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 Cardiac arrhythmias are a leading cause of morbidity and mortality 

worldwide, necessitating accurate, and timely diagnosis. This paper presents 

a novel approach for the classification of cardiac arrhythmias using a penalty 

regression function (PRF)-based deep convolutional neural network (DCNN). 

The proposed model integrates advanced preprocessing techniques, including 

frechet with fitness rank distribution-based anas platyrhynchos optimization 

(FFRD-APO) for feature selection and ensemble empirical mode 

decomposition (EEMD) for signal decomposition. Utilizing the St. Petersburg 

INCART 12-lead arrhythmia database, the PRF-DCNN model achieved 

superior performance metrics: an area under the curve-receiver operating 

characteristic (AUC-ROC) of 0.97, accuracy of 0.95, precision of 0.93, recall 

of 0.92, specificity of 0.97, and an F1 score of 0.93. The PRF effectively 

mitigated overfitting, ensuring robust and reliable classification across varied 

patient demographics. The model demonstrated significant improvements 

over traditional methods, offering an efficient solution for real-time cardiac 

monitoring and diagnosis. This study underscores the potential of PRF-DCNN 

in enhancing automated arrhythmia detection and lays the groundwork for 

future research to optimize and validate this approach in diverse clinical 

settings.  
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1. INTRODUCTION  

The cardiovascular system is an essential physiological system in the human body, consisting of the 

heart and a complex network of blood vessels [1]. This system is accountable for the complex synchronization 

of multiple organs and tissues to preserve circulatory function. Cardiovascular diseases (CVDs) are the primary 

cause of death globally, with over 17 million fatalities reported each year, as stated by the World Health 

Organization (WHO) [2]. Remarkably, almost 75% of these fatalities take place in low- and middle-income 

nations, emphasizing the pressing requirement for timely detection to avert deaths [3]. The electrocardiogram 

(ECG) is a highly utilized diagnostic technique for assessing cardiac function. An ECG records the heart's 

electrical signals using electrodes attached to the skin, creating a visual picture of the heart's electrical activity 

[4]. The essential elements of the ECG signal consist of the P wave, the Q wave, and the QRS complex. These 
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aspects are vital for identifying cardiac disorders, as they provide significant information about the heart's 

rhythm and electrical conduction. It is crucial to do precise analysis of various ECG components, especially 

the intervals, forms, and interactions between the P wave, Q wave, and QRS complex, to identify cardiac 

problems [5]. Nevertheless, the process of manually analysing ECGs by healthcare practitioners can be  

time-consuming and susceptible to mistakes, which could result in the incorrect categorization of diseases. 

Hence, there is a substantial requirement for automated and accurate techniques to evaluate ECG signals, 

thereby enhancing the precision and efficiency of diagnosing cardiac arrhythmias. 

Cardiac arrhythmias refer to a collection of disorders characterized by abnormal heartbeats, which 

may present as the heart beating extremely fast, abnormally slowly, or with an irregular pattern [6]. Cardiac 

arrhythmias can have a profound effect on a person's well-being, including symptoms like irregular heartbeats, 

light-headedness, difficulty breathing, and, in severe cases, sudden cardiac arrest. Cardiac arrhythmias become 

more common as people get older, and they are a major cause of illness and death globally [7]. Atrial fibrillation 

(AF), ventricular tachycardia (VT), and bradycardia are different types of irregular heart rhythms that range in 

severity and have different implications for patient health. Precise identification and categorization of 

arrhythmias are essential for prompt and efficient treatment. Incorrect diagnosis or delayed diagnosis can result 

in serious complications, such as stroke, cardiac failure, and even mortality. As a result, the development of 

dependable diagnostic instruments and techniques for identifying arrhythmia has become a central focus of 

cardiovascular research. Early identification is the key to successful care and complication prevention with 

cardiac arrhythmias. The ECG is the gold standard for diagnosing arrhythmias. It is a non-invasive examination 

that monitors the heart's electrical activity. Because arrhythmias can manifest in subtle and complicated 

patterns that less experienced practitioners may miss, interpreting ECG signals requires substantial 

competence. There is a pressing need for automatic and precise arrhythmia detection systems due to the 

explosion in the number of ECG monitoring equipment, both stationary and portable, which has raised the 

overall amount of ECG data. Clinicians can benefit from these systems because they offer preliminary 

evaluations, which increase diagnostic accuracy and decrease provider workload. Additionally, automated 

methods guarantee objective and consistent analysis, which is essential for therapeutic decision-making. From 

more conventional signal processing methods to state-of-the-art machine learning (ML) and deep learning (DL) 

algorithms, many approaches have been devised for the automated detection of arrhythmias in ECG signals 

[8]–[10]. An important part of older methods that relied on domain-specific information was figuring out what 

the ECG signal, which includes QRS complexes, P waves, and T waves. These features fed support vector 

machines (SVM) [11], k-nearest neighbors (k-NN) [12], and decision trees [13], among other conventional 

classifiers. Although there was some success with older approaches, they frequently had trouble generalizing 

to other patient populations and dealing with different degrees of noise in ECG recordings. Additionally, the 

intricate temporal dynamics of the ECG data could elude manual feature extraction due to its labour-intensive 

nature. DL techniques, such as convolutional neural networks (CNNs), have greatly improved automatic 

arrhythmia identification recently [14]. It is no longer necessary to manually extract characteristics from raw 

ECG data. When it comes to classifying ECG, they have reached the pinnacle of performance. Nevertheless, 

there are still obstacles to overcome with CNN-based algorithms, even though they have been successful. These 

include computational cost, the need for huge, annotated datasets, and the risk of overfitting. 

To overcome the drawbacks of previous methods, this research presents a new strategy for classifying 

cardiac arrhythmias using ECG signals. The strategy integrates a penalty regression function (PRF) [15] and a 

deep convolutional neural network (DCNN). To make the model more generalizable and resilient, PRF is 

added. This function prevents overfitting a typical problem in DL models trained on small datasets and 

penalizes overly complicated models. The DCNN architecture efficiently captures the spatial and temporal 

characteristics of an ECG signal. Using numerous convolutional layers, the network can detect local patterns 

linked to various arrhythmias. We employ pooling layers to decrease computational complexity and 

dimensionality without sacrificing critical information. At the very end of the network, there are fully linked 

layers that combine all the learned information to generate final predictions. Integrating the PRF with the 

DCNN helps strike a balance between model complexity and generalization. The goal of this combined strategy 

is to make the model more resistant to changes in ECG signals across patients and recording circumstances, 

while simultaneously increasing classification accuracy, which is particularly important when training data is 

scarce. The main goal of this research is to create and test a system that uses ECG signals to accurately classify 

cardiac arrhythmias using a PRF-DCNN. This study contributes primarily to the following directions: To 

improve the accuracy and robustness of arrhythmia classification, we provide a new approach that merges the 

best features of DCNNs with PRFs. Our method is capable of effectively identifying several prominent 

arrhythmia classes, including AF, VT, ventricular fibrillation (VF), premature ventricular contraction (PVC), 

and various degrees of atrioventricular (AV) block. By leveraging the comprehensive St. Petersburg Institute 

of Cardiological Technics (INCART) 12-lead arrhythmia database, we can assess the proposed method's 

performance by comparing it to current state-of-the-art approaches and running comprehensive tests on 
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standard ECG datasets. Additionally, we enhance the interpretability of the model by analysing DCNN-learned 

features, which uncover significant ECG signal characteristics that differentiate between different arrhythmias. 

By exploring these goals, this research aims to advance cardiac arrhythmia detection and aid in the creation of 

reliable automated diagnostic tools that doctors can use to provide timely and accurate treatment to patients 

with these conditions. 

 

 

2. RELATED WORKS 

Computer vision, voice recognition, signal analysis, classification, picture and pixel analysis, 

risk analysis, and natural language processing are just a few of the many areas that have seen substantial success 

with DL approaches. Within the field of ECG interpretation, numerous algorithms employ DL methodologies 

to leverage their robust capabilities in extracting and analysing information from ECG time series data. The 

proposed approach improves the accuracy of detecting and classifying cardiac abnormalities. Unlike 

conventional approaches, specific DL techniques eliminate the requirement of manual feature selection and 

extraction. Instead, they offer automatic feature selection, resulting in superior performance [16]–[20]. The 

existing body of literature has presented a comprehensive examination of the various techniques and 

approaches used for arrhythmia detection and classification until the year 2019 [21], [22]. Nevertheless, it is 

worth mentioning that there is a significant dearth of all-encompassing surveys that encompass the progress 

achieved in recent years, particularly extending beyond the year 2022 [23]. However, they lack the ability to 

provide comprehensive and comparative chronological analyses. Using discrete wavelet transform (DWT), 

median filtering, and different classifiers together can help find cardiac arrhythmia accurately and quickly. The 

methods employed in [24] utilize data from the Massachusetts Institute of Technology-Beth Israel Hospital 

(MIT-BIH) arrhythmia database. We found the performance metrics of these methods impressive, with an 

accuracy of 99.51%, precision of 99.28%, specificity of 99.63%, and sensitivity of 99.28%. The findings 

suggest that the employed techniques demonstrate effectiveness in the automated classification of cardiac 

arrhythmia. The approach primarily relies on RR intervals and statistical features, which may not 

comprehensively capture other relevant intervals associated with the disease, potentially resulting in 

misclassification. 

Arrhythmias were classified using 2D recurrence plot images of ECG signals in conjunction with a 

CNN. The datasets utilized in [25] consisted of the MIT-BIH arrhythmia database, Creighton University 

ventricular tachyarrhythmia database, MIT-BIH AF database, and MIT-BIH malignant ventricular ectopy 

database. The testing accuracies achieved by this approach were up to 95.3% ± 1.27% and 98.41% ± 0.11%. 

The transformation of ECG data into images using recurrence plots significantly enhanced the accuracy of 

arrhythmia classification. The framework encountered difficulties in terms of computational complexity and 

memory requirements because of the parameters initialized in these approaches. Rahul et al. [26] utilized an 

improved deep residual network with the MIT-BIH database to enhance the performance of cardiac arrhythmia 

classification. The classification achieved an accuracy of 88.9%. The objective of this approach is to attain a 

high level of classification performance within the inter-patient paradigm. Because of the limited number of 

heartbeat segments considered in the analysis, the classification accuracy was relatively low. The automated 

diagnostic system for cardiac arrhythmias utilizes a three-stage feature selection methodology in conjunction 

with a classification algorithm. Using the MIT-BIH dataset, the system achieves an accuracy of 98.82%. The 

described method effectively reduces feature dimensionality while simultaneously improving arrhythmia 

classification performance. However, the limited number of feature combinations considered reduces the 

classification accuracy at each stage [27]. Zhang et al. [28] utilized a novel approach to enhance accuracy in 

the classification of cardiac arrhythmia disease. This approach involved combining recurrence plots with the 

Inception-ResNet-v2 network. The method employed the PTB_XL ECG databases and achieved a notable  

F1 score of 0.923. They achieved such a remarkable level of performance by utilizing solely two-lead ECG 

data, thereby eliminating the need for complete 12-lead ECG recordings. It is worth mentioning that there was 

a data imbalance, which has the potential to affect the performance of the system. 

The current research methodologies encounter various challenges when dealing with ECG signal 

characteristics. Factors such as age and gender influence these characteristics, including period and amplitude, 

which exhibit significant variations among individuals. Several existing studies on arrhythmia classification 

fail to consider these variations, which could potentially result in misclassification. Research specifically 

addressing the various gender categories has been insufficient. Most current methods predominantly rely on 

RR intervals and statistical features. However, other intervals frequently correlate with arrhythmias. Failure to 

address these issues may lead to the generation of incorrect classifications. The initialization parameters 

significantly increase the computational complexity and memory demands of existing approaches, posing 

challenges for efficient implementation. The precise determination of the ECG wave's endpoint, specifically 

the J-elevation point, is of utmost importance. Nevertheless, contemporary research frequently disregards the 

significance of this aspect, potentially compromising the precision of arrhythmia detection and classification.  
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3. PROPOSED METHODOLOGY 

An ECG is a graphical representation of the heart's electrical activity throughout each cardiac cycle. 

A time-series visual display records it. The morphological characteristics of a subject can provide insight into 

potential arrhythmia symptoms. The establishment of an efficient remote real-time monitoring system is of 

utmost importance due to the abrupt and uncertain characteristics of heart disease. The system has the capability 

to expand its usage beyond the hospital environment, enabling the continuous monitoring of patients' ECG 

signals and the prompt detection of abnormal cardiac changes. This functionality plays a crucial role in the 

prevention and treatment of CVD. 

 

3.1.  Dataset and preprocessing steps 

The research utilizes the St. Petersburg INCART 12 dataset. Cardiovascular researchers widely 

recognize and use the St. Petersburg INCART 12-lead arrhythmia database, particularly for studies that focus 

on identifying and categorizing arrhythmias. This database includes comprehensive ECG recordings that offer 

valuable insights for the development and evaluation of automated diagnostic systems. The Institute of 

Cardiological Technics in St. Petersburg, Russia, and PhysioNet collaborated to develop the database. The 

package consists of 75 annotated recordings, each lasting for 30 minutes. Every recording includes 12 standard 

leads: I, II, III, aVR, aVL, aVF, V1, V2, V3, V4, V5, V6. The signals are sampled at a high frequency (HF) of 

257 Hz, which ensures that the data is of excellent quality and can be thoroughly analysed. The database offers 

annotations for a range of arrhythmias and other important events, serving as a valuable resource for validating 

the accuracy of automated classification systems. 

 

3.1.1. Removing baseline wander 

This paper presents a method for classifying cardiac arrhythmia diseases using a PRF-DCNN. The 

process initiates with a pre-processing stage aimed at eliminating baseline wander and artifacts. The correlation 

factor (CF)-based extended Kalman filter (EKF) algorithm achieves this. The standard EKF is known for 

improving convergence in the noise removal process by finding covariance and adjusting for changes in 

frequency. However, it falls short of adequately addressing the magnitude of these frequencies. This limitation 

has the potential to result in higher error values when performing noise removal. To tackle this issue, our 

research methodology incorporates a CF. This factor is then multiplying this factor by the derivative, which 

leads to enhanced filter accuracy. this enhancement is to effectively remove noise and artifacts from the ECG 

signals. The block diagram of proposed innovative model is presented in Figure 1. 

 

 

 
 

Figure 1. Block diagram of proposed model 

 

 

3.1.2. Partitioning data based on gender and age 

Partitioned the pre-processed signal into two distinct groups based on gender to achieve lower 

computational complexity. This approach takes into consideration the differences in heartbeats between males 
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and females. This research utilizes the farthest first clustering (FFC) algorithm for the specified purpose. 

Widely recognized for its high computational efficiency, the fast fourier transform (FFT) algorithm is an 

excellent choice for minimizing time complexity in the context of this study. One potential concern with FFC 

is the initial random selection of centroids, which has the potential to result in outliers. 

The study proposes an age weight average (AWA)-based method for initial centroid selection. The 

proposed methodology involves multiplying each value in the dataset by the individual's corresponding age. 

The resulting products are aggregated by summing them together. This sum is then divided by the total weight 

of the products to calculate an average value. This average value is then designated as the first centroid. The 

algorithm proceeds by selecting the farthest points from the initial centroid. The clustering method has been 

refined and is now referred to as the AWA-FFC algorithm. After the clustering process, the signal is subjected 

to decomposition using the ensemble empirical mode decomposition (EEMD) method. The choice of EEMD 

is based on its ability to generate multiple intrinsic mode functions (IMFs), which aids in minimizing confusion 

during the disease diagnosis process. The accuracy and reliability of the diagnosis are enhanced by producing 

more independent component models using the EEMD technique. 

 

3.1.3. Attributing important points in the electrocardiogram signal 

Used Pan Tompkins algorithm (PTA) in conjunction with threshold values to identify peaks from the 

decomposed signal. The described method enables accurate identification of important points in the ECG 

signal. The detected peaks are used We use the detected peaks to extract various features, including the power 

of the very low frequency (VLF) band, the low frequency (LF) band, and the HF band. Calculates the total 

power of all bands, determines the percentage of VLF and HF power, normalizes the HF and LF bands, and 

computes the ratio of LF to HF. The additional features obtained from the peaks consist of peak frequency, 

maximum peak interval, minimum peak interval, mean peak interval, standard deviation of peak intervals, 

mean squared difference between intervals, mean value, kurtosis, and standard deviation. The RR intervals, 

PR intervals, QT intervals, and R peak values are extracted. Additionally, extracted the sinotubular junction 

(STJ) point from the peaks, which is crucial in identifying specific cardiac events. In addition, the features of 

absolute area (ArDiff) and maximal cross-correlation coefficient (Maxcorr) are extracted from the peaks by 

utilizing a reference signal. These features improve the analysis by offering extra data points that capture the 

different variations in the ECG signals, resulting in a more precise and dependable arrhythmia classification.  

 

3.1.4. Feature selection and training model 

In the subsequent step selected the most important features from the extracted set to reduce 

complexity. This research utilizes the anas platyrhynchos optimization (APO) algorithm for optimal feature 

selection. We select this algorithm for its efficient control mechanisms, drawing inspiration from the mallard 

duck's vigilance, which can remain partially asleep and partially awake to avoid predators. Nevertheless, the 

probability function of the conventional APO algorithm may exhibit instability when applied to diverse 

populations. To tackle this issue, the research incorporates the frechet with fitness rank distribution (FFRD), 

guaranteeing reliable operations for all demographic groups. The FFRD-APO algorithm is a sophisticated 

method that uses accuracy as the fitness function. Inputted the chosen features into a classifier to make 

predictions about the disease class. For this task, the research employs a DCNN, selected for its ability to 

automatically extract features. Nevertheless, DCNNs can be susceptible to overfitting, leading to potential 

issues with time complexity and performance. We utilize a PRF-DCNN to address this issue. This approach 

applies a penalty to prevent overfitting, accounting for the loss from the previous iteration. It can correctly 

guess several heart conditions, including acute myocardial infarction (MI), transient ischemic attack, coronary 

artery disease with high blood pressure, previous MI, sinus node dysfunction, supraventricular ectopy, AF, 

bundle branch block, Wolff-Parkinson-White syndrome, and atrioventricular block. This classification 

approach improves the accuracy and reliability of arrhythmia detection and diagnosis. The pseudo code of 

proposed algorithm is given in Figure 2. 

The proposed method brings several innovative elements that improve the effectiveness and 

robustness of cardiac arrhythmia classification using ECG signals. These innovations primarily tackle common 

challenges in DL models, including overfitting, computational complexity, and the requirement for accurate 

feature selection. This model introduces a significant innovation with the integration of the PRF. Conventional 

DCNNs tend to overfit, particularly when trained on datasets that are relatively small or imbalanced. 

Overfitting is a common issue that arises when the model becomes too focused on the noise and random 

fluctuations in the training data, rather than the true underlying patterns. This can result in the model performing 

poorly when faced with new, unseen data. The PRF addresses this issue by incorporating a penalty term based 

on the loss difference between consecutive training iterations. The FFRD-APO algorithm for feature selection 

is another important step forward. Efficient feature selection plays a vital role in reducing data dimensionality, 

resulting in improved computational efficiency and enhanced model performance. Malard ducks (Anas 

platyrhynchos) are known for being alert birds. The FFRD-APO algorithm uses this behavior along with a 
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reliable statistical method to select features consistently and effectively. The model also utilizes a robust feature 

extraction process, incorporating the PTA to detect peaks and extract a wide range of features from the ECG 

signals. These features encompass a range of power bands, peak intervals, and statistical measures, along with 

important clinical indicators like RR intervals, PR intervals, QT intervals, and R peak values. This extensive 

range of features guarantees that the model effectively captures all pertinent aspects of the ECG signals, leading 

to improved accuracy in classifying cardiac conditions.  

 

 

 
 

Figure 2. Pseudo code of PRF-DCNN 

 

 

4. RESULTS AND ANALYSIS 

This section presents a comprehensive evaluation of the PRF-DCNN in the context of cardiac 

arrhythmia classification. We evaluate the proposed model's performance using the St. Petersburg INCART 

12-lead arrhythmia database, applying thorough preprocessing to ensure the quality of the data. We assess the 

model's performance using a range of metrics, such as accuracy, precision, recall, F1 score, specificity, and 

area under the curve (AUC)-receiver operating characteristic (ROC), to gain a comprehensive understanding 

of its classification abilities. In addition, we assess computational efficiency by evaluating training and 

inference times, as well as memory usage. Assessing robustness involves analyzing cross-validation scores and 

penalty impact analysis. Visualization tools like ROC and precision-recall curves provide valuable insights 

into the model's performance at various thresholds, complementing the quantitative metrics. This 

comprehensive analysis seeks to emphasize the advantages and drawbacks of the PRF-DCNN model, 

showcasing its potential for practical clinical use in automated arrhythmia detection. 

Figure 3 displays the training time metrics for various PRF-DCNN model configurations. On a dataset 

containing 1,000 samples over 50 epochs with a batch size of 32, we measured these metrics. A baseline 

configuration is a model that serves as a starting point without any extra preprocessing or feature selection 

techniques. The model version incorporates a specialized optimization technique for feature selection, which 

enhances its performance. The slight increase in training time is a result of the extra computations needed for 

the feature selection process. EEMD is used by the PRF-DCNN with EEMD decomposition configuration to 
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effectively break down ECG signals that are not stationary. The longer training time is a result of the 

computational demands of the decomposition process, which produces multiple IMFs. The complete workflow 

version of PRF-DCNN includes all the necessary preprocessing steps, such as choosing features with  

FFRD-APO and breaking down signals with EEMD. Advanced preprocessing techniques significantly increase 

the training time, emphasizing the delicate balance between enhanced preprocessing and computational 

complexity. Overall, the analysis of the training time metrics highlights the significance of finding a balance 

between computational efficiency and utilizing advanced preprocessing techniques to enhance model 

performance. When considering the use of more complex configurations, it is important to take into account 

the specific requirements of the application. This includes factors like the necessity for real-time processing or 

the priority for accuracy in a clinical setting.  

 

 

 
 

Figure 3. Total training time for different PRF-DCNN configurations 

 

 

Figure 4 displays the inference time metrics for different configurations of the PRF-DCNN model, 

measured using a batch size of 32 samples. For each model configuration, we have provided the average 

inference time per sample and the total inference time for processing 1,000 samples. The baseline model 

demonstrates exceptional computational efficiency, with an incredibly short inference time per sample  

(0.05 seconds) and a total inference time of 50 seconds for 1,000 samples. The comprehensive workflow, which 

combines FFRD-APO and EEMD, has the longest inference time per sample (0.10 seconds), with a total 

inference time of 100 seconds for 1,000 samples. This configuration showcases the balance between 

sophisticated preprocessing and computational requirements. The complete workflow, with its longer inference 

time, provides extensive preprocessing and feature extraction, making it ideal for clinical diagnostics with high 

accuracy requirements and available computational resources. 

The AUC-ROC metrics give a full picture of how well different PRF-DCNN configurations can tell 

the difference between different types of cardiac arrhythmia. The baseline model demonstrates a strong  

AUC-ROC of 0.92 (as shown in Figure 5), highlighting its proficiency in effectively differentiating between 

various classes. The use of Frechet with FFRD-APO for feature selection significantly improves the model's 

performance, resulting in an impressive AUC-ROC of 0.94. This enhancement showcases the value of selecting 

the best features to accurately capture important characteristics of the ECG signal. Incorporating EEMD for 

signal decomposition enhances the AUC-ROC to 0.95, demonstrating the model's improved ability to handle 

non-stationary ECG signals and extract more meaningful features. The integrated workflow, which combines 

FFRD-APO and EEMD, achieves an impressive AUC-ROC of 0.97. This configuration showcases exceptional 

performance, showcasing the seamless integration of advanced feature selection and signal decomposition 

techniques to optimize the model's accuracy in classifying arrhythmias. These results show how important it is 

to use advanced preprocessing methods to make automated cardiac arrhythmia detection systems more accurate 

and reliable.  
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Figure 4. Inference time metrics for different PRF-DCNN configurations 

 

 

 
 

Figure 5. AUC-ROC metrics 

 

 

Figure 6 shows performance metrics that give a full picture of the different setups of the PRF-DCNN 

model for classifying cardiac arrhythmias. The baseline model showcases impressive results, boasting an 

accuracy of 0.90, precision of 0.88, recall of 0.87, specificity of 0.92, and an F1 score of 0.88. The metrics 

demonstrate a model that is proficient in accurately identifying different types of arrhythmias. Incorporating 

the FFRD-APO technique significantly enhances the model's performance. This improvement is evident in all 

metrics, with accuracy rising to 0.92 and the F1 score reaching 0.90. This demonstrates the importance of 

selecting the most effective features for the model, which greatly enhances its precision and recall, ultimately 
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improving its overall performance. We observe significant enhancements with the incorporation of EEMD, 

leading to an increased accuracy of 0.93 and an improved F1 score of 0.91. This emphasizes the significance 

of utilizing advanced signal processing techniques to effectively manage intricate ECG signals and improve 

the model's sensitivity and specificity. The complete workflow, when utilizing FFRD-APO and EEMD 

together, yields exceptional results with high accuracy, precision, recall, specificity, and F1 score. The results 

highlight the strong connection between feature selection and signal decomposition, which greatly enhances 

the model's capability to accurately classify cardiac arrhythmias. This also showcases the effectiveness of the 

comprehensive preprocessing approach in improving diagnostic accuracy. 

 

 

 
 

Figure 6. Performance metrics 

 

 

The ROC curve metrics (Figure 7) are a useful way to compare how well different PRF-DCNN 

configurations can tell the difference between different types of heart arrhythmias. The baseline model 

showcases an impressive AUC-ROC of 0.92, highlighting its strong ability to discriminate, with a sensitivity 

of 0.87 and a false positive rate of 0.08. The integration of FFRD-APO significantly improves the model's 

performance. This results in an impressive AUC-ROC of 0.94, demonstrating enhanced sensitivity (0.89) and 

a notably reduced false-positive rate (0.06). Incorporating EEMD results in additional performance 

improvements, leading to an elevated AUC-ROC of 0.95. This configuration demonstrates a high level of 

accuracy in detecting arrhythmias while minimizing false alarms. With a sensitivity of 0.90 and a false-positive 

rate of 0.05, the model's performance is professional and reliable. The complete workflow has shown a 

significant improvement by integrating both FFRD-APO and EEMD. This configuration demonstrates 

exceptional performance, achieving an impressive AUC-ROC of 0.97. It also exhibits a high sensitivity of 0.92 

and an impressively low false-positive rate of 0.03. The results highlight the power of integrating advanced 

feature selection and signal decomposition techniques to maximize the accuracy and reliability of the model. 

This makes the comprehensive PRF-DCNN workflow an extremely effective tool for automated cardiac 

arrhythmia classification. 

The comparison as shown in Table 1 of different cardiac arrhythmia classification models shows that 

our suggested PRF-DCNN model has many strengths, especially when tested using the St. Petersburg INCART 

12-lead arrhythmia database. Models like CNN-LSTM that are used on the MIT-BIH dataset get very good 

results in terms of accuracy (99.32%), sensitivity (97.50%), and specificity (98.70%). However, these results 

come from different datasets that might not reflect the same level of variation in the St. Petersburg INCART 

dataset. In the same way, distilled models that use the Chapman ECG database show impressive performance 

metrics (98.15% accuracy, 97.11% sensitivity, and 98.45% specificity). However, these metrics may not apply 

to all datasets. 
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Figure 7. ROC curve metrics 

 

 

Table 1. Performance comparison 
Reference Database Classifier Accuracy Sensitivity Specificity 

[29] MIT-BIH CNN-LSTM 99.32 97.50 98.70 

[30] Chapman ECG DB Distilled Models 98.15 97.11 98.45 
[31] MIT-BIH Fuzz-ClustNet 98.66 98.92 93.88 

Ours St. Petersburg INCART 12 PRF-DCNN 95 92 97 

 

 

The classification results obtained from the PRF-DCNN model indicate a high level of performance 

in accurately identifying the prominent arrhythmia classes as shown in Table 2. This is evident from the strong 

values observed for key evaluation metrics such as accuracy, precision, recall, and specificity. The model 

demonstrates exceptional accuracy rates across all classes, with the highest accuracy of 0.96 achieved for VF, 

thereby indicating the model's ability to make reliable predictions. The precision and recall values consistently 

exhibit high performance, with precision ranging from 0.91 to 0.95 and recall ranging from 0.90 to 0.94. These 

values reflect the model's effectiveness in accurately identifying true positive cases while minimizing the 

occurrence of false positives. The PRF-DCNN model demonstrates robustness and reliability in accurately 

classifying AF, VT, VF, PVC, and AV block. These metrics highlight the model's effectiveness as a valuable 

tool for clinical diagnostics and timely intervention in cardiac arrhythmia management. 

 

 

Table 2. Classification results for arrhythmia classes using PRF-DCNN 
Arrhythmia Class Accuracy Precision Recall Specificity 

AF 0.95 0.94 0.93 0.96 
VT 0.94 0.93 0.92 0.95 

VF 0.96 0.95 0.94 0.97 

PVC 0.93 0.92 0.91 0.94 

AV 0.92 0.91 0.90 0.93 

 

 

5. CONCLUSION 

In this study, we proposed a novel approach for cardiac arrhythmia classification using a PRF-DCNN. 

By incorporating sophisticated preprocessing techniques, our model demonstrated significant improvements in 



Int J Artif Intell  ISSN: 2252-8938  

 

A robust penalty regression function-based deep convolutional neural network … (Anniah Pratima) 

639 

accuracy and robustness compared to conventional methods. FFRD-APO is used for feature selection, and 

EEMD is used for signal decomposition. The PRF-DCNN model underwent a comprehensive evaluation using 

the St. Petersburg INCART 12-lead arrhythmia database. The experimental results demonstrate that the 

comprehensive workflow, which integrates FFRD-APO and EEMD, achieved the highest performance metrics. 

The area under the AUC-ROC was 0.97, indicating excellent discrimination ability. The accuracy of the 

workflow was 0.95, indicating a high proportion of correct predictions. The precision, which measures the 

proportion of true positive predictions among all positive predictions, was 0.93. The recall, which measures 

the proportion of true positive predictions among all actual positive instances, was 0.92. The specificity, which 

measures the proportion of true negative predictions among all actual negative instances, was 0.97. The F1 

score, which combines precision and recall, was 0.93. These results highlight the effectiveness of our approach 

in accurately identifying and categorizing different forms of arrhythmias, despite the inherent variability in 

ECG signals caused by age and gender disparities. The PRF's integration effectively addresses the issue of 

overfitting, resulting in stable and reliable performance across various patient populations and recording 

conditions. The proposed model exhibits a high level of computational efficiency, which enables its practical 

implementation in real-time applications within clinical settings. The PRF-DCNN model provides a robust and 

efficient solution for automated detection of cardiac arrhythmia. Remote patient monitoring and timely 

intervention could potentially benefit from its application. We will dedicate future work to optimizing the 

model's performance, exploring additional preprocessing techniques, and validating the system in various 

clinical settings to enhance its adaptability and practical usefulness.  

 

 

REFERENCES 
[1] K.-J. Ho, “Cardiovascular diseases,” Nutritional Aspects of Aging, CRC Press, 2018, pp.75-100, doi: 10.1201/9781351075145-3. 
[2] O. Gaidai, Y. Cao, and S. Loginov, “Global cardiovascular diseases death rate prediction,” Current Problems in Cardiology, vol. 

48, no. 5, 2023, doi: 10.1016/j.cpcardiol.2023.101622. 

[3] G. A. Mensah et al., “Global burden of cardiovascular diseases and risks, 1990-2022,” Journal of the American College of 

Cardiology, vol. 82, no. 25, pp. 2350–2473, 2023, doi: 10.1016/j.jacc.2023.11.007. 
[4] L. Tang, J. Yang, Y. Wang, and R. Deng, “Recent advances in cardiovascular disease biosensors and monitoring technologies,” 

ACS Sensors, vol. 8, no. 3, pp. 956–973, 2023, doi: 10.1021/acssensors.2c02311. 

[5] S. M. Malakouti, “Heart disease classification based on ECG using machine learning models,” Biomedical Signal Processing and 

Control, vol. 84, 2023, doi: 10.1016/j.bspc.2023.104796. 

[6] J. Kingma, C. Simard, and B. Drolet, “Overview of cardiac arrhythmias and treatment strategies,” Pharmaceuticals, vol. 16, no. 6, 
2023, doi: 10.3390/ph16060844. 

[7] P. Y. Lee, H. Garan, E. Y. Wan, B. E. Scully, A. Biviano, and H. Yarmohammadi, “Cardiac arrhythmias in viral infections,” Journal 

of Interventional Cardiac Electrophysiology, vol. 66, no. 8, pp. 1939–1953, 2023, doi: 10.1007/s10840-023-01525-9. 

[8] A. A. Ahmed, W. Ali, T. A. A. Abdullah, and S. J. Malebary, “Classifying cardiac arrhythmia from ECG signal using 1D CNN 

deep learning model,” Mathematics, vol. 11, no. 3, 2023, doi: 10.3390/math11030562. 
[9] Y. D. Daydulo, B. L. Thamineni, and A. A. Dawud, “Cardiac arrhythmia detection using deep learning approach and time frequency 

representation of ECG signals,” BMC Medical Informatics and Decision Making, vol. 23, no. 1, 2023, doi: 10.1186/s12911-023-

02326-w. 

[10] Y. Ansari, O. Mourad, K. Qaraqe, and E. Serpedin, “Deep learning for ECG arrhythmia detection and classification: an overview 

of progress for period 2017–2023,” Frontiers in Physiology, vol. 14, 2023, doi: 10.3389/fphys.2023.1246746. 
[11] Z. Ozpolat and M. Karabatak, “Performance evaluation of quantum-based machine learning algorithms for cardiac arrhythmia 

classification,” Diagnostics, vol. 13, no. 6, 2023, doi: 10.3390/diagnostics13061099. 

[12] Z. Li and H. Zhang, “Fusing deep metric learning with KNN for 12-lead multi-labelled ECG classification,” Biomedical Signal 

Processing and Control, vol. 85, 2023, doi: 10.1016/j.bspc.2023.104849. 

[13] R. Bhukya, R. Shastri, S. S. Chandurkar, S. Subudhi, D. Suganthi, and M. S. R. Sekhar, “Detection and classification of cardiac 
arrhythmia using artificial intelligence,” International Journal of System Assurance Engineering and Management, 2023, doi: 

10.1007/s13198-023-02035-7. 

[14] S. Singhal and M. Kumar, “A systematic review on artificial intelligence-based techniques for diagnosis of cardiovascular 

arrhythmia diseases: challenges and opportunities,” Archives of Computational Methods in Engineering, vol. 30, no. 2, pp. 865–

888, 2023, doi: 10.1007/s11831-022-09823-7. 
[15] I. Kalogridis and S. V. Aelst, “Robust penalized estimators for functional linear regression,” Journal of Multivariate Analysis, vol. 

194, 2023, doi: 10.1016/j.jmva.2022.105104. 

[16] M. Y. Ansari, I. A. C. Mangalote, D. Masri, and S. P. Dakua, “Neural network-based fast liver ultrasound image segmentation,” 

2023 International Joint Conference on Neural Networks (IJCNN), Gold Coast, Australia, 2023, pp. 1-8, doi: 

10.1109/IJCNN54540.2023.10191085.  
[17] Z. Gao et al., “Complex networks and deep learning for EEG signal analysis,” Cognitive Neurodynamics, vol. 15, no. 3, pp. 369–

388, 2021, doi: 10.1007/s11571-020-09626-1. 

[18] M. Y. Ansari and M. Qaraqe, “MEFood: A large-scale representative benchmark of quotidian foods for the Middle East,” IEEE 

Access, vol. 11, pp. 4589–4601, 2023, doi: 10.1109/ACCESS.2023.3234519. 

[19] K. R. Chowdhary, “Natural language processing,” in Fundamentals of Artificial Intelligence, vol. 11, no. 1, New Delhi: Springer 
India, 2020, pp. 603–649. 

[20] V. Chandrasekar et al., “Investigating the use of machine learning models to understand the drugs permeability across placenta,” 

IEEE Access, vol. 11, pp. 52726–52739, 2023, doi: 10.1109/ACCESS.2023.3272987. 

[21] P. Bizopoulos and D. Koutsouris, “Deep learning in cardiology,” IEEE Reviews in Biomedical Engineering, vol. 12, pp. 168–193, 

2019, doi: 10.1109/RBME.2018.2885714. 
[22] S. M. P. Dinakarrao, A. Jantsch, and M. Shafique, “Computer-aided arrhythmia diagnosis with bio-signal processing: a survey of 

trends and techniques,” ACM Computing Surveys, vol. 52, no. 2, 2019, doi: 10.1145/3297711. 



                ISSN: 2252-8938 

Int J Artif Intell, Vol. 14, No. 1, February 2025: 629-640 

640 

[23] Q. Xiao et al., “Deep learning-based ECG arrhythmia classification: a systematic review,” Applied Sciences, vol. 13, no. 8, 2023, 
doi: 10.3390/app13084964. 

[24] Y. Li, R. Qian, and K. Li, “Inter-patient arrhythmia classification with improved deep residual convolutional neural network,” 

Computer Methods and Programs in Biomedicine, vol. 214, 2022, doi: 10.1016/j.cmpb.2021.106582. 

[25] B. M. Mathunjwa, Y. T. Lin, C. H. Lin, M. F. Abbod, and J. S. Shieh, “ECG arrhythmia classification by using a recurrence plo t 

and convolutional neural network,” Biomedical Signal Processing and Control, vol. 64, 2021, doi: 10.1016/j.bspc.2020.102262. 
[26] J. Rahul, M. Sora, L. D. Sharma, and V. K. Bohat, “An improved cardiac arrhythmia classification using an RR interval-based 

approach,” Biocybernetics and Biomedical Engineering, vol. 41, no. 2, pp. 656–666, 2021, doi: 10.1016/j.bbe.2021.04.004. 

[27] N. Sinha and A. Das, “Automatic diagnosis of cardiac arrhythmias based on three stage feature fusion and classification model  

using DWT,” Biomedical Signal Processing and Control, vol. 62, 2020, doi: 10.1016/j.bspc.2020.102066. 

[28] H. Zhang et al., “Recurrence plot-based approach for cardiac arrhythmia classification using inception-ResNet-v2,” Frontiers in 
Physiology, vol. 12, 2021, doi: 10.3389/fphys.2021.648950. 

[29] C. Chen, Z. Hua, R. Zhang, G. Liu, and W. Wen, “Automated arrhythmia classification based on a combination network of CNN 

and LSTM,” Biomedical Signal Processing and Control, vol. 57, 2020, doi: 10.1016/j.bspc.2019.101819. 

[30] M. Sepahvand and F. Abdali-Mohammadi, “A novel method for reducing arrhythmia classification from 12-lead ECG signals to 

single-lead ECG with minimal loss of accuracy through teacher-student knowledge distillation,” Information Sciences, vol. 593, pp. 
64–77, 2022, doi: 10.1016/j.ins.2022.01.030. 

[31] S. Kumar, A. Mallik, A. Kumar, J. D. Ser, and G. Yang, “Fuzz-ClustNet: coupled fuzzy clustering and deep neural networks for 

arrhythmia detection from ECG signals,” Computers in Biology and Medicine, vol. 153, 2023, doi: 

10.1016/j.compbiomed.2022.106511. 
 

 

BIOGRAPHIES OF AUTHORS 

 

 

Anniah Pratima     obtained a B.E. degree in electronics and communication 

engineering from JNTUA in 2010, holds a master of technology degree in VLSI system design 

from Jawaharlal Technological University (JNTUH), India, 2013 and currently pursuing a Ph.D. 

in electronics engineering. She has 9.5 years of teaching experience. She is currently working 

as Assistant Professor, in Department of Electronics & Communication Engineering at REVA 

University, Bangalore. The research interests include artificial intelligence, VLSI, IoT, 

embedded systems, and communications. Also, she is active member of IEEE and IETE. She 

can be contacted at email: pratima.may10@gmail.com. 

  

 

Dr. Gopalakrishna Kanathur     obtained B.E. degree in electronics engineering 

from Bangalore University in 1992, M.Tech. degree in VLSI design and embedded systems 

from VTU, M.Phil. degree in computer science from M.S. University, Tirunelveli, Tamil Nadu 

in 2003 and Ph.D. in electronics engineering from Jain (Deemed-to-be University) in 2018. He 

has 32 years of teaching experience. He is currently working as Professor, Department of 

Electronics & Communication Engineering, Faculty of Engineering & Technology, Jain 

(Deemed-to-be University) and Deputy Controller of Examinations Jain (Deemed-to-be 

University). His field of interests includes advanced microprocessors, microcontrollers, 

embedded systems, VLSI technology, VLSI designing, and IoT. He has several publications in 

reputed journals. He is serving as BOS, BOE, and doctoral committee member of several private 

and deemed universities and reputed autonomous institutions. He is the advisory committee 

member for six Ph.D. He is scholars of VTU. He can be contacted at email: 

k.gopalakrishna@jainuniversity.ac.in. 

  

 

Dr. Sarappadi Narasimha Prasad     Professor in Department of Electronics and 

Electronics Engineering, Manipal Institute of Technology Bengaluru, Manipal Academy of 

Higher Education (MAHE), Manipal, Karnataka, India-576104. Total experience is 22 years, 

completed graduation from Mangalore University, post-graduation from VTU and doctorate 

from Jain University. More than 80 journals/conferences in profile and presently guiding 8 

research scholars. Area of interest is AI, embedded systems, and signal processing. He can be 

contacted at email: sn.prasad@manipal.edu. 

 

https://orcid.org/0000-0002-5998-5110
https://scholar.google.com/citations?user=TFzXa4kAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=58686942700
https://orcid.org/0000-0003-1039-1722
https://scholar.google.com/citations?hl=en&user=oWB_IbIAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57196886502
https://orcid.org/0000-0002-8304-8506
https://scholar.google.co.in/citations?user=1vt5zREAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=57211856934

