" application, PDGA again achieved a maximum coverage of 100%, while the Random approach 

failed to surpass 80%, with an average coverage of merely 65.89%. 
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Similarly, for the "weather" program, both PDGA and SGA reached the maximum 100% branch 

coverage, outperforming the Random algorithm's maximum of 97.34% and average of 71.89%. The "currency 

conversion" program exhibited analogous results, with PDGA and SGA achieving the maximum 100% 

coverage, contrasted by the Random algorithm's maximum of 92.12% and average of 69.81%. For the "BMI 

calculator" program, both the PDGA and SGA algorithms demonstrated their superiority by achieving the 

maximum branch coverage of 100%. However, the SGA method exhibited a higher average branch coverage 

of 94.70% compared to the Random algorithm's average of only 59.01%. This disparity highlights the ability 

of SGA to consistently outperform the Random approach in terms of average branch coverage. 

Notably, in the "calculator" program, the PDGA algorithm not only attained the maximum branch 

coverage of 100% but also maintained an impressive average branch coverage of 99.50%. This result 

underscores the stability and robustness of PDGA, particularly in scenarios where the number of branches 

increases, enabling it to deliver consistently high coverage rates, surpassing the performance of other 

algorithms. From Figure 3, the PDGA algorithm shows superiority compared to other genetic algorithms, 

namely SGA and RANDOM, in terms of the average code coverage rate. The PDGA algorithm can achieve a 

higher level of code coverage than other algorithms in various programs tested, such as calculator, todo list, 

weather, currency conversion calculator, and BMI calculator. These advantages can be attributed to efficient 

search strategies, appropriate solution representation schemes, as well as well-designed genetic operators for 

the automatic test case generation problem in the PDGA algorithm. 
 

 

 
 

Figure 3. The average coverage rate of the program running in different algorithms 
 

 

Figure 4 shows the maximum code coverage level achieved by each algorithm in the programs tested. 

Once again, the PDGA algorithm outperforms the SGA and Random algorithms in achieving the maximum 

level of code coverage in most of the programs tested. In the "calculator" program, the PDGA algorithm was 

able to achieve a maximum code coverage rate of 100%, which is a remarkable achievement. These results 

show that the PDGA algorithm not only excels in average code coverage rate, but also has great potential in 

generating a set of test cases that cover all branches in the program under test. 
 

 

 
 

Figure 4. The maximum coverage rate of the program running in different algorithms 
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The success of the PDGA algorithm in generating high quality automated test cases makes a 

significant contribution to improving the quality and reliability of software testing. With its ability to achieve 

high code coverage, these algorithms can help uncover more errors or flaws in software, allowing for more 

effective fixes before the software is released to the market. Additionally, automated test cases generated by 

PDGA can be reused in subsequent software development cycles, saving the time and effort required to write 

test cases manually. Thus, the PDGA algorithm contributes significantly to improving the efficiency and 

quality of the overall software testing process. 

 

 

4. CONCLUSION 

In terms of automatically generating program branch coverage test cases, this paper proposes 

comparing 3 genetic algorithms, namely PDGA, SGA, and Random. The results confirm that the PDGA 

algorithm stands out with superior performance compared to SGA and Random methods in various tested 

programs. Analysis of the five programs presented shows that PDGA can achieve higher maximum and average 

coverage, illustrating strong stability and efficiency. For example, in the "calculator" program, the PDGA 

algorithm even managed to achieve an average coverage of 100%, showing its dominance and robustness in 

generating automatic test cases when compared with other algorithms. Nevertheless, the SGA algorithm also 

shows good performance, although not as optimal as PDGA, while the random algorithm shows the lowest 

performance among the three. Overall, these findings confirm that genetic algorithms, especially PDGA, have 

great potential to improve the coverage and quality of software testing, presenting exciting prospects for 

significantly improving system reliability. 
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