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 Lung cancer ranks among the most prevalent malignancies worldwide. Early 

detection is pivotal to improving treatment outcomes for various cancer 

types. The integration of artificial intelligence (AI) into image processing, 

coupled with the availability of comprehensive historical lung cancer 

datasets, provides the chance to create a classification model based on deep 

learning, thus improving the precision and effectiveness of detecting lung 

cancer. This not only aids laboratory teams but also contributes to reducing 

the time to diagnosis and associated costs. Consequently, early detection 

serves to conserve resources and, more significantly, human lives. This 

study proposes convolutional neural network (CNN) models and transfer 

learning-based architectures, including ResNet50, VGG19, DenseNet169, 

and InceptionV3, for lung cancer classification. An ensemble approach is 

used to enhance overall cancer detection performance. The proposed 

ensemble model, composed of five effective models, achieves an F1-score of 

97.77% and an accuracy rate of 97.5% on the IQ-OTH/NCCD test dataset. 

These findings highlight the effectiveness and dependability of our novel 

model in automating the classification of lung cancer, outperforming prior 

research efforts, streamlining diagnosis processes, and ultimately 

contributing to the preservation of patients' lives. 
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1. INTRODUCTION 

Cancer is a disease that manifests in many ways and is mostly linked to aberrant cell populations. 

These cancer cells keep dividing and expanding to become tumors. Lung cancer is cancer that poses the 

greatest risk to human life globally. As per the World Health Organization [1], lung cancer is the leading 

cause of mortality worldwide. In 2008, lung cancer accounted for 1.37 million deaths globally [2]. Based on 

the available data, lung cancer comprises the majority of new cancer diagnoses worldwide, with 1,350,000 

new cases, representing 12.4% of all new cancer cases. Additionally, it constitutes the majority of  

cancer-related fatalities, with 1,180,000 deaths, accounting for 17.6% of all cancer deaths [3]. Lung cancer 

ranked first among causes of death for men and third among causes of death for women in the Global Cancer 

Observatory database created by the International Agency for Research on Cancer (IARC) in 2018. The 

database encompassed rates of both incidence and mortality for 36 cancer types across 185 countries. Nearly 

1.8 million fatalities from cancer were recorded in 2018, accounting for about 18.4% of all cancer-related 

deaths [4]. Due to the alarming increase in lung cancer fatalities and the disease's excessively high incidence 

by nature, many studies focusing on cancer control and prompt identification methods have emerged to 

reduce mortality. 

https://creativecommons.org/licenses/by-sa/4.0/
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The potential of a successful cure for lung cancer is contingent upon the timely detection of the 

disease and the accuracy of diagnostic procedures. Effective diagnostic methods contribute to a reduction in 

the incidence of lung cancers, and the early identification of the ailment is fundamentally imperative for 

achieving a favorable prognosis in lung cancer treatment. Presently, there exist seven modalities for the 

management of lung cancer, which encompass cytology sputum and breath analyses, positron emission 

tomography (PET), magnetic resonance imaging (MRI), and chest radiographs (CXRs) [2]. It is noteworthy 

that CXRs, sputum cytology, and computed tomography (CT) scans entail exposure to ionizing radiation, 

while MRI and PET scans impose certain limitations on the precise identification and staging of lung cancer. 

It is essential to acknowledge that these diagnostic techniques are not without their inherent limitations. 

Furthermore, it is essential to consider that the administration of a serum test is an invasive medical 

procedure, and its limited capacity for early detection sensitivity and specificity renders it unsuitable as a 

primary diagnostic tool [5]. Conversely, the assessment of sputum necessitates additional investigation due to 

the presence of gene promoter methylation, as indicated by a study on www.ieeec.ir [5]. Despite this need for 

additional scrutiny, sputum analysis shows potential to facilitate timely identification of lung cancer. 

Additionally, volatile organic compounds (VOCs) detected in urine have demonstrated noteworthy sensitivity 

and specificity, although a larger sample size is necessary for more robust results [5]. Conversely, chest  

X-rays (CXR) exhibit relatively low sensitivity and are prone to producing false-negative outcomes, as 

reported in previous studies [6], [7]. Presently, the most dependable approach to detecting lung cancer is the 

utilization of CT imaging. This imaging modality offers precise information regarding the location and size 

of pulmonary nodules, enabling the early detection of cancerous growths. Low-dose CT screening has proven 

effective in identifying early-stage cancer tumors, resulting in a notable 20.0% reduction in mortality when 

compared to conventional radiographic techniques, and an increased rate of positive screening results [8]. 

Deep learning is a specialized branch of machine learning (ML), which itself falls within the larger 

field of artificial intelligence (AI). The overarching objective of AI is to furnish a collection of algorithms 

and methodologies designed to address problems that humans effortlessly and intuitively undertake but pose 

significant computational challenges. ML, as a discipline, is harnessed for the purpose of pattern recognition, 

with deep learning comprising a category of ML algorithms conceived by drawing inspiration from the 

structural and operational principles of the human brain. Deep learning endeavors to emulate the human 

perceptual process by establishing artificial neurons or nodes within layered architectures, which are capable of 

feature extraction from objects. This implies that when applied to image classification tasks, deep learning aims 

to discern patterns from a set of images for the purpose of distinguishing between diverse classes or objects. 

Significantly, the neural network's training process involves the automatic extraction of image features [9]. 

In the medical domain, specifically within the context of lung cancer diagnosis, the principal 

diagnostic technique relies on the examination of tissue samples. However, it is worth acknowledging that 

this diagnostic procedure entails a time-consuming process. Utilizing an array of deep learning models and 

transfer learning-based models, including ResNet50, EfficientNetB7, DenseNet169, VGG16, VGG19, 

Xception, and InceptionV3, applied to the lung cancer dataset IQ-OTH/NCCD, we introduce a deep learning 

methodology in this research to train and test the models at: https://www.kaggle.com/code/kerneler/starter-

the-iq-oth-nccd-lung-cancer-09c3a8c9-4/data. 

 

 

2. RELATED WORK 

The identification of pulmonary irregularities constitutes a substantial hazard to human well-being, 

and the timely recognition thereof assumes a pivotal role in risk mitigation. Timely diagnosis facilitates 

expeditious and efficacious intervention, thereby reducing potential complications and enhancing patient 

outcomes. Among the diagnostic modes, CT emerges as a noteworthy tool for detecting pulmonary 

abnormalities. Nevertheless, the interpretation of lung CT scans presents challenges, even for seasoned 

radiologists [10]. 

Over the past few years, investigators have delved into the application of deep learning 

methodologies to automate the diagnostic process for pulmonary irregularities, aiming to enhance diagnostic 

precision and potentially save lives. As an illustration, Asuntha and Srinivasan [11] introduced a pioneering 

approach termed fast and power-efficient system-on-chip convolutional neural network (FPSOCNN), 

showcasing the ongoing exploration of innovative methodologies in this domain. The FPSOCNN developed 

by [11] seeks to alleviate the computational intricacies inherent in conventional CNNs. In their study, they 

examined various feature extraction techniques, including Zernike moment, histogram of oriented gradients 

(HoG), wavelet transform-based features, local binary pattern (LBP), wavelet transform-based features, and 

scale invariant feature transform (SIFT). The proposed FPSOCNN methodology not only demonstrated 

outstanding achievement but also effectively addressed the computational complexities associated with 

traditional CNNs. In a separate study by [12] a multi-path CNN was introduced, leveraging contextual 

features, both local and broad, to identify lung cancer autonomously. By integrating this method, their model 

http://www.ieeec.ir/
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demonstrates increased adaptability in handling variations in nodule size and shape. This characteristic leads 

to enhanced detection results compared to modern state-of-the-art techniques [12]. A comprehensive 

demonstration of the use of computer-aided diagnosis (CAD) methods for the identification of early-stage 

lung cancer is presented in the study by [13]. Convolutional neural networks (CNNs), among various deep 

learning approaches, have been extensively applied to the tasks involving computer vision. The authors 

emphasize the superiority of 3-dimensional CNNs over 2-dimensional CNNs for improved effectiveness in 

detecting lung cancer. In contrast, Shyni and Chitra [14] highlight the widespread use of CNN as the primary 

deep learning algorithm for detecting COVID-19 from medical images. These articles not only promote the 

extensive adoption of CNN but also provide valuable insights, inspiring emerging researchers to create 

highly effective CNN models that use medical images to detect diseases early. In a distinct investigation, 

Rahman et al. [15] conducted a study utilizing CNN for tasks related to classification that involve two, three, 

and multiple classes. They employed electrocardiogram (ECG) signals as input, achieving promising 

outcomes in their experiments. Notably, they used the Grad-CAM method to pinpoint critical and particular 

areas in the input signals, thereby facilitating informed decision-making during the classification process 

[15]. Gifani et al. [16] conducted research wherein they devised an assemblage deep learning model for the 

automated identification of COVID-19 from CT scans. Employing CNN alongside transfer learning 

techniques, the researchers integrated 15 pre-trained CNN models, leveraging the collective expertise and 

capabilities. The ensemble access resulted in enhanced robustness and accuracy in the identification of 

COVID-19 from CT scans. In their study, Dorj et al. [17] concentrated on lung cancer classification using 

error-correcting output codes support vector machine (ECOC SVM) and deep convolutional neural network 

(DCNN). An ECOC SVM classifier was employed for categorizing several types of lung cancer, with the 

algorithm applied to a dataset comprising 3753 images representing four lung cancer types. The 

implementation yielded notable accuracy, sensitivity, and specificity, with peak values reported as 94.17% 

for squamous cell carcinoma, 98.9% for actinic keratosis, and, 95.1% for squamous cell carcinoma, 

respectively. A DCNN model was proposed by [18], employing a deep learning approach for precise 

classification between benign and malignant lung lesions. With a testing accuracy of 91.93% and a training 

accuracy of 93.16%, the evaluation of the HAM10000 dataset revealed remarkable results. These results 

highlight how well the DCNN model distinguishes benign from malignant lung lesions. 

Pal et al. [19] created an interpretable ML model for lung cancer detection called AI CAD. Integrating 

explainable artificial intelligence (XAI) mechanisms, the model furnishes comprehensive explanations for 

crucial features identified by the AI/ML algorithms. Encouraging confidence in its application, the model of AI 

CAD demonstrated excellent interpretation in detecting lung cancer. The models were constructed using diverse 

algorithms, including k-nearest neighbors (KNN), support vector machine (SVM), gradient boosting machine 

(GBM), XGBoost, random forest classifier (RFC), and feed-forward architectures. The interpretability of 

models with superior performance in neural networks was highlighted through XAI outputs, revealing that these 

models prioritized a consistent set of input features with elevated importance. 

An interpretable system for diagnosing lung cancer was created in the work of [20] utilizing 

numerous models of ML, including naive Bayes classifier, logistic regression, decision tree, and random 

forest. Based on a dataset of lung cancer cases, the analysis yielded a 97% accuracy rate. However, it is 

noteworthy that the validation of the model was restricted to a CSV file, lacking image validation. In order to 

increase interpretability, XAI techniques like lime and SHAP were used. Bhandari et al. [21] introduced a 

deep learning model that was validated using a dataset to predict four categories comprising visuals of 7132 

CXR. The model, leveraging Grad-CAM, SHAP, and LIME methods for interpretation through 10-fold 

cross-validation, achieved an average of 94.54% (±1.33%) validation accuracy and 94.31% (±1.01%) of test 

accuracy. To determine biomarkers in non-small-cell lung carcinoma (NSCLC) subtypes, Dwivedi et al. [22] 

suggested a framework of XAI-based deep learning. The framework incorporated an autoencoder, a 

biomarker discovery module, and a classification neural network. 52 related biomarkers were discovered 

using XAI techniques; of these, 14 were druggable and 28 were survival predictive. 95.74% accuracy in 

NSCLC subtype classification was attained with the multilayer perceptron. We recommend utilizing CNN 

models in our approach and several transfer learning-based architectures, including ResNet50, VGG19, 

DenseNet169, and InceptionV3, for lung cancer classification tasks. Additionally, we employ an ensemble 

approach by combining various model combinations to enhance the overall performance of cancer detection. 

 

 

3. DATASET 

To assess the effectiveness of our proposed model, we utilized the IQ-OTH/NCCD lung cancer 

dataset [23] which comprises 2073 CT images from 110 patients, including both those in good health and 

those who have been diagnosed with lung cancer. This dataset was gathered at the Iraq-Oncology Teaching 

Hospital/National Center for Cancer Diseases during three months in 2019. A Siemens scanner in DICOM 
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format was used to obtain the CT scans and each scan contained 80–200 slices with a 1mm slice thickness.  

In order to guarantee diversity, the dataset was collected from diverse regions in Iraq, which represent a 

range of demographics. The study was approved ethically by the institutional review board, ensuring the 

rights and privacy of participants are upheld during the process of collecting data. 
 

 

4. METHOD 

The thorough methodology employed in this study is described in this section. Figure 1 shows the 

schematic workflow of our procedure, giving detailed steps of the experimental procedure. Several preprocessing 

techniques are compared to structural data and taken into consideration when discussing image data. By scaling 

data and reducing computational complexity, these techniques help to decrease modeling costs while increasing 

the quantity or quality of the dataset. Since the use of deep learning has increased, scientists have worked on this 

problem, and nowadays there are a variety of approaches to dealing with this aspect. Preprocessing procedures 

are used in this work to get the data in Figures 2(a) and 2(b) ready for use in our deep learning models. The 

following actions were required to guarantee the data's compatibility and enhance its quality:  

− Data augmentation: to address the imbalanced nature of the dataset, data augmentation is employed. This 

involves the creation of new images using techniques such as cropping, rotating, flipping, and zooming. 

In this study, a two-phase augmentation approach is implemented. Initially, various techniques, including 

rotating, zooming, random distortion, contrast and brightness adjustments, random cropping, and flipping, 

are applied to images in the malignant class across the training, validation, and test sets. Subsequently, 

random flipping in both horizontal and vertical directions is applied to images in both classes, ensuring a 

diverse set of images to aid model generalization. 

− Image size standardization: the chosen CNN architecture can accommodate images of varying sizes; 

however, for transfer learning, it is advisable to align with pre-trained models that typically process 

images in 224×224 dimensions. Therefore, the image size is reduced to 224×224, enabling a direct 

comparison with pre-trained models and reducing computational overhead. Subsequently, normalization 

is applied to further streamline computational complexity. 

− Data normalization: in order to prepare datasets for further analysis and modeling, data normalization is 

an essential step. A spectrum of techniques is available for normalization, encompassing min–max 

normalization, z-score normalization, and decimal scaling normalization [24]. Data normalization is 

primarily used to improve data quality, make data comparable across various records and fields, and 

improve entry type uniformity and consistency. 

− Conversion of data: the LIDC-IDRI dataset's CT scans were converted from their original DICOM format 

to the more commonly used NIfTI format. This conversion was imperative to ensure harmonization 

between our deep learning framework and the data, facilitating smooth integration and processing [25]. 

In the realm of modeling, two approaches are available: the implementation of a CNN architecture 

from scratch or the utilization of transfer learning. The former is typically favored when an ample amount of 

data is available, ensuring that the risk of overfitting is minimized. Conversely, the latter is employed in 

scenarios characterized by data scarcity or the imperative to reduce modeling costs. Transfer learning 

leverages pre-trained models, benefiting from weights derived from extensive training on diverse datasets 

encompassing thousands of classes, thereby reducing the requisite number of training epochs. 

 

 

 
 

Figure 1. The proposed methodology 
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(a) 

 

 
(b) 

 

Figure 2. Diagnostic imagery: (a) input CT images and (b) preprocessed images 

 

 

Since the advent of AlexNet in 2012, which demonstrated superior accuracy over traditional ML 

algorithms, CNNs have become pervasive. This deep feed-forward architecture finds wide applications in 

image classification, image segmentation, and object detection. In medical imaging datasets, where precision 

is crucial for human life, conventional ML algorithms often fall short. Subsequent to the introduction of 

AlexNet, substantial research efforts have been dedicated to innovatively investigating and implementing 

CNNs, resulting in models exhibiting superior performance even in comparison to AlexNet. 

A standard CNN model comprises one or few convolutional and pooling layers for feature 

extraction as shown in Figure 3, culminating in one or more fully connected layers for generating classified 

outputs. To extract features from every visual, the convolutional layer convolves it using a learnable kernel. 

The kernel, represented by a matrix of discrete weights, is initialized randomly and updated iteratively to 

minimize errors. The stride parameter governs the kernel's movement through the image, with values updated 

through a computational process. The output of a convolutional layer, known as a feature map, is 

subsequently forwarded to the next layer as input. 

The output size (ℎ𝑛𝑒𝑤 × 𝑤𝑛𝑒𝑤 × d) of a convolutional layer is computed using the formula: 

 

ℎ𝑛𝑒𝑤 =
ℎ − 𝑓 + 2𝑝

𝑠
+  1 (1) 

 

𝑤𝑛𝑒𝑤 =
𝑤 − 𝑓 + 2𝑝

𝑠
+  1 (2) 

 

Where h and w are the height and width of the input image, respectively. f is the size of the filter (or kernel). 

p is the amount of zero-padding applied to the input image (if any). s is the stride of the convolution. 

 

 

 
 

Figure 3. Sample convolutional neuron network 
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As the depth of a CNN increases, more details can be extracted, resulting in increased accuracy. 

However, a trade-off exists, as deeper architectures demand more computational processes, thereby incurring 

higher costs. The optimal number of layers necessitates careful consideration, as excessive depth may not 

always translate to improved performance compared to shallower architectures. 

In the subsequent stages of neural network operations, error calculation becomes imperative.  

Post-output generation, the loss function is employed to compare estimated labels with true labels, facilitating 

error assessment. Common loss functions include cross entropy, euclidean, and hinge. Weight updates for 

subsequent epochs are orchestrated by optimizer functions, with Adam being a widely adopted choice. This 

iterative process is repeated across epochs, allowing for error comparison with the best previous epoch and 

saving model improvements when observed. An illustrative figure of a CNN with two hidden layers, featuring 

kernel sizes of (9×9×1) and (5×5×4) in the first and second layers, respectively, is provided for reference. 

 

 

5. TRANSFER LEARNING 

Deep learning algorithms, notably CNNs, demonstrate exceptional performance when confronted 

with a substantial volume of images per class. However, the computational demands imposed by extensive 

layer usage can result in protracted training times, spanning days or weeks on contemporary hardware. This 

becomes particularly impractical for numerous problem domains, especially those pertaining to medical 

applications. Consequently, adopting a transfer learning paradigm, wherein precomputed weights from a  

pre-trained model on analogous data are repurposed, proves advantageous in terms of cost efficiency. This 

approach leverages knowledge gleaned during the prior training of a model on comparable datasets. For 

example, a model initially trained for histopathology image-based cancer diagnosis can be repurposed for 

lung cancer diagnosis by transferring the acquired weights. 

Transfer learning finds utility across multiple domains, including natural language processing 

(NLP), sound, image, and video processing. In the context of CNNs, the training process begins by 

discerning image edges and borders, progressing to shape identification. Deeper layers capture increasingly 

intricate details, culminating in attempts to classify images based on assigned labels. Subsequently, 

employing transfer learning involves utilizing the initial layers responsible for feature extraction while 

retraining the model's latter layers with new data. In this study, CNN models and several transfer learning-

based architectures, including ResNet50, VGG19, DenseNet169, and InceptionV3. 

 

5.1.  ResNet50 

The architecture is separated into two blocks, each with a skip connection. The output of the 

previous block is summed with the current block’s output, and the activation function is applied to  

f(x) + x rather than just f(x). This generates the block's output, which is then forwarded to the subsequent 

block. In ResNet 50, three convolutional layers are utilized with a specific configuration, as illustrated in 

Figure 4, instead of the typical two convolutional layers. 

 

 

 
 

Figure 4. Residual block 

 

 

5.2.  VGG19 

The VGG19 neural network architecture comprises 19 layers and features a substantial number of 

parameters. The model's size, specifically in terms of fully connected nodes, is 574MB. An increase in the 

number of layers typically correlates with enhanced accuracy in deep neural networks (DNNs). The VGG19 

architecture includes 19 trainable convolutional layers, which are interspersed with max pooling and dropout 

layers, as depicted in Figure 5. 

VGG19 is highly advantageous due to its use of a series of 3×3 ConvNet to increase network depth. 

To reduce feature map dimensions, max-pooling layers are incorporated. The fully connected network (FCN) 
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comprises two layers, each containing 4096 neurons. VGG19 was trained on individual lesion samples, while 

for testing, all lesion types were included to minimize the occurrence of false positives. 

 

 

 
 

Figure 5. VGG19 architecture 

 

 

5.3.  DenseNet169 

The DenseNet architecture is composed of multiple dense blocks, which are interconnected by 

transition blocks that consist of convolutional and pooling layers. Each dense block is structured from several 

units containing convolutional layers, where each unit receives the outputs of all preceding units with the 

same feature map size. Unlike ResNet, which performs summation on the outputs, DenseNet concatenates 

them. Figure 6 illustrates the structure of a dense block with a growth rate of k =4. In this context, 'k' 

represents the number of feature maps generated by the function H. If each H function produces k feature 

maps ‘k’ feature maps, then the n-th layer will have k0+k×(n−1) input feature maps, where k0 denotes the 

number of channels in the input layer. 

 

 

 
 

Figure 6. DenseNet block with a growth rate of k=4 

 

 

5.4.  InceptionV3 

As shown in Table 1, this architecture includes a stem block consisting of six convolutional layers, 

each with a 3×3 kernel size, with a pooling layer following the third convolutional layer. Padding is set to 

zero for the specified convolutional layers, while for the others, no padding is applied. To reduce grid size,  

a reduction method is employed between Inception blocks. The architecture has a depth of 42 layers and 
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incurs a computational cost 2.5 times higher than GoogleNet, though it remains significantly more efficient 

than the VGG architecture. The primary distinction between Inception v2 and v3 lies in the factorization of 

convolutions, which reduces the number of parameters without affecting network performance. For example, 

replacing a 5×5 convolutional layer with two 3×3 layers allows the network to extract features similarly 

while reducing computational complexity and model cost. 

 

 

Table 1. Architecture of inception V3 
Type Patch size/stride or remarks Input size 

conv 3×3/2 299×299×3 

conv 3×3/1 149×149×32 

conv padded 3×3/1 147×147×32 
pool 3×3/2 147×147×64 

conv 3×3/1 73×73×64 

conv 3×3/2 71×71×80 
conv 3×3/1 35×35×192 

3×Inception Inception blok A 35×35×288 

5×Inception Inception blok B 17×17×768 
2×Inception Inception blok C 8×8×1280 

pool 8×8 8×8×2048 

linear logits 1×1×2048 
softmax classifier 1×1×1000 

 

 

6. ENSEMBLE APPROACH 

Ensemble learning involves amalgamating the outcomes of multiple models, which may employ 

identical or distinct algorithms. This field encompasses various techniques categorized into three primary 

groups: bagging, boosting, and stacking. Bagging entails aggregating the results of a single model trained 

iteratively on diverse datasets. Boosting combines the outputs of multiple models, while stacking integrates 

elements of both approaches. 

In this study, the boosting technique will be implemented. Following the training of CNN, 

ResNet50, VGG19, DenseNet169, and Inception v3 models, predictions will be made on images within the 

validation and test datasets. Subsequently, a max voting technique will be applied, leveraging the sum 

function, as the outcomes are confined to the [0, 1] class range. The class with the highest vote count will be 

selected. This approach serves to mitigate variance and enhance error generalization. 

 

 

7. EVALUATION 

When dealing with supervised problems, we can evaluate the model in two different ways. First, 

data must be divided into training and testing sets. Next, the model must be trained using the training sets, 

and test dataset labels must be predicted using the trained model. This allows us to compute the errors by 

comparing the predicted results with the true values. K-Fold cross-validation is the second process. To train 

the model in this scenario, the data will be split into K subsets, with the exception of one that will be kept out 

for assessment. After each training round, we compute matrices, and the optimal model will ultimately be 

chosen. Though it requires a lot more computation and money than deep learning, this approach is superior to 

the previous one. Due to the huge amount of computation in networks, it is not advised unless it is affordable. 

 

 

8. RESULTS AND DISCUSSION 

For results analysis, to make the results more appropriate for our purpose, which is minimizing the 

incorrect classifications, we computed the confusion matrix, which displays the number of correct and 

incorrect classifications. Additionally, the confusion matrix-assisted in determining all of the significant 

metrics; precision, accuracy, F1 scores, and recall were computed for each architecture. 

 

8.1.  Ensemble 5 models CNN, ResNet50,VGG19, DenseNet169, and InceptionV3 

An ensemble model is a combination of multiple individual models to achieve better predictive 

performance. The idea is that by combining the strengths of multiple models, the ensemble can capture a 

broader range of features and reduce errors. In this method, CNN, ResNet50, VGG19, DenseNet169, and 

InceptionV3 models were chosen. After averaging their predictions, the performance metrics for the test 

dataset were as follows: 97.5% accuracy, 96.8% precision, 96.9% recall, and 97.77% F1-score. 
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8.2.  Comparisons with other works 

This section compares our proposed model's performance with a number of state-of-the-art methods 

that have been put forth for using microscopic images to identify lung cancer. Table 2 compares the results of 

the corresponding introduced method with several state-of-the-art techniques described in the literature 

review. The study compares the proposed model's performance to the state-of-the-art models for the detection 

and categorization of lung cancer. 

 

 

Table 2. Performance comparison between our proposed model and existing models across diverse datasets 
References Dataset Model Recall Accuracy 

Maftouni et al. [26] COVID19-CT Ensemble + SVM 90.80 95.31 

Gifani et al. [16] COVID19-CT CNN + LSTM 85.50 85.50 

Bhandar et al. [21] CR Custom CNN 96.56 94.31 
Chen et al. [27]v IQ-OTH/NCCD CNN + NLP 87.5 88.0 

Ali et al. [18] HAM10000 DCNN 93.66 91.93 

Al-Yasriy et al. [28] IQ-OTH/NCCD CNN: AlexNet architecture 93.23 93.54 
Proposed model  IQ-OTH/NCCD Ensemble 5 Models CNN, ResNet50, 

VGG19, DenseNet169, and InceptionV3 

97.77 97.5 

 

 

This work aimed to improve performance by using four different ensemble approaches and a 

customized CNN trained on microscopic images of lung cancer. The accuracy results of all models are 

compared in Table 2. On test data, the ensemble of the top four models had the highest accuracy. A COVID-

19-CT dataset comprising 7,593 images sourced from seven publicly available datasets, encompassing data 

from 466 patients is provided by Maftouni et al. [26] through the use of an ensemble deep learning model 

utilizing pre-trained residual attention and DenseNet architectures, Gifani et al. [16] employed an ensemble 

deep transfer learning system, leveraging diverse pre-trained CNN architectures, to achieve effective 

diagnosis of COVID-19 from CT scans. 

On the other hand, a novel lightweight single CNN model for COVID-19 image classification using 

CXR images was proposed in [21]. Furthermore, on the test dataset, all of the ensemble models outperformed 

single models in terms of accuracy. The ensemble model of the top four models, which had an accuracy of 

97.5.3%, was the best model in the dataset validation scenario. In addition to tuberculosis and pneumonia, an 

explanation generation (XAI) framework is used. The detection of COVID-19, pneumonia, and tuberculosis 

diseases using such an XAI-based single CNN model produced training accuracy of 95.76±1.15%, test 

accuracy of 94.31±1.01%, and validation accuracy of 94.54±1.33%. 

Basic and benchmark CNN architectures were applied by Chen et al. [27], who were known to employ 

any parameter optimization technique. Even though the majority of his study's results are intriguing and achieve 

an accuracy of 88.0%, we observe that these models will perform poorly if performance tilting conditions are 

added. Additionally, a DCNN model based on a deep learning approach was proposed by Ali et al. [18] for 

precise categorization of benign and malignant skin lesions. The model was assessed using the HAM10000 

dataset and attained impressive outcomes with a testing accuracy of 91.93% and a training accuracy of 

93.16%. Al-Yasriy et al. [28] used the same dataset that we used in our proposed model using CNN-AlexNet 

architecture and achieved an accuracy of 93.548%, a sensitivity of 95.714%, and a specificity of 95%. 

Our proposed hybrid models; CNN, ResNet50, VGG19, DenseNet169, and InceptionV3, gave 

performance metrics, after averaging prediction of selected models, of 97.5% accuracy. Consequently, this 

study has shown how crucial it is to solve the challenging task of choosing the ideal set of weights and biases 

needed for training a CNN model by utilizing the hybrid metaheuristic ensemble algorithm and CNN models 

[29]. Furthermore, the method demonstrates that amalgamating these approaches enhances the accuracy of 

classification and overall performance when classifying lung cancer in CT images. 

 

 

9. CONCLUSION  

Using a CNN model and four different ensemble approaches, this study presents a novel hybrid 

algorithm to increase the accuracy of lung cancer classification. To ensure a robust and accurate comparison 

of results, the experimental procedure involved partitioning the dataset into test sets, validation and training. 

During the training phase, model validation was performed using a dedicated validation dataset. Following 

the training process, predictions were generated for both the validation and test. The models were trained 

using a customized CNN model, along with several pre-trained transfer learning architectures, namely 

ResNet50, VGG19, DenseNet169, and InceptionV3. Subsequently, this ensemble approach was employed to 

address model weaknesses and enhance overall performance. Multiple models were combined and merged 
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using the average ensemble technique. The optimal combination, identified as a blend of the top five models, 

was chosen as the proposed hybrid model. This work can be extended to implement with different datasets 

and using 3D CNNs or volumetric segmentation for 3D medical images. 
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